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Dynamic malaria hotspots in an 
open cohort in western Kenya
Alyssa Platt1,2, Andrew A. Obala3, Charlie MacIntyre1,4, Barasa Otsyula3 & Wendy Prudhomme 
O’ Meara1,2,5

Malaria hotspots, defined as areas where transmission intensity exceeds the average level, 
become more pronounced as transmission declines. Targeting hotspots may accelerate reductions 
in transmission and could be pivotal for malaria elimination. Determinants of hotspot location, 
particularly of their movement, are poorly understood. We used spatial statistical methods to 
identify foci of incidence of self-reported malaria in a large census population of 64,000 people, in 
8,290 compounds over a 2.5-year study period. Regression models examine stability of hotspots and 
identify static and dynamic correlates with their location. Hotspot location changed over short time-
periods, rarely recurring in the same area. Hotspots identified in spring versus fall season differed in 
their stability. Households located in a hotspot in the fall were more likely to be located in a hotspot 
the following fall (RR = 1.77, 95% CI: 1.66–1.89), but the opposite was true for compounds in spring 
hotspots (RR = 0.15, 95% CI: 0.08–0.28). Location within a hotspot was related to environmental and 
static household characteristics such as distance to roads or rivers. Human migration into a household 
was correlated with risk of hotspot membership, but the direction of the association differed based on 
the origin of the migration event.

A hotspot of malaria transmission is defined as ‘a geographical area within an endemic focus of malaria transmis-
sion where transmission intensity exceeds the average level’1. Hotspots have been identified at many spatial scales, 
from groups of households to multi-country regional zones, using many different indices of malaria burden. It has 
been noted that although hotspots occur across the spectrum of transmission intensity, such spatial heterogeneity 
is more pronounced in areas of lower transmission and uneven rainfall.

Interventions that are designed to leverage the spatial heterogeneity of transmission are at the forefront of the 
operations research agenda. Identifying hotspots could significantly improve targeting of control measures which 
could be more effective than spreading equivalent resources over larger areas or populations2. Furthermore, hot-
spots have been postulated to act as reservoirs of residual transmission in areas with otherwise effective control 
measures and may ‘fuel’ continual transmission within a larger area. If this is true, then interventions directed at 
hotspots could reduce transmission outside of the targeted area.

Targeting hotspots requires identifying, or ideally predicting, hotspot locations. Identifying hotspots has 
become an active area of investigation and several studies have shed light on the possible factors that contribute 
to foci of transmission, including environmental conditions3–7, behavioral factors4,7,8, and previous exposure and 
acquired immunity1,9,10. Understanding the correlates of hotspot location may help to predict hotspots.

The majority of hotspot studies have used a cross-sectional approach and analyzed data over a limited time 
period7,11–13. A handful of studies that investigated febrile hotspot stability over longer periods of time have 
reported conflicting results5,9,10. Hotspots identified in longitudinal cohort studies can be stable, usually related to 
fixed environmental risk factors, or may move from year to year and season to season5,9,10,12,14–18. Why they move 
and whether there is pattern to the movement is unknown. What is certain is that predicting future hotspots is not 
as straightforward as identifying current hotspots.

Using data from a large, population based cohort in western Kenya, we first determine hotspot location, then 
quantify the spatial and temporal stability of malaria hotspots and identify both static and dynamic correlates of 
hotspot location.
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Methods
Study area.  The Webuye Health and Demographic Surveillance System (WHDSS) was established in 2007 in 
the Webuye Division of Bungoma East District, western Kenya as an activity of the Moi University and Vlaamse 
Interuniversitair Raad – University Development Cooperation (Belgium) (VLIR-UOS) Health Sciences Project 
as a natural progression of Moi University’s Community Based Education and Service (COBES) program. The 
WHDSS encompasses an area of 115 km2. Approximately 52% of the population lives below the poverty line, with 
limited access to piped water and electricity. The main economic activities include sugarcane farming as a cash 
crop, while maize, sorghum and millet are cultivated as subsistence crops. Dairy and poultry farming are also 
widely practiced. The WHDSS is described in more detail elsewhere19.

