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Subsolid pulmonary nodules are commonly encountered in lung cancer screening and clinical routine. 
Compared to other nodule types, subsolid nodules are associated with a higher malignancy probability 
for which the size and mass of the nodule and solid core are important indicators. However, reliably 
measuring these characteristics on computed tomography (CT) can be hampered by the presence of 
vessels encompassed by the nodule, since vessels have similar CT attenuation as solid cores. This can 
affect treatment decisions and patient management. We present a method based on voxel classification 
to automatically identify vessels and solid cores in given subsolid nodules on CT. Three experts validated 
our method on 170 screen-detected subsolid nodules from the Multicentric Italian Lung Disease trial. 
The agreement between the proposed method and the observers was substantial for vessel detection 
and moderate for solid core detection, which was similar to the inter-observer agreement. We found 
a relatively high variability in the inter-observer agreement and low method-observer agreements for 
delineating the borders of vessels and solid cores, illustrating the difficulty of this task. However, 92.4% 
of the proposed vessel and 80.6% of the proposed solid core segmentations were labeled as usable in 
clinical practice by the majority of experts.

Lung cancer screening with low-dose computed tomography (CT) is currently being implemented in the US. 
The main purpose of this screening program is to detect lung cancer at a stage in which it is still curable, thereby 
reducing lung cancer mortality as has been shown in the National Lung Screening Trial1. In lung cancer screen-
ing and clinical routine, a large amount of nodules is encountered for which a suitable follow-up strategy needs 
to be determined. For this purpose, guidelines and tools have been introduced that define a clear procedure for 
follow-up management, such as the Lung-RADS guidelines2, the Fleischner guidelines3, and the PanCan model4. 
In these recommendation guidelines and tools, nodule characteristics on CT, such as nodule type, size, and 
growth, play a vital role in choosing a suitable management for each nodule.

Identification of the type of a nodule is important since some types of nodules have a higher chance of being 
malignant compared to others5,6. Several nodule types are typically considered to categorize pulmonary nodules, 
including non-solid and part-solid nodules. Non-solid nodules manifest as an increased hazy attenuation in the 
lung (i.e. ground-glass) in which the vascular and bronchial margins are still visible. Part-solid nodules consist of 
ground-glass with an area of homogeneous soft-tissue attenuation (i.e. solid core) in which, unlike ground-glass, 
vessels are not distinguishable anymore. Non-solid and part-solid nodules are typically grouped as subsolid nod-
ules and are associated with a higher malignancy probability5,6.

Nodule growth has additionally been identified as an important CT characteristic that is associated with 
malignancy2. A previous study by de Hoop et al.7 showed that an increasing nodule mass in subsolid nodules is 
subject to less variability than volume and diameter measurements for estimating growth. Nodule mass depends 
on both nodule volume, which is related to the segmentation of a nodule in the 3D scan, and nodule density, 
which is related to the CT attenuation in Hounsfield Units (HU). Once a nodule is segmented, the nodule mass 
can be calculated by multiplying the mean nodule density with the nodule volume8.
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In this study, we specifically focused on subsolid nodules consisting of a ground-glass part and potentially 
a solid core. Several studies have described algorithms for subsolid nodule segmentation (such as the work by 
Jacobs et al.9 or Messay et al.10), however only a few publications considered solid core segmentation in subsolid 
nodules11,12. Given the segmentation of the nodule, a solid core can be distinguished from ground-glass based on 
the HU attenuation. However, when vessels are enclosed in the subsolid nodule, a solid core and a vessel can be 
difficult to separate since both have a soft-tissue attenuation. Techniques based on thresholding such as the ones 
presented by Jacobs et al.11 or Scholten et al.12 are therefore less suitable to discriminate solid cores from vessels. 
Furthermore, these methods are semi-automatic as they require a manually indicated seed point.

Including vessels as part of a nodule can alter nodule characteristics such as the nodule type, mass, and the size 
of the nodule or solid core. This can affect treatment decisions and can hamper the correlation between nodule 
mass and nodule growth as presented in de Hoop et al.7, making it an unreliable parameter to use in a screening 
setting. An example of a growing non-solid nodule is shown in Fig. 1a. Over time, this nodule encloses surround-
ing vessels which, if not considered, can result in an overestimated growth that changes patient management.

The goal of this paper is to automatically identify and segment vessels and solid cores in a given subsolid 
nodule. We formulate our method as a voxel classification problem, in which a classifier labels all voxels within 
a given nodule segmentation as belonging to one of the following three classes: vessel, solid core, or ground-glass. 
Each voxel is characterized by features related to the intensity and shape of the 3D structure it belongs to. In 
addition, vessels outside of the nodule are used to ensure an anatomically plausible vessel segmentation inside of 
the nodule. An example of a non-solid and a part-solid nodule and the results of our method is shown in Fig. 1b. 
We validated the proposed framework on a data set consisting of all screen-detected subsolid nodules at base-
line from the Multicentric Italian Lung Disease (MILD) trial13. An observer study was designed involving three 
human experts to evaluate the results of the proposed automatic method, providing both a quantitative and a 
qualitative evaluation. As an additional contribution, we assessed the inter-observer variability among experts for 
the detection and voxel-wise delineation of vessels and solid cores in subsolid nodules.

