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Abstract
ProCos (Protein Composition Server, script version), one of the machine learning techniques, was used to classify nitrilases 
as aliphatic and aromatic nitrilases. Some important feature vectors were used to train the algorithm, which included 
pseudo-amino acid composition (PAAC) and five-factor solution score (5FSS). This clearly differentiated into two groups of 
nitrilases, i.e., aliphatic and aromatic, achieving maximum sensitivity of 100.00%, specificity of 90.00%, accuracy of 95.00% 
and Mathew Correlation Coefficient (MCC) of about 0.90 for the pseudo-amino acid composition. On the other hand, five-
factor solution score achieved a sensitivity of 96.00%, specificity of 84.00%, accuracy of 90.00% and Mathew Correlation 
Coefficient (MCC) of about 0.81. The total count of aliphatic amino acids, Ala (A), Gly (G), Leu (L), Ile (I), Val (V), Met 
(M) and Pro (P), was found to be higher, i.e., 42.7 in case of aliphatic nitrilases, whereas it was 40.1 in aromatic nitrilases. 
On the other hand, aromatic amino acids, Tyr (Y), Trp (W), His (H) and Phe (F) number, were found to be higher, i.e., 12.7 
in aromatic nitrilases as compared to aliphatic nitrilases which was 10.7. This approach will help in predicting a nitrilase 
as aromatic or aliphatic nitrilase based on its amino acid sequence. Access to the scripts can be done logging onto GitHub 
using keyword ‘Nitrilase’ or ‘http​s://gith​ub.com/rove​r238​0/Nitr​ilas​e.git’.
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Introduction

Nitrilases are the enzymes which catalyze the hydrolysis 
of various nitriles into corresponding acid and ammonia. 
These enzymes have been well identified and characterized 
in plants, bacteria and fungi, and are engaged as an industri-
ally important biocatalyst for the production of bulk and fine 
chemicals. For example, mandelonitrile could be hydrolyzed 
to optically pure (R)-(-)- mandelic acid, which is widely 
used for the production of semisynthetic cephalosporins, 
penicillins, antitumor agents, and anti-obesity agents (Wang 

et al. 2014). Researchers have revealed that nitrilases play a 
vital role in various biological processes and plant–microbe 
interaction, but despite their valuable importance they are 
relatively less explored for their metabolic functions.

Nitrilases differ variably in substrate specificities and find 
wide application in the transformation of a range of nitriles 
to acids (Sharma et al. 2006, 2012; Bhatia et al. 2014). Pre-
vious studies have revealed that nitrilases are specific for 
aromatic nitriles while nitrile hydratase has affinity towards 
aliphatic nitriles, but in light of rapidly growing informa-
tion regarding nitrile metabolizing enzymes, various aspects 
have to be reconsidered (Mylerova and Martinkova 2003). 
Because of the established fact that amino acids are respon-
sible for protein structure and function (Yeom et al. 2008; 
Liu et al. 2013), they are found to play a significant role in 
classifying nitrilases as aliphatic or aromatic.

With the exponential growth in the quantity of biological 
data in past years, there has been an impressive progress in 
computational biology. In silico analysis and various machine 
learning techniques are being applied for knowledge genera-
tion from the data. The machine learning approach is one such 
area of programming computers to optimize the performance 
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criterion using example data or past results. The genome-based 
discoveries being continually increased, the possibility of find-
ing novel sources of nitrilases has also increased tremendously 
(Gong et al. 2013; Kaplan et al. 2011). The annotation with 
functional assignments for their respective classes through 
various wet lab techniques is time consuming and labor inten-
sive, which makes machine learning to be effectively used to 
complement them by saving time, money and labor (Pant et al. 
2011). ProCoS script version is one such machine learning 
algorithm that has recently become prominent for in silico 
analysis, as they have a high dimensionality and accuracy in 
prediction of results not only for protein–protein complexes 
but also for enzyme classification (Rishishwar et al. 2010). 
Amino acid composition is a predictive feature vector for clas-
sification of various classes of proteins on the basis of their 
substrate specificity and position specificity (Kumar et al. 
2011; Sharma et al. 2009).

