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Uncovering the anticancer 
mechanism of Compound 
Kushen Injection against HCC by 
integrating quantitative analysis, 
network analysis and experimental 
validation
Li Gao1, Ke-xin Wang1,2, Yu-zhi Zhou1, Jian-song Fang3, Xue-mei Qin1 & Guan-hua Du1,4

Compound Kushen Injection (CKI) is a Traditional Chinese Medicine (TCM) preparation that has been 
clinically used in China to treat various types of solid tumours. Although several studies have revealed 
that CKI can inhibit the proliferation of hepatocellular carcinoma (HCC) cell lines, the active compounds, 
potential targets and pathways involved in these effects have not been systematically investigated. 
Here, we proposed a novel idea of “main active compound-based network pharmacology” to explore 
the anti-cancer mechanism of CKI. Our results showed that CKI significantly suppressed the proliferation 
and migration of SMMC-7721 cells. Four main active compounds of CKI (matrine, oxymatrine, 
sophoridine and N-methylcytisine) were confirmed by the integration of ultra-performance liquid 
chromatography/mass spectrometry (UPLC-MS) with cell proliferation assays. The potential targets 
and pathways involved in the anti-HCC effects of CKI were predicted by a network pharmacology 
approach, and some of the crucial proteins and pathways were further validated by western blotting 
and metabolomics approaches. Our results indicated that CKI exerted anti-HCC effects via the key 
targets MMP2, MYC, CASP3, and REG1A and the key pathways of glycometabolism and amino acid 
metabolism. These results provide insights into the mechanism of CKI by combining quantitative 
analysis of components, network pharmacology and experimental validation.

Hepatocellular carcinoma (HCC) is the 3rd leading cause of cancer-related death worldwide, and its incidence is 
increasing1. Approximately three-quarters of HCC cases are attributed to chronic HBV and HCV infections2. In 
recent years, substantial evidence has shown that genetic alterations3,4 and metabolic disorders5,6 also play critical 
roles in the pathogenesis of HCC. Most HCC patients are diagnosed at an advanced stage with few therapeutic 
measures. Trans-arterial chemoembolization (TACE), radiotherapy and chemotherapy are the current treatment 
modalities for HCC, and sorafenib is the only drug that has been approved by the FDA7.

Compound Kushen Injection (CKI) is derived from two herbs, Radix sophorae flavescentis and Rhizoma smi-
lacis glabrae. CKI has been clinically used in China for over 15 years for the treatment of many types of solid 
tumours, especially for cancer-related pains8. CKI combined with TACE treatment could elevate the therapeutic 
efficacy of unresectable HCC9. CKI may deliver anti-HCC effects through multiple compounds acting on multiple 
targets and pathways. Qu et al. used functional genomics to identify the anti-cancer mechanisms of CKI in the 
MCF-7 cell line. They found that CKI exerted anti-cancer effects likely through the regulation of the cell cycle, cell 
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apoptosis, lncRNAs and other pathways10. However, the candidate mechanisms underlying the anti-HCC effects 
of CKI are still unknown.

Network pharmacology, first proposed by Andrew L Hopkins11, has greatly promoted the mechanistic study of 
Traditional Chinese Medicine12–14. This approach has advantages in interpreting the synergistic effects of Traditional 
Chinese Medicine (TCM) with multiple components and multiple targets. In most studies, network pharmacology 
considers drug-like ingredients in herb databases, while the contents of the ingredients are often neglected. Thus, 
the primary ingredients and targets predicted by network pharmacology may deviate from the truth.

In the current study, network pharmacology analysis was performed focusing on the main active compounds 
of CKI. The workflow is illustrated in Fig. 1 as follows: (1) the anti-HCC effects of CKI were evaluated in SMMC-
7721 cells; (2) the ingredients of CKI were quantitatively analysed by UPLC-MS; (3) the effects of the primary 
compounds (top 5 in content) of CKI on cell proliferation were measured to identify the main active compounds; 
(4) the 4 main active compounds were used for network pharmacology analysis to predict the potential targets 
and pathways of CKI against HCC; (5) the key targets and pathway were validated by experiments.