Results
Three experiments were performed to evaluate the proposed method. The first paragraph of this section describes 
the data that was used for the evaluation. Based on this data, we first evaluated whether the proposed method 
is able to detect vessels and solid cores within a subsolid nodule. Next, we performed a voxel-wise quantitative 
evaluation in which the automatically extracted vessel and solid core segmentations were compared to manually 
segmented reference standards. As a final evaluation, the quality of the entire vessel and solid core segmentations 
was assessed.

Figure 1.  Examples of subsolid nodules that enclose vessels. (a) Three time points of a growing non-solid 
nodule. At T2 the non-solid nodule encloses two vessels (indicated by the red arrows) which, if not removed, 
alter the size and mass of the nodule. Furthermore, these vessels may be mistaken for a solid core which changes 
the type of the nodule and possibly the patient management. (b) An example of a non-solid and a part-solid 
nodule and the results of the proposed method. In this example, the detected solid core is shown in red and the 
detected vessels are shown in blue.
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Evaluation Data.  The evaluation of the proposed method was done using all baseline low-dose CT scans 
(120 kV, 30 mAs) from the Multicentric Italian Lung Detection (MILD) study13. The study was approved by the 
Institutional review board of Fondazione IRCCS Istituto Nazionale Tumori di Milano, and the written informed 
consent was waived for the retrospective examination of the analyzed data. All CT scans were acquired with a 
collimation of 0.75 mm, rotation time of 0.5 s, and a pitch of 1.5. The average in-plane resolution was 0.74 mm ± 
0.06 mm with one-millimeter-thick sections and a 1 mm increment. All scans were reconstructed with a sharp 
reconstruction kernel (Siemens B50 kernel, Siemens Medical Solutions). We selected all baseline subsolid nodules 
which resulted in a total of 245 nodules. These nodules were segmented in an automated fashion using a dedicated 
in-house workstation for lung cancer screening (CIRRUS Lung Screening, Diagnostic Image Analysis Group, 
Nijmegen, the Netherlands), but with the option to use one-click corrections to improve the segmentation when 
needed. A total of 38 nodules smaller than 6 mm were excluded from the analysis since these nodules have a high 
chance of being benign lesions2,3. An additional 37 nodules were excluded that had a complex structure, defined as 
large irregularly shaped nodules that may contain bubbles, as their appearance and texture is quite unique and not 
largely represented in our training data set. A similar procedure was followed by the authors of Scholten et al.12.  
The final test set therefore consisted of 170 subsolid nodules.

Detection of Vessels and Solid Cores.  In the first experiment, we evaluated if the proposed method is 
able to automatically detect vessels and solid cores within a subsolid nodule. Automatic detection of vessels and 
solid cores was evaluated using the 170 screen-detected nodules of the MILD study, where a connected compo-
nent of two or more vessel or solid core voxels was counted as a detection. A connected component analysis (with 
26 neighborhood connectivity) was performed for each class in order to verify that the method produces spatial 
consistent solid core and vessel detections. For each nodule the number of connected components for each class 
was extracted. For solid core detection, 57 nodules were found with only a single connected solid core component 
and 8 nodules were found with more than 1 connected solid core component (with a maximum of 4 solid core 
components in a single nodule). For vessel detection, 88 nodules were found with only 1 connected vascular com-
ponent and 31 nodules were found with multiple connected vascular component (with a maximum of 7 vascular 
components in a single nodule). For ground glass, 169 nodules were found with a single connected component 
and only 1 nodule was found with 2 connected ground glass components.

Three observers independently inspected the set of 170 nodules and indicated if the nodules contained a vessel 
and/or a solid core. Inter-observer agreement was assessed for each pair of observers by computing the accuracy, 
sensitivity, specificity, precision, and Cohen’s kappa (κ)14. The performance of our method was evaluated by com-
paring the results of our method to the results of each individual observer using the same performance metrics. 
All results of this evaluation are presented in Table 1. For vessel detection, a substantial agreement was found 
between the observers (with a κ ranging from 0.61 to 0.67) and between our method and the observers (with a 
κ ranging from 0.60 to 0.70). For solid core detection, a moderate agreement was found between the observers 
(with a κ ranging from 0.42 to 0.59) and between our method and the observers (with a κ ranging from 0.34 to 
0.52). Furthermore, the results reported in Table 1 show that for both vessel and solid core detection, human 
observers tend to be more sensitive whereas our method is more specific and precise.