The present article aims to serve for an insightful catego-
rization and classification of nitrilases using script version of 
the ProCoS. The peptide composition features have been used 
for making pseudo-amino acid composition (PAAC) and five-
factor solution score (5FSS) models in the present study.

Materials and methods

Dataset

The amino acid sequences of the nitrilases were downloaded 
from the ExPASy (http​://www.expa​sy.org/spro​t/) proteomic 
server and NCBI website. Nitrilases on the basis of their sub-
strate specificity are distributed into two sets, i.e., positive (ali-
phatic nitrilase) and negative (aromatic nitrilase) dataset. Fifty 
amino acid sequences were considered in the study for both the 
datasets (Tables 1 and 2). Test and training sets were designed 
from a fivefold cross-validation scheme to create a model for 
the classification of a new sequence of nitrilase. The script 
used is accessible both as an applet and as a server, which is 
designed in Java and the server works on Perl-PHP backbone 
deposited in GitHub (http​s://gith​ub.com/rove​r238​0/Nitr​ilas​
e.git). The minimum input requirement for the analysis is the 
protein sequences in fasta format and output can be achieved 
in the form of tables.

Features

Amino acid composition (AAC)

The amino acid frequency was calculated for both the datasets 
of proteins (aliphatic and aromatic nitrilases). Calculation of 
amino acid frequencies gives the value of the occurrence of 
that amino acid in the particular protein sequence. The fraction 

of the twenty amino acids was calculated using the following 
equation:

This gives a significance of a particular amino acid. The 
script takes an input of 20 vectors corresponding to twenty 
amino acids. Figure 1 shows that the amino acid frequencies 
of aromatic and aliphatic nitrilases are different, so they can 
be easily distinguished.

Dipeptide composition (DPC)

Dipeptide composition was calculated for all the 20 × 20 
(400) combinations of amino acid. It gives significance to 
the combination of amino acids. The fraction of each dipep-
tide was calculated using the following equation:

Tripeptide composition (TPC)

Tripeptide composition was also calculated like amino acid 
and dipeptide composition, thus generating all 20 × 20 × 20 
(8000) feature vectors for training and testing datasets.

Pseudo‑amino acid composition (PAAC)

The use of simple amino acid composition feature misses the 
important information in order of amino acid present in the 
peptide. Keeping this in view, the following information is 
incorporated with the help of PAAC as mentioned by Chou 
(2001). The feature vectors built according to this concept 
contains the frequency of 20 amino acids followed by their 
respective order information. Web server for calculation of 
PAAC had been proposed which calculates the respective 
feature (Shen and Chou 2008).

Split amino acid composition (SAAC​)

Peptides were split into three parts to compute split amino 
acid composition of each part of protein separately. In this 
way, a vector of dimension 60 (3 × 20) was created instead 
of 20 in case of amino acid composition. In SAAC, each 
protein was divided into three parts like: (1) 20 amino acids 
of the N terminus, (2) 20 amino acids of the C–terminus, and 
(3) remaining protein length after removing 20 amino acids 
from N– and C– terminus.

Fraction of amino acids =
total number of amino acid (i)

total number of amino acids in proteins
.

�������� �� ��������� =
total number of dipeptides (i)

total number of all possible dipeptides
.

http://www.expasy.org/sprot/
https://github.com/rover2380/Nitrilase.git
https://github.com/rover2380/Nitrilase.git
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Table 1   Aliphatic nitrilases 
with their accession and amino 
acid number