The area has a tropical climate and lies at an elevation of 1523 m above sea level. It experiences an average 
annual temperature of 24 °C, and receives high rainfall ranging from 1200 to 1800 mm annually. Malaria burden 
in Bungoma East and the WHDSS is high, due to the suitable climate20. Malaria is perennial with peaks following 
the rains. Typically, transmission peaks in April-June following the long rains with a smaller peak in October 
following the short rains.

Data collection.  All households in the WHDSS were mapped and enrolled at baseline. Baseline data collec-
tion occurred in November 2008 and continued for 4 months. Data collection was repeated biannually in the fall 
from September 1 to December 31 and in the spring from March 1 – June 30th. Each data collection period is 
called a ‘Round’. GPS coordinates were recorded for each compound, consisting of between 1–16 households. A 
household is defined as a group of people who regularly “eat from the same pot” (in other words, share cooking 
arrangements). A “resident” of a household is defined as an individual who has lived in that household continu-
ously for a period of at least four calendar months prior to the interview date21. Households within a compound 
usually consist of extended family in separate but closely grouped dwellings. Twice per year, enumerators visited 
every household to record all births, deaths, illnesses and migrations. Data were either collected on paper forms 
and entered into a database or collected on personal data assistants using Pendragon forms.

The WHDSS has 6 sublocations (Median area = 20.0 sq km) and within each sublocation are approximately 
140 villages. Due to inconsistencies in data collection in one survey round, one sublocation in the southernmost 
part of the study area was removed from the analysis. Although teams moved from village to village within a sub-
location, several teams of data collectors worked simultaneously in all parts of the WHDSS area at once during 
each round of data collection.

Data processing.  Malaria Morbidity.  Information about all illnesses experienced by household members 
since the last study visit were self-reported (in the case of minor children, reported by a guardian). Recall win-
dows are therefore the amount of time elapsed since the previous study visit (estimated median recall window is 
182 days). Dates of illness and treatment were recorded. All illness episodes that were self-reported as ‘malaria’ 
(ICD-10-CM codes B54, “Unspecified Malaria”) were included in the analysis. To avoid double-counting the 
same illness, any malaria episode that occurred within 3 weeks of an initial malaria illness was censored. To cap-
ture compound-level malaria incidence by season, malaria episodes were aggregated to the compound level and 
further aggregated by 6-month periods (Spring: January-June; Fall: July-December, each interval centered on a 
‘Round’ in April and September)(Table 1). We required that an individual be present within a compound for the 
entirety of the 6-month interval for their reported malaria episode to be counted for that compound. The recall 
period of morbidity data in the baseline round (Round 1), were not consistent with subsequent rounds, therefore, 
our analysis period begins with Round 2.

Representing 20% of the total population in the WHDSS, children age 0 to 5 account for 40% of the malaria 
cases reported. Globally, children age 0 to 5 are a high risk group for infection and morbidity due to malaria 
illness22, therefore, we performed all analyses on this subgroup in addition to the full census population.

Definition of Hotspots.  Hotspots were defined spatially using the Kuldorff spatial-only scan statistic23. This 
approach to identifying hotspots has been used in previous research1,4,6,7,9,11,12. The scan statistic is calculated 
using a discrete Poisson model with an outcome of the count of malaria episodes per compound, per 6-month 
interval. Spatial scan test statistics are calculated by moving a circular window systematically through the study 
space of a geographic area and varying the radius of the window. For each location and radius, observed cases are 
compared to expected cases under the null hypothesis that the pattern of locations of malaria cases is propor-
tional to the population at risk, against an alternative that, in some locations, malaria cases will exceed the num-
ber that would be expected under the null model. That is, if the rate of malaria cases throughout the study area is 
λ (where λ = Total malaria cases

Total population at risk
), then we would expect the rate to be λ both inside and outside of any particular 

window within the study area. A maximum likelihood ratio test evaluates whether the null or alternative model 
better fits the data at each location. The scan statistic is the maximum observed likelihood ratio statistic over all 
possible window sizes with a p-value obtained through Monte Carlo simulation based on discrete Poisson rand-
omization. P-values are adjusted to account for multiple testing across all potential clusters. In our analysis, we 
considered a p-value < 0.05 to indicate the presence of a malaria hotspot. Because foci of malaria fever incidence 
are generally 1–2 km in size1, we limited the size of our window to a 2 kilometer radius and limited the percentage 
of population-at-risk that could fall into a single hotspot as 30%9. The population at risk included all individuals 
present in a compound. For analyses of the subpopulation of children age 0 to 5, we limited the population at risk 
to individuals in this age group. By extension, only compounds that had at least one child in this age group during 
a particular round could be included in calculation of the scan statistic.