Segmentation of vessels and Solid Cores.  Quantitative Evaluation.  A quantitative evaluation was 
performed to compare automatically segmented vessels and solid cores to manually drawn segmentations. 
Three observers manually segmented all vessel and solid core voxels on one axial slice of interest per nodule. 
The selected slice of interest was the axial slice with the largest cross-sectional area of the nodule. We restricted 
the manual segmentation process to these selected slices, since manual segmentation of all voxels in each nodule 
is a tedious and time-consuming task. For each pair of observers, a consensus standard was constructed using 
the intersection of their segmentations. To estimate the inter-observer agreement, each consensus standard was 

Kappa Accuracy Sensitivity Specificity Precision

vessel solid core vessel
solid 
core vessel

solid 
core vessel

solid 
core vessel

solid 
core

Inter-observer comparison

O1 vs O2 0.67 
(0.56–0.78)

0.50 
(0.37–0.63) 0.84 0.76 0.85 0.73 0.82 0.81 0.88 0.88

O1 vs O3 0.61 
(0.48–0.73)

0.59 
(0.47–0.71) 0.82 0.79 0.79 0.93 0.88 0.70 0.94 0.67

O2 vs O3 0.67 
(0.55–0.78)

0.42 
(0.28–0.55) 0.85 0.69 0.82 0.94 0.90 0.52 0.95 0.57

Method-observer comparison

Method vs O1 0.70 
(0.60–0.81)

0.41 
(0.28–0.55) 0.85 0.70 0.81 0.57 0.91 0.86 0.93 0.83

Method vs O2 0.65 
(0.53–0.76)

0.34 
(0.21–0.48) 0.82 0.65 0.78 0.52 0.90 0.89 0.92 0.91

Method vs O3 0.60 
(0.47–0.72)

0.52 
(0.39–0.65) 0.80 0.77 0.72 0.69 0.98 0.82 0.99 0.72

Table 1.  Evaluation of the inter-observer and method-observer agreement on the detection of vessels and solid 
cores in subsolid nodules. The observers are indicated as O1 (observer 1), O2 (observer 2), and O3 (observer 3). 
Cohen’s κ values are given with 95%-confidence intervals.
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compared to the segmentations of the observer that was not considered in the consensus standard. The sensitiv-
ity, precision, and Dice similarity coefficient (DSC) were calculated for each nodule and all three classes, from 
which means and standard deviations were derived. Similarly, we evaluated the performance of our method by 
comparing the automatic segmentation with the segmentation of each consensus standard. As an addition to the 
evaluation on cross-sectional slices, a full 3D evaluation was performed by observer 3 on a subset of the data. This 
subset consisted of 16 size-matched nodules with a balanced amount of non-solid and part-solid nodules with 
and without vessels. A visual representation of all results is shown in Fig. 2 and the corresponding means and 
standard deviations can be found in Tables 1, 2, and 3 of the supplementary material.

In Fig. 2, the left side of each individual figure shows means and standard deviations that are calculated from 
all nodule for which we could calculate the sensitivity, precision, and DCS. This includes nodules for which there 
was either agreement or disagreement on the presence of a class. It should be noted however, that when com-
puting an average sensitivity, precision, or DSC based on individual scores per nodule, the resulting number 
will depend on the agreement of the presence of vessels, solid cores, and GGO. For example, when the observers 
disagree on the presence of a class in a nodule, the sensitivity, precision, and DSC for that particular nodule 
and class will be zero. These nodules may therefore dominate the mean scores, resulting in low scores and high 
standard deviations. The right side of Fig. 2 therefore shows means and standard deviations calculated only from 
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Figure 2.  A visual representation of the inter-observer and method-observer segmentation performance for 
solid core, vessel, and ground glass segmentation. From top to bottom, the figures show the results in terms of 
sensitivity, precision, and Dice similarity score, respectively. The results are presented as the mean (indicated by 
the colored diamond) and the standard deviation (indicated by the whiskers). The left side of each figure shows 
the mean and standard deviation derived from nodules for which there was either agreement or disagreement 
on the presence of a class. The right side of each figure shows the mean and standard deviation derived from 
only the nodules for which there was agreement on the presence of a class. The number of nodules from which 
the means and standard deviations were calculated are reported on the top of the whiskers. It should be noted 
that the experiment that compares three dimensional annotations of observer 3 to the results of the method, i.e. 
method vs O3 (3D), was performed on a subset of 16 nodules.
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the nodules in which there is agreement on the presence of a vessel, solid core, or ground glass. The number of 
nodules used to calculate the means and standard deviations are reported on top of each whisker and in Tables 1, 
2, and 3 of the supplementary material. It can be noticed that observers tend to be more sensitive and precise at 
delineating vessels and solid cores than the automatic method. This is also reflected by the higher Dice similarity 
coefficients for the observers. Furthermore, for both the observers and the method, vessel segmentation was done 
with a higher sensitivity and precision as compared to solid core segmentation. Examples of observer annotations 
and results of the proposed method are shown in Fig. 3.