Results
CKI inhibits the proliferation and migration of SMMC-7721 cells.  The effects of CKI on the prolif-
eration and migration of SMMC-7721 cells were determined. MTT assays showed that 2, 4 and 8 mg/mL CKI 
dramatically inhibited the proliferation of SMMC-7721 cells at 24, 48, and 72 h in a time-dependent manner 
(Fig. 2A). Wound-healing and transwell assays showed that 1 and 2 mg/mL significantly suppressed the migra-
tion of SMMC-7721 cells (Fig. 3). These results suggest that CKI displayed significant inhibitory activities on the 
proliferation and migration of SMMC-7721 cells.

Identification of chemical ingredients in CKI by UPLC-MS.  UPLC-MS is a rapid, reliable and accurate 
technique to identify the chemical ingredients in TCM. In the present study, 22 ingredients of CKI were identi-
fied by UPLC-MS (Fig. 4, Table 1). The top five compounds by content were matrine (6.07 mg/mL), oxymatrine 

Figure 1.  A schematic diagram of the integrative strategy combining quantitative analysis of components, 
network analysis and experimental validation for investigation of the mechanisms of Compound Kushen 
Injection (CKI) against HCC.
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(5.46 mg/mL), oxysophocarpine (3.89 mg/mL), sophoridine (2.23 mg/mL) and N-methylcytisine (1.14 mg/mL). 
These 5 compounds were further identified by comparing the retention times and accurate masses with those of 
standard substances (Supplementary Figure S1–S5). Other compounds were determined by comparing the reten-
tion time and mass spectra with those of authentic substances and the reported data in the literature.

Figure 2.  Effects of CKI and its components on proliferation of SMMC-7721 cells. (A) CKI, (B) matrine, (C) 
oxymatrine, (D) sophoridine, (E) N-methylcytisine, (F) oxysophocarpine. The cell viabilities under different 
treatments were measured using MTT. Data are represented as mean ± SEM (n = 6). *p < 0.05, **p < 0.01, 
***p < 0.001 versus control group.

Figure 3.  CKI can inhibit the migration of SMMC-7721 cells. (A) Wound-healing assays show that CKI (1 and 
2 mg/mL) significantly inhibits the migration of SMMC-7721 cells at 12, 24 and 36 h. (B) Transwell migration 
assays show that CKI (1 and 2 mg/mL) significantly inhibits the migration of SMMC-7721 cells at 36 h. 
*p < 0.05, ***p < 0.001 versus untreated cells.
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Identification of the main active compounds in CKI.  MTT assay was used to screen the active com-
pounds against HCC from the top-5 compounds. Our results showed that matrine, oxymatrine, sophoridine and 
N-methylcytisine, each at 4 mg/mL significantly inhibited the proliferation of SMMC-7721 cells at 24 h (Fig. 2B–E).  
These 4 compounds were considered the main active compounds of CKI. However, even at 4 mg/ml, oxysopho-
carpine showed no obvious effect on the proliferation of SMMC-7721 cells after 24 h of treatment (Fig. 2F).

Network construction of the anti-HCC targets of CKI.  In our previous study13, 566 genes that were 
significant to HCC were collected from the OncoDB.HCC15 and Liverome databases16. The validated targets and 
predicted targets of the main active compounds of CKI were collected and then mapped to these genes to obtain 
shared genes, which were predicted to be the candidate targets of CKI. Forty-eight targets of CKI were obtained, 
including 7 validated targets (AR, CASP3, CD44, HPSE, ICAM-1, MMP2, and MYC) and 41 predicted targets; 
384 proteins associated with the 48 targets of CKI were acquired from the STRING database. The protein-protein 
interaction network of CKI for the anti-HCC effects consisted of 432 proteins through 1540 interactions with an 
average degree of 7.13 (Fig. 5).