Malaria reporting rates can vary over time due to the seasonality of transmission. Data collection rounds 
lasted for several months, therefore the recall window for a household may fall within different parts of the 
malaria season from other households leading to differing recall lengths between households. To account for this, 
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we performed covariate adjustment prior to computing spatial scan statistics by entering median village visit dates 
for a particular round into exponential models to compute predicted counts of malaria episodes at the compound 
level for each interval. Predicted values then replaced the population offsets to yield a visit date adjusted spatial 
scan statistic24.

Scan statistics were computed using spatial-only models and were repeated for every 6-month interval over 
the course of each of the five included study rounds. Relative risks of observed versus expected cases were com-
puted for each identified cluster.

Static Correlates with Febrile Hotspot Location.  We investigated compound socioeconomic characteristics plau-
sibly correlated with the binary outcome of location within a hotspot. In the WHDSS data, household socioec-
onomic variables are only available at enrollment, however we expect such characteristics to change little over 
time. Compound socioeconomic characteristics used include: maximum compound population, whether the 
compound had household heads (or spouses) involved in farming as an income generating activity, number of 
cattle, number of sheep and goats, number of poultry, acres of land owned, use of piped water, use of water col-
lected from a spring, use of well water, and use of other water sources.

Government health facilities in the WHDSS were mapped in 2007 and the list was updated in 2012 to include 
new facilities. Shapefiles containing locations of rivers were obtained from the International Livestock Research 
Group25. Euclidean distances to a river, a road, and the nearest health facility were calculated for each compound 
in WHDSS using ArcGIS 10.0 software.

Confounding with environmental conditions.  Because we wished to isolate the effects of static household char-
acteristics, transportation and health access, we controlled for confounding of vector habitat using remote 
sensing data. This included calculation and inclusion of a Topographic Wetness Index (TWI) (details in 
Supplemental File 1)26 and elevation (collected with GPS coordinate data). In addition, time series of data from 
the MODerate-resolution Imaging Spectro-radiometer (MODIS) sensors on-board NASA’s Terra satellite were 
extracted for each compound for the full calendar years during the study period from January 2009 to December 
201127. Temporal Fourier Analysis (TFA) was used to achieve temporal ordination of the variables as series of har-
monics of different seasonal frequencies (detailed methods in Supplemental File 1)28,29. Mean, minimum, max-
imum, amplitude, phase, and sum of squared residuals were extracted for annul, biannual, and triannual cycles 
for four channels of daytime land surface temperature, night time land surface temperature, Middle Infrared 
Reflectance (MIR), and Enhanced Vegetation Index (EVI). A rigorous variable selection process (Supplemental 
File 1) was applied to reduce the resulting 72 parameters to 21 selected variables (Supplemental Fig. 1).

Dynamic human population and migration.  Compound population was computed for each 6-month interval 
using dynamic migration, birth, and death datasets to adjust original household counts (Table 1). Additional 
dynamic variables of interest included number of births, number of migrations into a compound from an urban 

Observations 8300

Number (%) with data by rounds (Total Population)

All rounds 7409 (89.4%)

Missed 1 653 (7.9%)

Missed 2 or more 238 (2.9%)

Number (%) with data by rounds (Children 0–5 years)

Households with child under 5 in any round 6606 (79.6%)

Households with child under 5 in all rounds 4591 (55.3%)

Altitude (meters), median (IQR) 1505 (1475, 1559)

Compound population (Mean), median (IQR) 7 (5, 9.6)