Qualitative Evaluation.  As a final evaluation, the automatically extract vessel and solid core segmentations of 
the entire nodule were presented to the three observers independently as an overlay on the original CT scan. The 
observers indicated for the vessels and solid cores separately if they were under-, or over-segmented and graded 
the quality of each segmentation as good, acceptable, or unacceptable. The qualitative scores given by the observers 
are presented in Table 2, showing that the vast majority of segmentations were scored as good. A segmentation 
was deemed usable in clinical practice if a qualitative score of good or acceptable was given. The agreement on the 
usability of the presented segmentations between the observers is presented in Fig. 4, showing that 92.4% of the 

Figure 3.  Examples of nodules with observer annotations and results of the proposed method, where the 
segmented vessels are indicated in blue and the segmented solid cores in red. Top: Nodules in which there is a 
high method-observer agreement for vessel and/or solid core segmentation. Bottom: Nodule in which there is a 
low method-observer agreement for vessel and/or solid core segmentation. Each column represents a separate 
nodule in which the first row indicates the axial slice that is considered for the evaluation. The second, third, 
and fourth rows show the annotations of observer 1, 2, and 3, respectively. The results of the proposed method 
are shown in the fifth row. All images are shown at a standard lung window level (width = 1600, center = −600) 
with a field of view of 10 × 10 mm.
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proposed vessel segmentations and 80.6% of the proposed solid core segmentations were scored as usable by the 
majority of observers.

Discussion
Mistaking a vessel for a solid core can lead to an enormous overestimation of the mass and size of the nodule and 
solid core, which in turn can result in an overestimated growth that can change patient management. Subsolid 
nodules are particularly important to identify and measure correctly since they are associated with a high malig-
nancy probability. Our method is able to identify vessels and solid cores in subsolid nodules and may be used to 
provide more reliable nodule characteristics.

A substantial agreement for vessel detection was found between our method and the observers, with an aver-
age Cohen’s kappa of 0.65. A similar inter-observer agreement was found for vessel detection, indicating that the 
proposed automatic vessel detection performs comparable to visual detection of human observers. For the detec-
tion of a solid core, the agreement between our method and the observers was moderate, with an average Cohen’s 
kappa of 0.42. A slightly higher moderate agreement for solid core detection was found between the observers, 
showing that identification of a solid core in subsolid nodules is a more difficult and subjective task than vessel 
detection for both human experts and our method. These findings are not unexpected as previous studies also 
showed a high inter-observer variability for identifying a solid core in subsolid nodules11,12,15,16. In the work by 
Scholten et al.12, two experts independently scored 107 subsolid nodules as either being part-solid or non-solid, 
showing a substantial inter-observer agreement (κ = 0.68). This inter-observer agreement was slightly higher as 
compared to the inter-observer agreement for solid core detection reported in the current study. This difference 
in inter-observer agreement can be an effect of numerous factors, including differences in data sets, expertise of 
the observers, or scan parameters such as reconstruction kernels. A limitation of the study by Scholten et al.12 was 
that vessels were not taken into consideration in the analysis. In the method by Jacobs et al.11, a computer-aided 
detection (CAD) system was developed for nodule type classification. Four experts classified a set of 138 nodules 
as non-solid, part-solid or solid, resulting in a moderate to substantial inter-observer agreement (with κ values 
between 0.56 and 0.81) and a similar method-observer agreement (with κ values between 0.54 and 0.72). In the 
study by van Riel et al.15 a similar nodule classification task was performed on 160 pulmonary nodules by eight 
observers, where a moderate inter- and intra-observer agreement was reported. Although nodule classification is 
different from the task in the presented study, the authors of Jacobs et al.11 and van Riel et al.15 observed that the 
vast majority of mistakes in nodule type classification where found in differentiating part-solid from non-solid 
lesions. They concluded that this classification task is difficult for both human experts and CAD.

Vessel Solid Core

Good Acceptable Unacceptable Good Acceptable Unacceptable

O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3

NS, no vessels 35 21 28 0 0 0 0 0 0 32 21 25 2 0 0 1 0 3

PS, no vessels 33 44 23 0 2 0 2 0 0 14 13 7 7 8 12 14 25 4

NS, vessels 27 23 22 10 7 35 4 6 17 35 31 59 3 2 7 3 3 8

PS, vessels 42 39 24 6 16 15 11 12 6 29 18 16 17 15 16 13 34 13

Total 137 127 97 16 25 50 17 18 23 110 83 107 29 25 35 31 62 28

Table 2.  Qualitative scores for the proposed vessel and solid core segmentations for observer 1 (O1), observer 
2 (O2), and observer 3 (O3) separately, stratified by nodule type i.e. non-solid (NS) or part-solid (PS), both with 
or without vessels. The numbers indicate the number of nodules that were scored in that specific category.