Network topological analysis.  NetworkAnalyzer was used to calculate the average shortest path lengths 
and betweenness centrality of the 48 targets of CKI, and the results are shown in Table 2. The topological 

Figure 4.  Positive total ion current chromatography (TIC) of CKI.

No. tR(min) compounds
Molecular 
formula [M + H]+ Fragment ions

1 2.28 oxymamanine C15H23O3N2 279.1702 177.1386, 261.1595, 557.3329

2 2.54 9β-hydroxylamprolobine N-oxide C15H25O4N2 297.1808 279.1700, 593.3537

3 4.29 9β-hydroxylamprolobine C15H25O3N2 281.1859 148.1120, 263.1751, 561.3642

4 4.56 5α, 9α-hydroxymatrine C15H25O3N2 281.1859 148.1114, 245.1646, 263.1750, 561.3648

5 4.99 9α -hydroxymatrine C15H25O2N2 265.1910 177.1379, 247.1801, 529.3748

6 5.52 oxysophoranol C15H25O3N2 281.1859 148.1121, 245.1645, 263.1753, 561.3643

7 6.05 no identified 283.2015 152.1433

8 6.22 oxymatrine C15H25O2N2 265.1910 148.1119, 150.1275, 247.1801 [M + H2O]+, 529.3748 
[2M + H]+

9 6.53 oxysophocarpine C15H23O2N2 263.1753 150.1275, 245.1647 [M + H2O]+, 525.3426 [2M + H]+

10 7.27 mamanine C15H23O2N2 263.1753 150.1275, 231.1496, 245.1645 [M + H2O]+, 525.3434 
[2M + H]+

11 7.82 sophoranol C15H25O2N2 265.1910 148.1117, 150.1279, 247.1802 [M + H2O]+

12 8.09 oxysophoridine C15H25O2N2 265.1909 164.1607, 247.1808 [M + H2O]+

13 8.52 baptifoline C15H21O2N2 261.1598 114.0915,243.1488

14 8.25 N-methylcyticine C12H17ON2 205.1335 146.0601

15 9.09 9α-hydroxysophocarpine C15H23O3N2 279.1703 261.1595 [M + H2O]+

16 9.58 (-)-oxylehmannine C15H23O2N2 263.1754 245.1647

17 9.47 sophoridine C15H25ON2 249.1960 150.1280

18 10.12 14β-hydrsophoridine C15H25O2N2 265.1910 247.1805

19 10.22 (-)-acetylbaptifoline C17H24O3N2 303.1702 243.1491

20 10.39 Sophocarpine C15H22ON2 247.1805 148.1121, 150.1278

21 10.59 isomatrine C15H25ON2 249.1961 150.1279

22 10.82 matrine C15H25ON2 249.1960 148.1120, 150.6241, 134.5847, 231.1852 [M + H2O]+

Table 1.  Identified Compounds in CKI by UPLC-MS.
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parameters such as shortest path length and betweenness centrality were usually used for the analysis of key 
nodes in the network. Nodes with a small average shortest path length and large betweenness centrality value 
were considered as important proteins in the network17. The R value was used to evaluate the importance of the 48 
targets as equation (1). From the predicted targets of the main active compounds, CASP3, MYC, and MMP2 were 
predicted as crucial targets of CKI from the validated targets, and QDPR, GABRE, and REG1A were predicted as 
crucial targets of CKI.

Pathway enrichment analysis.  Reactome was used to explore the potential pathways affected by 
CKI through analysis of the 48 targets. The pathways were ranked by their nominal p values with a cut-off of 
0.001 (Table 3). Seven pathways were enriched: Metabolism of amino acids and derivatives, Metabolism, 
FRS2-mediated cascade, FGFR1b ligand binding and activation, Amyloids, Reversible hydration of carbon diox-
ide and SHC-mediated cascade.