Household head or spouse in compound farming1 6212 (80.4%)

Number of cattle owned1, median (IQR) 1 (0, 3)

Number of sheep/goats owned1, median (IQR) 0 (0, 1)

Number of poultry owned1, median (IQR) 4 (1, 8)

Land ownership (acres)1, median (IQR) 1.25 (0.64, 2.75)

Water source1,2

Piped 2889 (37.3%)

Spring (protected or unprotected) 2841 (36.7%)

Well 1141 (13.7%)

Other 1113 (14.4%)

Distance to river (meters), median (IQR) 2807 (1411, 3921)

Distance to road (meters), median (IQR) 267 (117, 485)

Distance to health facility (meters), median (IQR) 2771 (1859, 3748)

Table 1.  Descriptive statistics of the study population (n (%) unless otherwise noted). 1Household 
characteristics (N = 7713). 2Multiple water sources per compound are possible.
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area, number of migrations into a compound from a rural area, number of migrations from a WHDSS household 
that was in a hotspot in a previous interval, and number of migrations from a WHDSS household that was not in 
a hotspot in the previous interval.

Statistical analysis.  The binary outcome of location within a hotspot at any point in time was analyzed 
using modified Poisson regressions by specifying generalized linear models with Poisson distributions, log link 
functions, and robust standard errors30. Modified Poisson regressions offer stable estimation of binary outcomes 
with an advantage of interpretation of exponentiated regression parameters as risk ratios. Covariates of inter-
est were static demographic, geographic and socioeconomic characteristics of the compounds. All models were 
adjusted with the reduced set of Fourier analyzed remotely-sensed environmental variables. Parameter estimates 
are presented as relative risks (RR).

In order to explore stability of hotspots in time, we specified modified Poisson regressions for outcomes of cur-
rent hotspot membership as well as lagged outcome variables for previous membership in a hotspot. Regressions 
were specified using generalized estimating equations (GEE) with exchangeable working correlation matrices, 
to adjusted for repeated measurements within a compound, and robust standard errors31. In the children age 0 
to 5 sample, we allowed previous interval and 2 interval lagged hotspot membership to include both age 0 to 5 
hotspots as well as total population hotspots. As with calculation of the scan statistic, only compounds with at 
least one child age 0 to 5 in a particular round could be included in the regression analysis of hotspot membership 
for that round. Separate models were specified for each sample by length of lag to reduce correlation between 
explanatory variables. Since data were collected biannually, we controlled for possible modification of the lagged 
effect by current season using a season by lag interaction term. Because a lagged covariate is used, the outcome 
variable in dynamic regressions applies specifically to four 6 month intervals over two calendar years from spring 
2010 to fall 2011.

A second set of modified Poisson GEE regressions were specified to explore the effects of population dynam-
ics on hotspot location. Dynamic covariates such as compound population at each interval, migration, and new 
births were included as covariates in these models. The outcome was location within a hotspot during a specific 
6-month interval.

Because the goal of this study was exploratory and hypothesis-generating, we did not make adjustments for 
multiple comparisons. Alphas for all statistical tests were 0.05.

Missing data.  Missing data in the HDSS occurred through non-response, lack of geographic coordinates, and 
loss of information due to varying lengths of recall periods for illness. Non-response in the WHDSS was minimal 
(<5%) and therefore not expected to bias the data. Those who were missing compound coordinates were less 
likely to report malaria illness, however, we expect this type of missing data to be spatially homogenous and thus 
have little impact on our analysis of malaria hotspots. Finally, household/compound characteristics were miss-
ing for 7% of the compounds, which will not affect hotspot identification or correlation with dynamic variables 
but could potentially bias effect estimates in our static analysis. To evaluate this, we performed chi square tests 
on the age 0 to 5 and total population sample to evaluate potential dependence between the outcome (hotspot 
membership) and probability of missing data in compound characteristics and quantified the effect by calculating 
inverse probability weights using available spatially derived variables such as the TFA analytic variables, TWI, 
and altitude.