Figure 4.  Inter-observer agreement for the usability of the proposed vessel and solid core segmentations for 
observer 1 and 2 (first and second bars), observer 1 and 3 (third and fourth bar), observer 2 and 3 (fifth and 
sixth bar), and all three observers (seventh and eight bar), where a usable segmentation is defined by a score of 
good or acceptable.
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In order to validate the spatial consistency of the detected vessel and solid core segmentations, a connected 
component analysis was performed on each of the three output classes. This analysis showed that our method 
does not produce fragmented outputs in any of the classes. For example, when considering the solid core class, 
there were only 8 nodules in which the classifier found more than 1 connected solid core component. From these 
8 nodules, the nodule with the most connected solid core components only had 4 components. These numbers 
are a little bit higher for vessels, which is explained by the fact that there is often more than one vessel crossing 
the nodule. Furthermore, the ground glass class showed to be a single connected structure in all but one nodule.

Annotating all vessels and solid cores for an entire nodule is a tedious and very time consuming task. Our 
quantitative evaluation by three observers was therefore performed in a single automatically selected axial slice 
per nodule. However, an additional full 3D evaluation was performed by one of the observers on a subset of 16 
size-matched nodules with a balanced amount of non-solid and part-solid nodules with and without vessels. 
Although the 3D evaluation was performed on a small subset of the data, the results suggest that the mean perfor-
mance is slightly lower but comparable to the mean performance derived from the the 2D evaluation. Both results 
show that there is a high standard deviation in all vessel and solid core segmentation measurements for both the 
inter-observer and method-observer agreement, and that there are relatively low precision and DSC scores. This 
indicates that correctly outlining vessels and solid cores is a difficult and subjective task. An additional effect that 
drives these low means and high standard deviations is the substantial amount of nodules in which the observers 
disagree on the presence of vessels and solid cores. Accounting for the nodules in which there was detection dis-
agreement provides insights into the actual inter-observer and method-observer segmentation agreement. These 
results show that, when there is agreement on the presence of a class, the sensitivity, precision, and DSC scores 
for both the inter-observer agreement and the method-observer performance are much higher and the standard 
deviations are lower. Especially in terms of sensitivity, the method performs in a similar range as compared to the 
inter-observer agreement. However, the precision of the observers was overall higher for both vessels and solid 
core segmentation. This is also reflected by the higher Dice similarity coefficients for the observers. Low DSC 
scores for our method typically occurred in cases where there was also a high inter-observer variability, such as 
the example cases 17, 18, 19, and 20 of Fig. 3.

The obtained performance in terms of detection suggests that the proposed method could be used to identify 
vessels and solid cores in subsolid nodules. This could, for example, be integrated in a chest CT workstation for 
lung cancer screening, such as the one used in this study (CIRRUS Lung Screening, Diagnostic Image Analysis 
Group, Nijmegen, the Netherlands). We showed that the majority of the proposed segmentations are scored to 
be useful in clinical practice, which would speed up the reading procedure of subsolid nodules. However, our 
method showed to be less suited for precisely outlining the borders of vessels and solid cores. Therefore, the 
identified vessels and solid cores could be used to distinguish non-solid from part-solid nodules and to flag nod-
ules that enclose vessels. Furthermore, the presented segmentations could trigger or initialize (semi-)automatic 
algorithms to refine the segmentations.

An additional analysis was performed in which three observer each scored the quality of the proposed seg-
mentations for the entire nodule. This qualitative evaluation showed that most of the vessel and solid core seg-
mentations were scored as usable in clinical practice by at least two of the three observers. Furthermore, only 2.9% 
of the vessel segmentations and 6.5% of the solid core segmentations were scored as unusable by all three observ-
ers, suggesting that our method could potentially be used to assist clinicians in assessing subsolid nodules. In the 
qualitative evaluation, each observer also rated the quality of the presented vessel and solid core segmentations 
and indicate if there was over and/or under segmentation. The main reason for scoring a segmentation as unac-
ceptable was under segmentation, which was indicated to be the reason for vessels in 71% for observer 1, 83% for 
observer 2, and 74% for observer 3, and the reason for solid cores in 81% for observer 1, 78% for observer 2, and 
46% for observer 3. The disagreement on the presence of a vessel or solid core between the observer, has a direct 
influence on the given qualitative scores. This means that when one observer classified a nodule as part-solid and 
another observer classified the same nodule as non-solid, the given quality score of that nodule can range from 
good for one observer to unacceptable for another. This disagreement is partly reflected by the yellow part of the 
bars in Fig. 4.