Experimental validation of key targets.  To delineate the anti-HCC mechanisms of CKI, some of the 
crucial proteins predicted by network pharmacology were experimentally validated in SMMC-7721 cells in 
response to CKI treatment. As shown in Fig. 6, CKI significantly inhibited the expression of MMP2, MYC, and 
REG1A and significantly increased the expression of caspase 3 in a dose-dependent manner.

Experimental validation of the metabolism pathway.  Metabolomics was used to detect the metab-
olism pathways affected by CKI. The typical 1H-NMR spectra of cell and medium are present in Supplementary 
Figure S6. Resonance assignments (Supplementary Table S1) were performed based on the chemical shifts of 
standard compounds from the Chenomx NMR suite, the Human Metabolome Database (HMDB)18, and 
Biological Magnetic Resonance Data Bank (BMRB)19, as well as the literature data20,21. The NMR spectra of cell 

Figure 5.  The network of CKI targets-interacted proteins. The yellow nodes represent validated targets, the red 
nodes represent predicted targets and the blue nodes represent associated proteins of targets.



www.nature.com/scientificreports/

6SCIentIfIC RePorTS |  (2018) 8:624  | DOI:10.1038/s41598-017-18325-7

and medium were dominated by peaks from amino acids, organic acids, choline-containing metabolites, and 
amine metabolites, in addition to some other metabolites.

To obtain more details of the metabolic differences after treatment with CKI, all the NMR data were sub-
jected to multivariate data analysis. A partial least squares discriminant analysis (PLS-DA) model was further 
constructed and validated using the response of the permutation test through 200 permutations in which all R2 
and Q2 values were lower than the original ones deemed to be of great predictive ability and reliability. The good 

Swiss prot
Genes/
proteins Description

validated or 
predicted

Average shortest 
path length

Betweenness 
centrality R

P09417 QDPR quinoid dihydropteridine reductase predicted 1.00 0.80000 0.0000

P78334 GABRE Gamma-aminobutyric-acid receptor subunit epsilon precursor predicted 1.00 0.73889 0.0000

P05451 REG1A Lithostathine 1 alpha precursor predicted 1.00 0.70370 0.0000

P00918 CA2 carbonic anhydrase II predicted 1.00 0.26688 0.0000

P00736 C1R complement component 1, r subcomponent predicted 1.00 0.14741 0.0000

P11717 IGF2R insulin-like growth factor 2 receptor predicted 1.65 0.33684 0.0613

P43681 CHRNA4 Neuronal acetylcholine receptor subunit alpha-4 predicted 1.79 0.51600 0.0746

P42574 CASP3 Caspase-3 validated 1.90 0.04377 0.0849

P23141 CES1 carboxylesterase 1 predicted 2.13 0.45833 0.1060

P36544 CHRNA7 Neuronal acetylcholine receptor subunit alpha-7 predicted 2.29 0.09934 0.1217

P35228 NOS2 Nitric oxide synthase predicted 2.98 0.05616 0.1865

Q92597 MYC Myc proto-oncogene protein validated 3.07 0.04787 0.1951

P05089 ARG1 Arginase-1 predicted 3.23 0.10864 0.2099

P00966 ASS1 argininosuccinate synthase 1 predicted 3.37 0.03375 0.2231

P09211 GSTP1 Glutathione S-transferase P predicted 3.45 0.10380 0.2251

P04181 OAT Ornithine aminotransferase predicted 3.38 0.00546 0.2261

P32929 CTH cystathionase predicted 3.40 0.01890 0.2279

P35520 CBS Cystathionine beta-synthase predicted 3.41 0.00541 0.2310

P08253 MMP2 Matrix metalloproteinase-2 validated 3.46 0.00064 0.2341

P14210 HGF Hepatocyte growth factor precursor predicted 3.47 0.00046 0.2373

P30041 PRDX6 peroxiredoxin 6 predicted 3.48 0.00605 0.2400

P04075 ALDOA aldolase A predicted 3.52 0.00072 0.2403

P11216 PYGB phosphorylase, glycogen; brain predicted 3.54 0.00500 0.2407

Q5JWF2 GNAS Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas predicted 3.54 0.00253 0.2418