Ethical Approval.  The WHDSS received study approval from the joint Institutional Review and Ethical 
Committee (IREC) of Moi University and Moi Teaching and Referral Hospital (MTRH) and all methods were 
performed in accordance with the relevant guidelines and regulations established by IREC and MTRH. Verbal 
informed consent was obtained from the head of household prior to enrolment into the surveillance site. The 
site operated under direction of the Scientific Committee of Moi University-VLIR-OUS Health Sciences Project 
University Management through the Moi University VLIR UOS Steering Committee and worked closely with a 
Community Advisory Board.

Results
Demographics and location.  A total of 8300 compounds comprising 12,602 households were included 
in the analysis. Only 10.7% of compounds missed a survey round, the majority only missing a single round 
(Table 1). Eighty percent of compounds had a child below five years of age in at least one 6-month interval. A 
median household had 7 individuals and more than 80% of compounds were involved in farming as an income 
generating activity. The average compound was greater than 2.5 km from the nearest river or health facility, but 
about a quarter kilometer from the nearest local road.

Malaria in the study population.  Incidence of malaria was highest in children age 0 to 5, ranging between 
4.5 episodes per 100 in a six-month period (fall 2011) and a high of 7.1 (fall 2009; Table 2). Over this same period, 
malaria incidence in the entire population ranged from 1.8 to 3.6 episodes per 100 people.

Between 2–4 hotspots and 5–14 hotspots per 6-month interval were identified in the 0 to 5 year olds and the total 
population, respectively (Fig. 1). In a given interval, the percentage of compounds in a hotspot was 10.2% (range: 0.3% 
− 18.6%) and 11.6% (range: 3.3% − 18.7%) on average for age 0 to 5 and total population samples, respectively. Relative 
risk within a hotspot ranged from 1.7 to 12.6 in the 0 to 5 year olds and 1.7 to 50.5 in the total population sample.

Hotspot number, location, and size varied from interval to interval. Overall, 34.7% of compounds were located 
in a hotspot in only a single interval while 47.9% were never in a hotspot. 15.9% of compounds were located 
in a hotspot in two intervals, but only 1.54% in three or more intervals. The smallest hotspot for the younger 
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population was 120 meters but the smallest hotspot in the total population was just a single compound. In both 
the total population and the age 0 to 5 population, the maximum hotspot size was 2 km.

Role of static variables in hotspot membership.  Risk of membership in a hotspot at any point dur-
ing the study was investigated as a function of temporally-constant socio-demographic and geographic factors 
(Table 3). Confounder variables, particularly TFA variables correlated with underlying risk of being in a hotspot 
(Figure S1). Not surprisingly given the dynamic nature of hotspots, other static predictors had relatively small 
effects on the risk of being in a hotspot. Distance to a health facility had the highest magnitude of effect on hotspot 
membership for the total population (associated risk increase of 12.0% per 1.2 km of distance) while distance to a 
river was most important for age 0 to 5 (associated risk increase of 15.0% per 1.45 km of distance).

In terms of non-spatially derived characteristics, farming had the highest magnitude effect on hotspot risk in 
the total population, while number of sheep/goats increased the risk of hotspot membership for children under 
five years. Using these static covariates, we describe a probability surface for hotspot membership for the study 
area (Fig. 2). Probability ranges from 0.1 to 1 and are generally higher in the southern region. There is good 
agreement between the probability maps for children and the total population. However, hotspots in areas of low 
predicted probability can clearly be seen indicating a set of covariates that cannot completely explain hotspot 
location.

In the total population sample, we found that there was dependence between the outcome and the probability 
of missing household characteristics, however, when we adjusted regressions using IPW, we found no meaningful 
change in parameter estimates in the magnitude or direction of effect.

