Skip to main content
. Author manuscript; available in PMC: 2019 Jan 1.
Published in final edited form as: Bull Math Biol. 2017 Nov 6;80(1):46–63. doi: 10.1007/s11538-017-0365-3

Table 3. Contribution of parameters in the minimal immunity model to variance in viral dynamics.

We first calculate the best fit parameter set for each individual. Then we set all but one parameter to the mean value and calculate the variance in peak viral load (log scale), integral viral load (log scale), time of peak and time of clearance. The first column shows the variance in these measures when all parameters are allowed to vary. We see that the parameter r is by far the most significant in producing the observed heterogeneity in viral load. The variance in the peak viral load in the data is roughly 4.5 logs, so the best model explain roughly 50% of the variance.

Full r k ϕ V0 td s ψ n m
Peak Minimal 2.30 2.20 0.00 0.00 0.02 0.01
Virus Innate 2.51 1.55 0.00 0.02 0.06 0.01 0.00 0.04 0.00
Adaptive 2.75 1.79 0.00 0.00 0.12 0.00 0.00 0.27 0.00

Area Minimal 0.81 0.68 0.00 0.01 0.01 0.01
Under Innate 0.74 0.58 0.00 0.01 0.05 0.00 0.00 0.01 0.01
Curve Adaptive 0.52 0.22 0.00 0.00 0.09 0.00 0.00 0.05 0.00

Peak Minimal 1.20 0.47 0.18 0.02 0.01 0.04
Time Innate 1.43 0.18 0.02 0.02 0.05 0.01 0.00 0.05 0.02
Adaptive 1.06 0.24 0.08 0.01 0.08 0.00 0.00 0.07 0.00

Clearance Minimal 1.99 1.85 0.02 0.01 0.00 0.02
Time Innate 2.16 1.31 0.00 0.02 0.01 0.01 0.00 0.05 0.01
Adaptive 2.29 1.44 0.01 0.00 0.03 0.00 0.00 0.20 0.00