P83916 CBX1 chromobox homolog 1 predicted 3.55 0.00130 0.2425

P11388 TOP2A topoisomerase (DNA) II alpha 170 kDa predicted 3.55 0.00104 0.2432

P28482 MAPK1 Mitogen-activated protein kinase 1 predicted 3.64 0.02154 0.2486

P03372 ESR1 Estrogen receptor predicted 3.63 0.00146 0.2503

P10275 AR Androgen receptor validated 3.65 0.00819 0.2505

P35354 PTGS2 Prostaglandin G/H synthase 2 precursor predicted 3.67 0.00602 0.2524

P61769 B2M beta-2-microglobulin predicted 3.97 0.11074 0.2751

P13196 ALAS1 aminolevulinate, delta-, synthase 1 predicted 3.92 0.03940 0.2796

P01116 KRAS GTPase KRas predicted 4.15 0.00012 0.2983

P80188 LCN2 Neutrophil gelatinase-associated lipocalin precursor predicted 4.16 0.00751 0.2985

P21549 AGXT alanine-glyoxylate aminotransferase predicted 4.17 0.02412 0.3024

O95954 FTCD formiminotransferase cyclodeaminase predicted 4.20 0.00607 0.3059

P61626 LYZ lysozyme predicted 4.25 0.07924 0.3166

P09038 FGF2 Heparin-binding growth factor 2 precursor predicted 4.35 0.00683 0.3184

P05230 FGF1 Heparin-binding growth factor 1 precursor predicted 4.38 0.01212 0.3249

Q9Y251 HPSE Heparanase precursor validated 4.39 0.00001 0.3266

P11498 PC pyruvate carboxylase predicted 4.45 0.01814 0.3524

P02671 FGA fibrinogen alpha chain predicted 4.74 0.04801 0.3790

P05362 ICAM1 Intercellular adhesion molecule 1 precursor validated 5.02 0.05416 0.3813

P16070 CD44 CD44 antigen precursor validated 5.04 0.00918 0.3886

Q9UJM8 HAO1 hydroxyacid oxidase (glycolate oxidase) 1 predicted 5.12 0.01655 0.4330

P00915 CA1 Carbonic anhydrase 1 predicted 5.59 0.05388 0.4817

P01008 SERPINC1 serpin peptidase inhibitor, clade C (antithrombin), member 1 predicted 6.11 0.01214 0.5011

P05091 ALDH2 aldehyde dehydrogenase 2 family (mitochondrial) predicted 6.31 0.00301 0.8195

Table 2.  48 targets of CKI with average shortest path length and betweenness centrality.
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PLS-DA models (cell model parameters: R2X = 0.632, Q2 = 0.979; medium model parameters: R2X = 0.741, Q2 
= 0.993) indicate excellent predictive powers. Potential biomarkers associated with CKI treatment were further 
identified by OPLS-DA. The corresponding S-plot, VIP values and t-tests were used to test the statistical signif-
icance of the altered metabolites and to find metabolites contributing to the separation (Fig. 7). Compared with 
the control group, 16 differential metabolites were confirmed in cells, including higher levels of leucine, valine, 
acetate, glutamine, glycerol, β-glucose, tyrosine and phenylalanine and lower levels of glutamate, glutathione, 
creatine, GPCc, glycine, 1,3-dihydroxyacetone, adenosine monophosphate and hypoxanthine. In the medium 10 
differential metabolites were confirmed, including higher levels of pyruvate, succinate, pyroglutamate, glycine, 
threonine, glycerol and alanine and lower levels of leucine, valine and lactate. CKI could significantly regulate the 
contents of different metabolites and attenuate the metabolic disorders in hepatoma cells (Table 4).