Temporal variability of hotspots.  To better understand stability of hotspot location over time, we ana-
lyzed hotspot membership in a 1 and 2 interval lagged outcome model, including an interaction effect to account 
for differences in lag effects by spring vs. fall interval (Fig. 3, Supplemental Table 1). We found significant lagged 
effects of hotspot membership which were indeed modified by timing of the current interval. In the population 
of children age 0 to 5, we found that, regardless of timing, a compound was not likely to be in a hotspot in con-
tiguous intervals with the reduction in risk larger in the spring (Spring RR = 0.28, 95% CI: 0.22–0.37; Fall RR: 
0.7740, 95% CI: 0.363–0.9348). In the total population, the risk of being in a hotspot in two contiguous intervals 
depended on season with an increased risk of being in a hotspot in the spring if a compound was in a hotspot in 
the previous 6-month interval (RR = 1.15, 95% CI: 1.02–1.29) and a decreased risk of being in a hotspot in the fall 
if a compound was in a hotspot in the previous 6-month interval (RR = 0.81, 95% CI: 0.70–0.94).

In both populations, the effect of having been in a hotspot one year prior depended strongly on whether the 
timing of the interval within the year. Households were more likely to be in a hotspot in the fall interval if they 
had been in a hotspot two intervals prior by a factor of 1.68 (95% CI: 1.54–1.84) in children age 0 to 5 and 1.77 
(95% CI: 1.66–1.89) in the total population, while the opposite was true for annual cycles starting in the spring.

Taken together, these results suggest that hotspots move in space and that they may be qualitatively different 
in early and late seasons. Over the course of our study period, fall hotspots were more stable and more often 
recurred in the same locations in subsequent late intervals. Spring hotspots were less likely to occur in the same 
location as the previous interval, or the previous year.

Population dynamics and hotspot location.  Human migration and births had a significant effect 
on hotspot location and these effects were similar for children age 0 to 5 and the total population (Table 4). 
In-migrations from other WHDSS households that had not been located in a hotspot in the previous interval 

Variable Fall 2009 Spring 2010 Fall 2010 Spring 2011 Fall 2011 All

All compounds 8218 7812 8013 7931 8049 40,023

New births 915 855 860 859 790 4279

In-migrations from hotspot — 3 2 16 21 42

In-migrations from non-hotspot — 23 81 68 93 265

In-migrations from rural area1 212 135 335 293 405 1380

In-migrations from urban area1 98 71 125 111 167 572

Compound population, median (IQR) 7 (5,10) 7 (5,10) 7 (5,10) 7 (5,10) 7 (5,10)

Children under 5 in compound, median (IQR) 1 (0,2) 1 (0,2) 1 (0,2) 1 (0,2) 1 (0,2)

Total malaria cases 2292 1090 2065 1671 1261 8379

Total population 64324 61688 63370 62874 63858 316114

Compounds with children <5yrs 6032 5688 5721 5611 5588 28640

In-migrations from hotspot — 3 2 14 16 35

In-migrations from non-hotspot — 17 69 56 73 215

In-migrations from rural area1 168 102 273 226 286 1055

In-migrations from urban area1 79 55 96 95 135 460

Total malaria cases 875 449 810 683 501 3318

Total population 12385 11700 11636 11401 11196 58318

Table 2.  Counts and descriptive statistics for dynamic covariates. 1outside of WHDSS.
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and migration from urban and rural areas outside of the WHDSS area were associated with increased risk of 
hotspot membership. In-migration from a WHDSS household that had been in a hotspot in the previous interval 
was associated with a 55% reduced risk of current location in a hotspot for the total population, though the wide 
confidence interval suggests this estimated effect was quite imprecise (95% CI: 8% − 78%). Compound popula-
tion itself was not associated with a change in risk of location in a hotspot in either group. However, in-migration 
always increased the risk of being in a hotspot except in-migration from other WHDSS hotspots. Migrants from 
within the WHDSS had an overall larger effect on hotspot risk than migrants from outside the WHDSS.

Discussion
In this study, we examine the temporal stability of malaria hotspots in a large, population-based open cohort in 
western Kenya. In a population of 64,000 people, we find that hotspots move in space across six-month intervals 
and rarely recur in the same position. Only a small proportion of households were located in a hotspot more than 
once in the three-year study period. Falling within a hotspot in one six-month interval substantially reduced the 
risk of belonging to a hotspot in the following interval. The same is true one year later, but only if the household 
was in a hotspot in a spring interval (corresponding to the long rains). However, those who were in a fall hotspot 
(during the short rains) had a nearly 2-fold higher risk of being in a hotspot one year later during the following 
fall. The difference in the six-monthly versus annual patterns is modified by season and suggests a qualitative 
difference between spring and fall hotspots.