Aliphatic nitrilases

S. no Name of the microorganism Accession number Length 
(amino 
acid)

1 Rhodococcus rhodochrous K22 gi|417382 383
2 Rhodococcus rhodochrous J1 gi|417384 366
3 Nocardia sp. C-14-1 gi|60280369 381
4 Synechococcus sp. ATCC 27144 WP_011243013 334
5 Polaromonas naphthalenivorans gi|500125486 353
6 Rhizobium leguminosarum bv. viciae 3841 gi|116255137 340
7 Variovorax paradoxus EPS gi|315596504 344
8 Burkholderia sp. BT03 gi|495013900 356
9 Danaus plexippus F2 gi|357616093 389
10 Comamonas testosterone gi|1082009 354
11 Sorangium cellulosum So0157-2 gi|521469000 342
12 Rhizoctonia solani 123E gi|660965364 364
13 Polycyclovorans algicola gi|659838894 362
14 Rhizobium leguminosarum gi|659064095 348
15 Methylobacterium sp. L2-4 gi|657247605 358
16 Bosea sp. 117 gi|657241356 350
17 Bradyrhizobium sp. th.b2 gi|656043203 360
18 Azospirillum halopraeferens gi|655966390 354
19 Bradyrhizobium elkanii gi|654889008 354
20 Rhizobium sp. JGI 0001019-L19 gi|655350271 348
21 Burkholderia mimosarum gi|654755069 350
22 Amycolatopsis taiwanensis gi|654475327 346
23 Variovorax sp.P21 gi|654178860 350
24 Agrobacterium rhizogenes ATCC 15834 gi|653181208 350
25 Saccharomonospora viridis DSM 43017 ACU96985 331
26 Mesorhizobium loti gi|652688040 348
27 Acidovorax oryzae gi|651303417 344
28 Achromobacter xylosoxidans gi|651250268 345
29 Variovorax paradoxus gi|648592180 350
39 Methylobacterium sp. 88A gi|648483839 363
31 Burkholderia kururiensis gi|648430021 359
32 Pseudomonas syringae B728a WP_011266126 336
33 Methylopila sp. 73B gi|519032254 350
34 Sphingopyxis alaskensis WP_011541682 338
35 Bradyrhizobium sp. ORS278 WP_011927383 337
36 Xanthobacter sp. 126 gi|635631313 352
37 Colletotrichum fioriniae PJ7 gi|615443311 362
38 Oligotropha carboxidovorans OM5 gi|209874119 354
39 Methylibium petroleiphilum PM1 gi|124258961 357
40 Marinomonas ushuaiensis DSM 15871 gi|575464044 344
41 Betaproteobacteria bacterium MOLA814 gi|557914537 367
42 Cupriavidus sp. WS gi|519051014 356
43 Methylopila sp. M107 gi|519021908 352
44 Methyloversatilis universalis gi|519007573 345
45 Teredinibacter turnerae gi|518436209 349
46 Shimwellia blattae ATCC 29907 WP_002439083 342
47 Burkholderia gladioli gi|503455327 373
48 Starkeya novella gi|502933508 357
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Hybrid model 1

First hybrid model was made by combining the feature vec-
tors of amino acid composition and dipeptide composition 
(AAC + DPC) giving us 420 vectors (20 + 400) for training 
and testing dataset.

Hybrid model 2

Second hybrid model was made by combining split amino 
acid feature to the hybrid 1 (AAC + DPC + SAAC) feature 
resulting in 480 (20 + 400 + 60) feature vectors for SVM.

Machine learning using script version of ProCos 
(Protein composition server)

The present study uses the script version which has been 
implemented and is a supervised machine learning algorithm. 
The idea behind using the script is the classification which 
attaches the feature vector with each sample (this case its pep-
tide) to represent those points in a high dimensional feature 
space and then assigning the points into a particular category 
(positive or negative class) on the basis of an optimal separat-
ing hyperplane. The script training most preciously gives a 
global solution to optimize the hyperplane, thus avoiding the 
problem of overfitting of the data to one another class.

Cross‑validation and evaluation parameter

A fivefold cross-validation for validating pseudo-amino acid 
composition (PAAC) and five-factor solution score (5FSS) 
model predictors was used. The performance of all the models 
was evaluated by the following standard parameter method:

(a)	 Sensitivity or coverage of positive examples: It is 
the percent of aromatic nitrilase proteins correctly pre-
dicted.

(b)	 Specificity or coverage of negative examples: It is 
the percent of aliphatic nitrilase proteins correctly pre-
dicted aliphatic nitrilase.

Sensitivity (Sn) =
TP

TP + FN
× 100.

(c)	 Accuracy: It is the percentage of correctly predicted 
proteins (aromatic and aliphatic proteins).

(d)	 Mathew’s correlation coefficient (MCC): It is consid-
ered to be the most robust parameter of any class pre-
diction method. MCC equal to 1 is regarded as perfect 
prediction while 0 for completely random prediction.

where TP and TN are truly or correctly predicted aliphatic 
and aromatic nitrilases. FP and FN are wrongly predicted 
aliphatic and aromatic nitrilases.