Metabolites with significant abundance changes between the CKI treatment and control groups were sub-
jected to pathway analysis using MetaboAnalyst 3.0 and the KEGG database (www.genome.jp/kegg/) (Fig. 8). 
The most relevant metabolic pathways regulated by CKI included Pyruvate metabolism; D-Glutamine and 
D-glutamate metabolism; Glycine, serine and threonine metabolism; Alanine, aspartate and glutamate metab-
olism; Glutathione metabolism; and Glycerolipid metabolism. To gain additional insights into the relationship 
between metabolites, the differential biomarkers were mapped to KEGG IDs and the metabolite network was 
constructed by MetScape (Fig. 9).

Reactome Pathway P-value FDR HitGenes

Metabolism of amino acids and derivatives 0 0.002252408 AGXT, QDPR, CTH, OAT, ASS1, ARG1, FTCD, CBS

Metabolism 0.0001 0.019183984 PTGS2, AGXT, ALAS1, CD44, HPSE, QDPR, CTH, GNAS, CA2, 
CA1, OAT, GSTP1

FRS2-mediated cascade 0.0002 0.026828354 FGF1, FGF2, MAPK1, KRAS

FGFR1b ligand binding and activation 0.0005 0.046185577 FGF1, FGF2

Amyloids 0.0007 0.046185577 B2M, LYZ, FGA

Reversible hydration of carbon dioxide 0.0008 0.046185577 CA2, CA1

SHC-mediated cascade 0.001 0.046185577 FGF1, FGF2, KRAS

Table 3.  Pathway enrichment for the targets of CKI.

Figure 6.  The effects of CKI on protein levels of CASP3 (A), MYC (B), MMP2 (C) and REG1A (D) in SMMC-
7721 cells. β-Actin was used as loading control. n = 3, x  ± SEM. *p < 0.05, **p < 0.01 versus untreated cells.

http://www.genome.jp/kegg/
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Effects of CKI on the levels of pyruvate and glutamate.  Pyruvate participates in pyruvate metab-
olism; glycine, serine and threonine metabolism; alanine, aspartate and glutamate metabolism. Glutamate is 
involved in D-Glutamine and D-glutamate metabolism. Thus, representative metabolites pyruvate and glutamate 
were selected to identify the variation between the CKI treatment and control groups. CKI significantly increased 
the content of pyruvate in the medium but decreased the content of glutamate in the cell (Fig. 10).

Compound-target-metabolite network of CKI.  The compound-target-metabolite network was con-
structed for the 4 main active compounds and 4 experimentally validated targets. As shown in Fig. 11, matrine acted 
on the key targets of CASP3, MMP2, and MYC; oxymatrine acted on the key targets of MMP2 and REG1A; sophori-
dine acted on the key targets of MMP2 and REG1A; and N-methylcytisine acted on the key targets of MMP2. By 
acting on these targets and interacting targets, CKI could regulate the metabolites and metabolic pathways.

Discussion
CKI has been approved by the State Food and Drug Administration of China for over 15 years and is widely 
known for its pain relief roles in cancer. Increasing evidence has shown that CKI combined with radiother-
apy significantly improved the clinical efficacies of acute leukaemia22, non-small cell lung cancer23, and HCC9. 
Particularly, the combination treatment of TACE and CKI can improve the 1-and 2-year survival rates in patients 
with unresectable HCC. Our results suggested that CKI significantly suppressed the proliferation and migration 
of SMMC-7721 cells. However, the mechanisms of anti-HCC effects of CKI needed further investigation.