Human movement, particularly migration into a household, played a significant role in risk of hotspot member-
ship. Human movement from areas with differing levels of exposure and importation of varying parasite genotypes 
have been identified as risk factors in malaria transmission in Africa8,32,33. However, this is the first time that human 
population dynamics have been implicated in local foci of elevated transmission. The magnitude and direction of 
the effect was specific to the origin of the migration event and was independent of total household size. Local migra-
tion within the study area was most strongly predictive of hotspot membership. Individuals migrating from nearby 
hotspots reduced the risk of hotspot membership in the next six-month interval, but migration from non-hotspots 

Figure 1.  Hotspot location and size (B,D) and mean relative risk with percent of compounds in hotspots (A,C) 
by data collection period. Panels A and B are for compounds with children ages 0–5 years. Panel C and D show 
the total population. Spring refers to January 1 – June 30; Fall refers to July 1 – December 31. Maps created using 
ArcMap 10.2.2 (http://www.esri.com/arcgis/about-arcgis).

http://www.esri.com/arcgis/about-arcgis
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had the opposite effect. Based on this information, it seems less likely that migration is responsible for parasite 
importation and more likely that a migration event from a non-hotspot brings a susceptible individual into an area 
of elevated exposure, thus increasing the risk of a clinical episode. Conversely, a migrant from a recent hotspot is 
more likely to have some elevated immunity thus decreasing the risk of a new clinical episode. This is supported by 
the observation that urban migrants increase risk of hotspot membership. It is interesting that rural migrants also 
increase the risk of hotspot membership. Although a rural area may not be endemic (for example, coming from the 
highlands), rural areas are overall likely to have higher malaria transmission than urban areas. We cannot rule out 
the possibility of a migrant from outside the study area, whether rural or urban, importing an antigenically distinct 
parasite for which local immunity is lower thus increasing the risk of a local hotspot.

Although specific static covariates were correlated with elevated risk of hotspot membership, the magnitude 
of the association was modest. Amongst the static variables, geographic location with respect to the road, the 
river, and a health facility were most strongly correlated with risk of being in a hotspot. Consistent with other 
studies, we also find that hotspots are associated with a mix of other static risk factors such as environmental 
conditions9,34,35, altitude4,35, and participation in farming8,36.

The dynamic nature of hotspots in our cohort has major implications for hotspot targeting. At least one 
other study has identified spatially dynamic hotspots15 and one documented hotspots emerging as transmission 
declined14. Bejon et al.9 found that hotspots of symptomatic, febrile malaria were more mobile in space than foci 
of asymptomatic infection. This is probably because the foci for asymptomatic carriage of malaria parasites arise 
from malaria endemic areas with perennial transmission, and as a result have malaria reservoir among infected 
individuals in excess of 1000-parasite/μℓ blood required to trigger gametogony37. However, symptomatic and 
febrile malaria hotspots are located in foci where malaria infection are transient and occur mainly as a result of 
mosquito succession following the onset and progression of seasonal rains38. These rains are usually non-uniform 
over a geographical area and malaria vector breeding will be spatially and temporally variable as the rains pro-
gress. It remains to be determined whether hotspots defined on larger geographic scales are as dynamic.

Our study has several limitations which must be weighed when interpreting the results. First, our outcome of 
symptomatic malaria is defined by self-report. Although it is distinguished from unknown febrile illness and other 

VARIABLES
Age 0 to 5 Estimate  
Risk Ratio

Total population Estimate  
Risk Ratio

Compound population (maximum)2
0.97 0.94

(0.95–1.00) (0.92–0.97)

Household head or spouse in compound Farming
0.99 1.08

(0.92–1.06) (1.02–1.14)

Number of cattle owned
0.98 0.94

(0.91–1.05) (0.85–1.05)

Number of sheep/goats owned
1.06 1.04

(1.04–1.08) (1.03–1.06)

Number of poultry owned
0.94 1

(0.79–1.11) (0.87–1.15)