Results

The script written is a powerful applet and a classifica-
tion tool that has become increasingly popular in various 
machine learning applications. Machine learning approach 
is considered to be one of the vital subfields of artificial 
intelligence which is more concerned with the develop-
ment of techniques and methods that enable the computer 
to learn. The present study classifies nitrilases on the basis 
of their amino acid composition which is responsible for 
their substrate specificity, stability and selectivity. The 
model developed by machine learning technique is used to 
differentiate between the two groups of nitrilases. The total 
count of aliphatic amino acids, i.e., alanine (A), glycine 
(G), leucine (L), isoleucine (I), valine (V), methionine (M) 
and proline (P), was found to be higher, i.e., 42.7 in case 
of aliphatic nitrilase as compared to aromatic nitrilases 
which is 40.1 (Fig. 1). On the other hand, aromatic amino 
acids, tyrosine (Y), tryptophan (W), histidine (H) and phe-
nylalanine (F) number, were found to be higher, i.e., 12.7 
as when compared to aliphatic nitrilases which were 10.7.

Specificity (Sp) =
TN

TN + FP
× 100.

Accuracy (Acc) =
TP + TN

TP + TN + FP + FN
× 100.

MCC =
(TP × TN) − (FP × FN)

√

(TP + FP) (TP + FN) (TN + FP) (TN + FN)
× 100

Table 1   (continued) Aliphatic nitrilases

S. no Name of the microorganism Accession number Length 
(amino 
acid)

49 Serratia sp. M24T3 gi|497320793 342
50 Janthinobacterium sp. Marseille gi|501028829 355
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Table 2   Aromatic nitrilases 
with their accession and amino 
acid number

Aromatic nitrilases

S. no Name of the microorganism Accession number Length 
(amino 
acid)

1 Pantoea sp. AS-PWVM4 gi|544758631 328
2 Elizabethkingia gi|544938496 318
3 Fodinicurvata sediminis gi|550981872 310
4 Thalassospira lucentensis gi|550982983 311
5 Rhizobium leguminosarum bv. trifolii WSM1325 gi|240856665 330
6 Cellulophaga algicola DSM 14237 gi|319421185 316
7 Maricaulis maris MCS10 gi|114340126 310
8 Pseudomonas sp. GM41 gi|576708726 324
9 Burkholderia sp. BT03 gi|576730682 328
10 Morganella morganii subsp. morganii KT gi|455420318 338
11 Rubellimicrobium mesophilum DSM 19309 gi|598658225 319
12 Tomitella biformata gi|640112707 324
13 Pedobacter jeongneungensis gi|640722764 318
14 Flexithrix dorotheae gi|648518461 314
15 Sediminispirochaeta bajacaliforniensis gi|648603114 316
16 Niabella soli DSM 19437 gi|570745400 321
17 Butyrivibrio sp. MC2021 gi|651408280 310
18 Dyadobacter alkalitolerans gi|651643084 314
19 Arenibacter latericius gi|652415782 316
20 Maribacter antarcticus gi|652759557 316
21 Chryseobacterium sp. UNC8MFCol gi|653122843 319
22 Meiothermus chliarophilus gi|654421979 314
23 Sphingobacterium thalpophilum gi|654603925 318
24 Desulfatibacillum aliphaticivorans gi|654863925 307
25 Parabacteroides gordonii gi|655317710 317
26 Pseudonocardia spinosispora gi|655591302 310
27 Stappia stellulata gi|656017004 316
28 Rhodococcus aetherivorans gi|657826219 322
29 Marssonina brunnea sp. MB_m1 gi|597582433 321
30 Pseudomonas pseudoalcaligenes CECT:5344 gi|652791517 324
31 Burkholderia multivorans CGD1 WP_006401663 307
32 Thalassiosira pseudonana EED91795 320
33 Saccharomyces cerevisiae RM11-1a EDV09642 322
34 Ajellomyces dermatitidis ER-3 EEquation 85041 297
35 Scheffersomyces stipitis ATCC 58785 XP_001385512 307
36 Methanosarcina mazei BAA-159 WP_011033178 307
37 Arabidopsis thaliana AEE77890 346
38 Bacillus sp. OxB-1 AB028892 339
39 Synechocystis sp. PCC6803 gi|1001835 346
40 Aeribacillus pallidus gi|111054396 323
41 Runella slithyformis WP_013931053 310
42 Pseudomonas entomophila L48 WP_011534641 307
43 Shewanella sediminis HAW-EB3 ABV35137 317
44 Microscilla marina ATCC 23134 WP_002693358 304
45 Janthinobacterium sp. Marseille WP_012080333 316
46 Burkholderia cepacia J2315 WP_006483427 307
47 Bordetella bronchiseptica WP_003808910 310
48 Geodermatophilus obscurus ATCC 25078 WP_012946300 260
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For aliphatic and aromatic class of nitrilases, machine 
was trained using ProCoS, each with a different type of 
kernel (linear, polynomial, radial basis and sigmoid). The 
output with the best training results was considered with 
high sensitivity, specificity, accuracy and Mathew’s cor-
relation coefficient which has been summarized in Table 3 
(detailed information provided as supplementary data 
S1-S7).