Network pharmacology embraces some aspects of biological networks, such as connectivity, redundancy and 
pleiotropy24, allowing it to provide insights into biological systems25. Network pharmacology is a useful approach 

Figure 7.  OPLS scores plot (A), corresponding validation plot (B) and S-plot (C) derived from SMMC-7721 
cells; OPLS scores plot (D), corresponding validation plot (E) and S-plot (F) derived from medium.
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to investigate the mechanisms of TCM. Generally, in previous studies, all ingredients of herbs were collected from 
herb databases, such as TCMSP26, TCM database@ Taiwan27, and TCMID28. In some cases, the ingredients were 
filtered according to ADMET properties or drug-likeness value13,29. However, few studies have focused on the 
main active compounds of TCM via network pharmacology analysis.

Here, we proposed a novel idea of “main active compound-based network pharmacology”. The concept was 
consistent with the method proposed by Li. et al.30,31, which was based on the combination of chemical and ther-
apeutic properties with network pharmacology. Li’s approach used computational methods to predict the role 
and mechanism of herbal formulae. The method could easily integrate newly found ingredients and then provide 
a more comprehensive understanding of the herbal formula. However, in our approach, network pharmacology 
analysis was performed based on the main active compounds, which filters out some ineffective compounds and 
focuses on the high content and active compounds. Our approach provides a novel strategy to achieve an accurate 
and systematic exploration of the mechanisms of TCM.

In this study, 22 compounds of CKI were identified by UPLC-MS, and the top 5 compounds by content 
(matrine, oxymatrine, sophoridine, N-methylcytisine and oxysophocarpine) were identified by comparison 
with standard substances. Subsequent assays showed that 4 compounds (matrine, oxymatrine, sophoridine, and 

No Metabolites CKI cell fold change CKI medium fold change

1 Leucine ↑** 4.00 ↓*** 1.97

2 Valine ↑** 5.39 ↓*** 1.60

3 Acetate ↑*** 4.81

4 Lactate ↓*** 5.25

5 Pyruvate ↑*** 4.91

6 Succinate ↑*** 2.17

7 Pyroglutamate ↑*** 2.29

8 Glutamate ↓*** 2.98

9 Glutamine ↑** 1.52

10 Glutathione ↓*** 4.10

11 Creatine ↓** 2.61

12 GPCc ↓** 2.57

13 Glycine ↓*** 2.91 ↑*** 1.67

14 Threonine ↑*** 12.76

15 1,3-Dihydroxyacetone ↓** 2.01

16 Glycerol ↑*** 2.31 ↑** 2.08

17 Alanine ↑*** 1.32

18 Adenosine monophosphate ↓* 1.52

19 β-Glucose ↑** 11.05

20 Tyrosine ↑*** 3.69

21 Phenylalanine ↑*** 3.34

22 Hypoxanthine ↓*** 3.18

Table 4.  The differential metabolites in SMMC-7721 cell and medium after treatment of CKI. *p < 0.05, 
**p < 0.01, ***p < 0.001 versus untreated cells.

Figure 8.  MetPA analysis of metabolic pathway.
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N-methylcytisine) at the maximum of 4 mg/kg could markedly inhibit the proliferation of SMMC-7721 cells. 
These 4 compounds were considered main active compounds of CKI. The mechanisms of the 4 main active com-
pounds predicted by network pharmacology were speculated to be the mechanisms of CKI.

By integration of the validated targets and predicted targets of the 4 compounds, the key targets of CKI were 
predicted according to network parameters including the average shortest path length and betweenness cen-
trality. Western blotting confirmed that CKI significantly up-regulated CASP3 expression but down-regulated 
the expression of MMP2, MYC and REG1A. Caspase proteins contain cysteine residues at their active site and 
cleave their substrate at positions next to the aspartate residue32. Caspase-3, a principal enzyme in the apoptotic 
cascade, is often used to detect apoptotic activity. Matrix metalloproteinase 2 (MMP2) has been implicated in 
the development and morphogenesis of tumours33. Increased expression of MMP2 has been shown to promote 
the invasion and metastasis of tumour cells34. Additionally, Zhao et al. found that the down-regulation of MYC 
protein in HepG2 cells significantly inhibited the migration, invasion and proliferation of HepG2 cells, suggesting 
that MYC might be a potential therapeutic target for HCC35. REG1A has been reported to be expressed in various 
human cancers, and it plays crucial roles in the tumourigenesis of HCC36,37. REG1A has also been shown to act as 
a factor to reduce epithelial apoptosis in inflammation38.