Acres of land owned by members of compound2
1 0.99

(0.98–1.03) (0.97–1.01)

Compound uses piped water
1.05 1

(0.93–1.18) (0.88–1.13)

Compound uses spring water
1.02 0.9

(0.90–1.15) (0.79–1.02)

Compound uses well water
0.95 0.91

(0.84–1.07) (0.80–1.03)

Compound uses other water source
1.03 1.02

(0.91–1.17) (0.89–1.16)

Distance to river2
1.15 1.05

(1.11–1.20) (1.02–1.08)

Distance to road2
0.89 0.97

(0.86–0.92) (0.94–1.00)

Distance to health facility2
1.07 1.12

(1.02–1.12) (1.08–1.16)

Constant
0.341 0.391

(0.296–0.393) (0.341–0.449)

Observations 6,160 7,682

Table 3.  Modified Poisson Regressions of compound ever being located in a hotspot on selected static 
covariates. 1Regressions adjusted for number of rounds a compound was NOT in the sample and selected 
temporal Fourier analyzed (TFA) MODIS variable. 2Continuous value standardized for analysis.
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Figure 2.  Study area location and modified Poisson model-fitted values for ever being located in a hotspot on 
static covariates and environmental confounders, by group. Maps were created using ArcMap 10.2.2 (http://
www.esri.com/arcgis/about-arcgis).

Figure 3.  Risk ratio with 95% CI for hotspot membership by sample and season.

http://www.esri.com/arcgis/about-arcgis
http://www.esri.com/arcgis/about-arcgis
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common morbidities in the dataset, it is likely that malaria is over-reported and therefore our definition has high 
sensitivity but low specificity. There is also some concern that those experiencing fever may assume malaria is the 
cause or may refer to any fever with the same terminology as they do malaria39. However, morbidity reports from 
the WHDSS include other causes of fever (e.g. otitis media, typhoid fever, other infections) as well as non-specific 
fever (ICD 10CM R50.9), reported both by individuals who seek treatment in health facilities and those who 
self-medicate, indicating that both facilities and individuals are distinguishing between malaria and other causes of 
fever (37% of non-specific fever is reported by individuals who sought treatment as health facilities). Furthermore, 
self-reported malaria cases show the seasonality expected of malaria (see Supplemental Fig. 2). Other common 
causes of pediatric fever, such as influenza, have shown different seasonality40. Even in the presence of significant 
over-reporting of malaria, our identification of hotspots will not be biased unless the over-reporting varies spatially.

Recall bias may also have affected the accuracy of the data41–44, although it is unlikely to be more problematic 
within hotspots than outside and therefore unlikely to have influenced the detection of hotspots. Second, the 
period of data collection, 2.5 years, while longer than many previous studies, is a relatively short analytical time 
frame and limits our ability to describe the long-term mobility or annual patterns of hotspot location. Finally, 
there are undoubtedly many relevant static and dynamic factors that we were not able to incorporate into our 
model, such as bednet use and proximity to mosquito habitats.

This is the first study of which we are aware that uses a large, longitudinal census population to explore hotspot 
location at the level of residential location of households. Our study population is more than ten-times larger 
than previous longitudinal hotspot analyses. This allowed us to look at malaria incidence for all ages in a contig-
uous geographic area rather than a sub-sample of geographic locations or a specific age group1,9,14. Furthermore, 
morbidity was recorded from all residents rather than from a sample reporting to a health facility1. The census 
structure also allows individuals to enter or leave the sample over time, incorporating true population dynamics 
into the malaria hotspot risk model. The longitudinal structure of the data allowed us to not only to track individ-
uals and households over time and space, but also allowed us to compare hotspot location between seasons and 
years. Our findings are highly relevant to studies exploring hotspot interventions and highlight the challenge of 
predicting hotspot locations. More research is needed to understand the factors that determine hotspot location, 
with special emphasis on those that can be measured dynamically on appropriate spatial and temporal scales.

Data Availability.  Original datasets contain identifiable information on subjects and must be requested 
separately from the WHDSS through Moi University. De-identified analysis datasets and analysis programs are 
available through the corresponding author.
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