The extraction of three consensus standards by intersecting annotations of each pair of observer provides 
the opportunity to directly compare the delineation performance of human observers to that of the proposed 
method. However, using an intersection is at risk of making the consensus segmentation smaller which may 
bias the results. In order to provide a complete view of the inter-observer and method-observer performance, 
the sensitivity, precision, and DSC scores extracted from the comparisons between each individual observer (O1 
vs O2, O1 vs O3, O2 vs O3), each observer and the consensus standards (O1 vs O2 ∩ O3, O2 vs O1 ∩ O3, O3 vs 
O1 ∩ O2), each observer and the method (method vs O1, method vs O2, method vs O3), and each consensus 
standard and the method (method vs O2 ∩ O3, method vs O1 ∩ O3, method vs O1 ∩ O2) are provided as supple-
mentary material. These results show that the sensitivity, precision, and DSC scores are on average higher when 
inter-observer evaluation was performed with the consensus standard, as compared to only a single observer. This 
suggests that the consensus standards are not substantially smaller or less accurate than the segmentations of the 
individual observers.

Vascular continuity analysis was proposed in the presented method as a regularization step that smooths the 
transition between the vessels inside and vessels outside the nodule. This analysis aims to reduce the likelihood 
of voxels that were initially classified as vessel but do not match the anatomy of the vessels outside of the nodule. 
A potential limitation of this analysis is the dependency on a vessel segmentation outside of the nodule, as errors 
in this segmentation can lead to incorrect input for the regularization step. In the proposed method, we account 
for potential noise in the vessel segmentation outside the nodule by enforcing that a detected outer vessel has 
to be attached to the vascular tree. However, our method does not account for missed outer vessels, which can 
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potentially lead to removal of correctly detected vessels inside the nodule. Nevertheless, missed vessels are typi-
cally small in diameter and will therefore only have a small effect on the mass or volume of a nodule.

The evaluation of our method was performed on a subset of subsolid nodules from the MILD study that were 
larger or equal to 6 mm in diameter. From this subset, 37 subsolid nodules with a complex structure, defined as 
large nodules that are irregularly shaped and may contain bubbles, were excluded before conducting the study as 
their appearance and texture is quite unique and not largely represented in our training data set. A similar proce-
dure was followed by the authors of Scholten et al.12. Our method is therefore not suited to deal with these type of 
nodules. Especially nodules that contain bubble-like intensity are difficult to classify with the proposed three-class 
approach since bubble-like intensities do not belong to any of the considered classes. However, this limitation 
can potentially be overcome by including a substantial amount of complex nodules in the training procedure 
and extending the method to deal with bubbly-like intensities. Although improving our method to deal with 
these complex lesions is an interesting research topic, this is outside the scope of the presented paper. We further 
noticed that the proposed method tends to miss relative large solid cores in smaller nodules. An example of such a 
misclassification is shown in case 14 of Fig. 3. In this example, the solid component covers almost the entire nod-
ule, leaving little room for areas of ground-glass. We additionally observed that smaller vessels were occasionally 
under-segmented or entirely missed. A possible explanation is that these kind of examples are under-represented 
in the training set that was used to build our classification model. However, under-segmentation of small vessels 
might not be clinically relevant, since they only marginally affect the volume or mass of a subsolid nodule.

In conclusion, we showed that it is feasible to automatically identify and segment vessels and solid cores in 
subsolid nodules. We found that from our test set of 170 subsolid nodules, 92.4% of the proposed vessel seg-
mentations and 80.6% of the proposed solid core segmentations were labeled as usable in clinical practice by 
the majority of experts. We additionally showed that there is a relatively high variability in the inter-observer 
agreement and a low method-observer agreement in exactly outlining the borders of a vessel or solid core, which 
illustrates the difficulty of this task. Nevertheless, our method achieves satisfactory results in the majority of cases, 
making it a potential useful tool for assessing subsolid nodules in lung cancer screening and clinical routine.

Methods
A schematic overview of the proposed method is shown in Fig. 5, which consists of three main parts. First, image 
standardization is performed on the original CT scan in order to normalize the input to our method. Next, given 
a nodule segmentation in 3D, a classifier is applied to classify each voxel in the segmentation as vessel (v), solid 
core (c), and ground-glass (g). For each class, the posterior probability is extracted and used to produce an initial 
vessel, solid core, and ground-glass segmentation. As a final step, a vessel continuity analysis is performed on the 
initial vessel segmentation in order to ensure continuity between vessels outside and inside the nodule, which is 
used to improve the final segmentations. These steps are described in detail in the following sections.

Image Standardization.  In order to make our method applicable to scans of different resolutions and 
reconstruction kernels, standardization of the input CT scan I was done by performing 1) resampling and 2) 
kernel normalization. The input CT I was first resampled to an isotropic resolution of 0.5 mm using linear inter-
polation. Since reconstruction kernels affect the spatial resolution and image noise in the reconstructed data, a 
kernel normalization technique17 was subsequently applied that transforms the resampled CT scan into an image 
that better matches a chosen reference reconstruction kernel. The normalization procedure decomposes a scan 
into several predefined frequency bands. The energy in these bands is altered to better match the average energy 
that is observed in a set of scans reconstructed with the chosen reference kernel. For the purpose of this study, the 
reference kernel was chosen to be a soft reconstruction kernel Siemens b31f.