Amino acid composition (AAC)

A sensitivity of 90.00%, specificity of 93.88%, accuracy 
of 91.92% and MCC of about 0.84 for AAC was achieved 
which clearly indicates the difference between the two 
classes of nitrilase, i.e., aliphatic and aromatic nitrilases but 
with the rate of false prediction (RFP) of 6.25.

Dipeptide composition (DPC)

This model performed better than AAC with sensitivity 
of 94.00%, specificity of 91.84%, accuracy of 92.93% and 
MCC of 0.86. RFP was found to be more than AAC, i.e., 
7.84, respectively.

Split amino acid composition (SAAC)

This model gave sensitivity of 92.00%, specificity of 81.63%, 
accuracy of 86.87% and MCC of 0.74, but the RFP was high 
with the value of 16.36.

Table 2   (continued) Aromatic nitrilases

S. no Name of the microorganism Accession number Length 
(amino 
acid)

49 Nocardiopsis dassonvillei ATCC 23218 WP_013156158 280
50 Streptomyces albus J1074 WP_003950974 315

Fig. 1   Comparison of amino acid frequencies of aliphatic and aro-
matic nitrilases using ProCoS

Table 3   Performance of the models based on vectors for amino acid 
composition (AAC), dipeptide composition (DPC), split amino acid 
composition (SAAC), pseudo-amino acid composition (PAAC), 
tripeptide composition (TPC), hybrid 1 (AAC + DPC) and hybrid 2 
(AAC  +  DPC  +  SAAC), respectively, Matthews correlation coeffi-
cient (MCC), rate of false prediction (RFP)

Sensitivity, specificity and accuracy are in percentage (in bold and 
italics are the maximum accuracy and MCC)

Model Sensitivity Specificity Accuracy MCC RFP

AAC​ 90.00 93.88 91.92 0.84 6.25
DPC 94.00 91.84 92.93 0.86 7.84
SAAC​ 92.00 81.63 86.87 0.74 16.36
PAAC​ 100.00 90.00 95.00 0.90 9.09
TPC 94.00 92.00 93.00 0.86 7.84
hyb1 96.00 87.76 91.92 0.84 11.11
hyb2 92.00 93.88 92.93 0.86 6.12

Table 4   Performance of ProCos 
model using pseudo-amino acid 
calculation (PAAC) and five-
factor solution score (5FFSS) 
features

Sn sensitivity, Sp specificity, Acc accuracy, Mcc Matthews correlation coefficient

Threshold PAAC​ 5FFSS

Sn Sp Acc Mcc Sn Sp Acc Mcc

− 0.1 100.00 90.00 95.00 0.90 96.00 84.00 90.00 0.81
0.0 96.00 90.00 93.00 0.86 92.00 86.00 89.00 0.78
0.1 94.00 92.00 93.00 0.86 90.00 88.00 89.00 0.78
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Tripeptide composition (TPC)

he model based on TPC feature achieved sensitivity of 
94.00%, specificity of 92.00%, accuracy of 93.00% and 
MCC of 0.86 with the RFP of 7.84.