Classification Framework.  Feature Extraction and Classification.  A set of 3D local intensity-based voxel 
descriptors was extracted from the standardized scan in order to train a classifier  and extract posterior proba-
bilities for the vessel, solid core, and ground-glass class for all voxels in a given nodule. To differentiate between 
the morphological shapes of vessels and solid components, multi-scale second-order spatial derivative features 
were extracted, i.e. the eigenvalues of the Hessian matrix (λ1, λ2and λ3, where |λ1| ≥ |λ2| ≥ |λ3|) and the gradient. 
All spatial derivative features were calculated for scales σ = 1,2 and 4 mm. Multi-scale intensity features were 
additionally included in order to differentiate between soft-tissue and ground glass attenuation, namely the orig-
inal Hounsfield units, the Hounsfield units after Gaussian smoothing (at scales σ = 1,2 and 4 mm), and the stand-
ard deviation in the 26-neighborhood surrounding the sample voxel.

Classifier Training and Optimization Procedure.  A set of 44 subsolid nodules with a diameter ranging from 6.8 to 
50.6 mm (average diameter of 16.8 mm) was selected from 21 patients in order to train the classifier . The training 
data set consisted of low-dose CT scans with a near-isotropic resolution (average in-plane resolution was 0.71 mm ± 
0.07 mm with a voxel spacing of 0.7 mm) and were reconstructed with a soft reconstruction kernel. Image standard-
ization was perform on the training set prior to the training procedure. Each nodule was segmented by an experi-
enced thoracic radiologist using a dedicated in-house workstation for lung cancer screening (CIRRUS Lung 
Screening, Diagnostic Image Analysis Group, Nijmegen, the Netherlands), in which the expert indicated if the nod-
ule contained vessels and/or a solid core. This resulted in 43 nodules with vessels (37 part-solid and 6 non-solid 
nodule), and 1 part-solid nodule without vessels. The expert was subsequently instructed to freely annotate voxels of 
each of the three classes in order to collect samples to train and optimize the classifier. These annotations were made 
by going through the nodule in the axial view using a MeVisLab (http://www.mevislab.de) based tool developed 
in-house. The expert was specifically instructed to provide an heterogeneous set of training samples by annotating 
vessels and solid cores of multiple sizes throughout the entire nodule. A total of 38,661 vessel samples, 7,771 core 
samples, and 68,892 ground-glass samples were extracted from the training set of 44 nodules. The three classes were 

http://www.mevislab.de
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balanced by randomly selecting 7,771 samples from both the vessel and ground-glass class in order to match the 
number of samples in the solid core class. This random selection was done in such a way that from each nodule an 
approximately equal amount of samples was extracted. The final balanced training set consisted of a total of 23,313 
samples.

A leave-one-patient-out cross-validation experiment was performed to select the optimal classifier for the 
proposed problem. Based on the set of balanced training samples, we trained several classifiers (i.e. k-Nearest 
Neighbor classifier19, Random Forest classifier20, Gentle Boost classifier21, and linear discriminant classifier) and 
optimized a weight wm for each of the three classes (i.e. wv, wc, and wg) that acts as an operation point of the clas-
sifier by scaling the posterior probabilities. The optimal weights were selected by individually varying wv, wc, and 
wg by steps of 0.01, while keeping the sum of the weights equal to 1. By multiplying these weight with the soft 
classification output of each classifier we extract a hard classification output which was compared to the labels of 
the training reference. The optimal weights were defined as the weights that minimize the differences between the 
hard classification and the training reference. This procedure resulted in the selection of the kNN classifier 
(k = 150) as the optimal classifier for this task, with the optimized weights wv = 0.23, wc = 0.13, and wg = 0.64. 
Note that since the posterior probabilities were calculated in the resolution of the standardized scan, linear inter-
polation was used to obtain the three posterior probabilities for each voxel x ∈ I in the original resolution, i.e. 
 x( )v , x( )c , and x( )g .

Initial Segmentations.  For the extraction of an initial vessel, solid core, and ground-glass segmentation, a set of 
likelihoods ∈ ×xL( ) 1 3 is defined for each x as P L= × =x w x xL( ) { ( )} { ( )}m m m  where the index m = 1, 2, 3 
corresponds to the vessels (v), solid cores (s), and ground-glass (g) class, respectively. Based on these likelihoods, 
the initial segmentations of each class Sm

I  are given by:

= =

=
=

≠

S x y x
S x

( ) 1, where argmax ( ( ))
( ) 0 (1)

m y m m

m y

An example of the three likelihoods of a subsolid nodule and the resulting initial vessel segmentation S x( )v
I , 

solid core segmentation S x( )c
I , and ground-glass segmentation S x( )g

I  is shown in Fig. 5a and b. In order to ensure 
smooth initial segmentations, solitary voxels in each of the three initial segmentations were replaced by the 
majority label of the neighboring voxels.