Pseudo‑amino acid composition (PAAC​)

Model based on PAAC feature vector achieved the highest 
sensitivity of 100.00%, specificity of 90.00%, accuracy of 
95.00% and MCC of 0.90 and the RFP of 9.09, respectively 
(Tables 3 and 4). Among all the models, this model has the 
maximum accuracy and MCC so we considered this feature 
model as the best out of all models built yet in this study for 
nitrilase classification.

Discussion

As the next generation DNA sequencing (NGS) techniques 
have become cheaper and more efficient in yielding sequence 
data in a short time, the number of sequences in the public 
domain has increased significantly but still important anno-
tations are missing (Chakravorty and Hegde 2017). Experi-
mental validation of every uncharacterized, putative and 
hypothetical sequence may not be possible with the same 
pace (Rottig et al. 2010) and assigning functions to all the 
predicted genes/proteins would be time and cost ineffective 
(Kim et al. 2013). The characterized set of sequences depos-
ited in the gene/protein databases for nitrilases is fewer in 
number; therefore, automated computational methods are 
needed to assign a putative function to uncharacterized 
sequences reliably (Mills et al. 2015). To the best of our 
knowledge, no study has been carried out for reliable clas-
sification of nitrilases as aliphatic or aromatic.

Previous analysis has confirmed that functional anno-
tation between a test sequence and annotated sequence is 
above 60%, below which the probability of predicting the 
function of the test to the query sequence is rather low 
(Tian et al. 2003; Arakaki et al. 2009; Rottig et al. 2010). 
It has been inferred in the past that low sequence similari-
ties (below 30%) have resulted in more of paralogs with the 
query sequence instead of orthologs (Chen and Jeong 2000). 
Nitrilases with sequence identity as low as 27% with that of 
characterized nitrilase retained true nitrilase activity if the 
catalytic triad was found to be conserved (Kaushik et al. 
2012). Overall data in the present study share average value 
of more than 30% identity and conserved catalytic triad. This 
has led us to infer that sequences retain true nitrilase activity 
with identity as low as 27% and catalytic triad is conserved 
throughout. This information will be helpful for the analysis 
and to predict the models to gain insights into the mecha-
nism of enzyme–substrate specificity as reported in the past 

(Stachelhaus et al. 1999; Challis et al. 2000; Sharma et al. 
2017). Substrate range for nitrilases is rather broad includ-
ing aliphatic, aromatic and arylnitriles which depends on 
the groups attached to the side chain (Gong et al. 2012). 
Characteristics of residues surrounding the active site and 
the presence of specific amino acids increase the probability 
for predicting the substrate affinity of nitrilases.

In the present analysis, the script is used to classify the 
amino acid composition and their dominance in aliphatic and 
aromatic nitrilases which is responsible for differences in 
substrate affinity. Cysteine acts as a nucleophile for substrate 
attack and is activated due to the deprotonation of sulfhydryl 
group of cysteine by glutamic acid (Zang et al. 2014). Glu-
tamic acid acts as a general base, whereas lysine as general 
acid (Martinkova and Kren 2010). The aliphatic amino acid 
alanine (A) also plays a significant role in overall activity 
of nitrilases (Sharma et al. 2009; Kaushik et al. 2012). Gly-
cine (G), leucine (L), isoleucine (I), valine (V), methionine 
(M) and proline (P) are other important amino acids which 
support the aliphaticity of nitrilases. On the other hand, aro-
matic substrate affinity for some nitrilases is due to tyrosine 
(Y), tryptophan (W), histidine (H) and phenylalanine (F) 
which are found to be higher in aromatic nitrilases. These 
amino acids create aromatic-rich environment near the cata-
lytic centre of nitrilases which prefer aromatic substrates 
(Liu et al. 2013; Zang et al. 2014). The present data clearly 
define the role of amino acids for the substrate specificity 
determination which will further play a significant role in 
mutational studies of nitrilases to achieve better stability, 
specificity and reactivity.

Conclusion

The article focuses on the use of the script based method for 
classification of aliphatic and aromatic group of nitrilases. 
The results clearly exhibited that the algorithm can be used 
as a tool to classify nitrilases as aliphatic and aromatic class. 
The overall accuracy achieved by writing the following 
script is 95.00%. These machine learning techniques can 
be used to predict different features of the gene/protein and 
selection of these algorithms for the prediction of gene/pro-
tein function.
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