Vascular Continuity Analysis.  Vessels on CT appear as bright connected tubular branches that form a 
tree-like structure throughout the lung. The connected branches within the same vascular tree have a smooth 

Figure 5.  Schematic overview of the proposed method. (a) Axial slice of a given subsolid nodule in which 
an image standardization procedure is performed. (b) Overlay of extracted likelihoods for the solid core class 
(top frame), vessel class (middle frame), and ground-glass class (bottom frame), where red indicates a high 
and green a low likelihood. (c) Initial segmentation extracted from the three class likelihoods, shown in 2D 
(top frame) and 3D (bottom frame), where red indicates a solid core, blue indicates vessels, and the yellow 
outline indicates the given nodule segmentation. All unlabeled voxels within the nodule segmentation are of 
the ground-glass class. (d) A vascular continuity analysis is performed on the initial vessel segmentation inside 
the nodule (indicated in blue) which starts by defining the vessels outside the nodule (indicated in green), 
shown as a 2D overlay (top frame) or as a 3D rendering (bottom frame). (e) The vessels inside the nodule are 
divided into separate connected components (components I and II) for which vessels entering the nodules are 
defined. The entering vessel of I is indicated by the red arrow, whereas II is disconnected from the outside vessel 
and therefore has no entering vessel attached to it. These entering vessels are used to ensure an anatomically 
plausible continuity to the vessels inside the nodule. (e) Final segmentation extracted using both the initially 
defined likelihoods and the result from the vascular continuity analysis, shown in 2D (top frame) and 3D 
(bottom frame).
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continuation from large vessels in the central regions of the lung, to smaller vessels in the periphery of the lung. 
For vessels that intersect with a nodule, we can therefore assume that the part of a vessel that is inside the nodule 
has to be at least attached to the vessel that enters the nodule. In addition, the size (i.e. vessel diameter) of the 
entering vessel has to be larger or equal to the size of the attached vessel inside the nodule. By using these anatom-
ical constrains, we define a weight wvc that quantifies the smoothness of the transition between vessels entering 
the nodule and initially classified vessels inside the nodule. A schematic overview of this analysis is shown in 
Fig. 5d,e and f.

Defining Entering Vessels.  Vascular continuity analysis was used to quantify the transition between the initially 
classified vessels inside the nodule Sv

I and vessels that are outside the nodule, where the vessel segmentation out-
side of the nodule is given by any segmentation that produces a binary vessel segmentation. In this study we used 
the algorithm presented by van Dongen et al.18 to extract the vessels outside the nodule. An example of vessels 
inside and outside the nodule is shown in Fig. 5d, where the vessels outside are indicated in green and the vessels 
inside are indicated in blue.

The initial vessel segmentation Sv
I  is first divided into separate components iin, each connected by a 

6-neighborhood as shown in Fig. 5e. For each component iin the entering vessel iout is defined using the following 
three criteria: 1) iout has to be attached to iin, 2) iout has to be larger or equal to any other outside vessel that is 
attached to iin, and 3) iout has to be connected to the vascular tree. The last criterium enforces that potential noise 
in the vessel segmentation do not affect the vascular continuity weights. In the example in Fig. 5e, the entering 
vessels for the first component I is indicated by a red arrow, whereas for the second component II there is no 
entering vessels since the component is disconnected from the outside vessel segmentation.

Vascular Continuity Weight.  Based on the size of the vessel inside the nodule and vessel entering the nodule, a 
weight wvc(x) is calculated for each ∈x Sv

I that quantifies the smoothness of the transition between a vessel that 
enters the nodule and a vessel inside the nodule. To calculate these weights, a diameter is estimated for each voxel 
x ∈ iin denoted as d x( )in

i . In addition, an average diameter is estimated from the part of the entering vessel that is 
close to the border of the nodule segmentation, i.e. dout

i . Based on the ratio between d x( )in
i  and dout

i  a vascular con-
tinuity weight wvc(x) is defined for each ∈x Sv

I as:
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with a > 1, and where we assume that d x d( )in
i

out
i≤  is a strong indication that x belongs to a vessels (which gives 

the upper boundary of the step function) and ≥ ×d x a d( )in
i

out
i  is a strong indication that x is not part of a vessel 

(which gives the lower boundary of the step function). The parameter a was empirically tuned to a value of 3 
based on the training set, meaning that if the size of the vessel inside the nodule is larger than or equal to three 
times the entering vessel, the vascular continuity weight wvc(x) goes to zero.

Final Segmentation.  The extracted vascular continuity weights are used to penalize the vascular likelihoods 
x( )v  for voxels that have an unexpected vascular anatomy. Equation 1 is used to extract the final vessel segmen-

tation S x( )v
F , solid core segmentation S x( )c

F , and ground-glass segmentation S x( )g
F , by redefining the vessel likeli-

hood as L P= × ×x w w x x( ) ( ) ( )v v vc v .
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