Figure 9.  The network of potential biomarkers of CKI for the anti-HCC effect. The figure was constructed 
using MetScape and the nodes represent metabolites and edges represent biochemical reactions.

Figure 10.  Effects of CKI on the contents of glutamate (A) and pyruvate (B) of SMMC-7721 cells. n = 3, x  ± 
SEM. *p < 0.05, ***p < 0.001 versus untreated cells.
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Pathway enrichment analysis uncovered the novel anti-HCC mechanisms of CKI, such as the regulation of 
amino acid metabolism and FRS2-mediated cascade. Metabolic disorders are involved in the pathogenesis of 
HCC5,6. Therefore, metabolomics was used to detect the differential metabolites and metabolic pathways regu-
lated by CKI.

Metabolomics provides a valuable platform for the investigation of the metabolic perturbations in HCC cells. 
In the current study, 1H-NMR metabolomics approach was used to investigate the effects of CKI on metabolic 
disorders in SMMC-7721 cells. Twenty-two differential metabolites were identified after treatment with CKI, 
including 16 differential metabolites in cells and 10 differential metabolites in medium. Moreover, these 22 
metabolites were mainly mapped to 6 metabolic pathways, which are important for identifying and analysing 
metabolites in biochemical reaction networks21,39.

Pyruvate, lactate and acetate participate in pyruvate metabolism. Tumour cells require more glucose than 
normal cells to support their rapid proliferation and expansion in the body40. Glycolysis, a universal property of 
malignant cells, induces acidification of the tumour environment, favouring the development of a more aggressive 
and invasive phenotype41. The Warburg effect is characterized by the capacity for using the glycolytic pathway 
even under aerobic conditions, indicating tumour cell-specific aerobic glycolysis42. Therefore, effective control of 
glycolytic levels is closely related to the fate of cancer cells43,44. The increase in the pyruvate level after the admin-
istration of CKI was possibly due to the increased rates of apoptosis, as well as the increase in aerobic glycolysis in 
apoptotic cancer cells45. The increase in lactate may be associated with increased lactate dehydrogenase activity, 
which is enhanced in various cancers. At the same time, the expression of lactate dehydrogenase in tumours 
increases, and a large amount of pyruvate is converted into lactate, resulting in an increased level of lactate46. In 
our study, after treatment with CKI, the lactate level was significantly decreased, a finding that was consistent with 
the previous result that antitumour drugs could decrease the lactate level47.

Glutamate and glutamine are involved in D-Glutamine and D-glutamate metabolism. During hepatocarcino-
genesis, energy consumption grows because of cell proliferation and survival, resulting in a high uptake of glu-
tamate48. Thus, glutamate levels are increased in HCC cells, whereas CKI can significantly decrease intracellular 
glutamate levels. The immune system is the main anti-tumour defence system in the body, and glutamine is used 
to maintain the basic functions of the immune system in the body. In addition, glutamine protects cells, tissues 
and organs from free radical damage49. Elevated levels of glutamine after the administration of CKI suggest that 
CKI may improve immune dysfunction and free radical damage.

We further reconstructed a metabolic network related to anti-HCC through MetScape based on the metab-
olites belonging to six metabolic pathways that were regulated by CKI. In the network, the effect of CKI on 
anti-HCC has many characteristics of multi-link and multi-level comprehensive effects. The integrative strategy 
presented in this study can be used as a powerful tool to understand the mechanisms of TCM.

In the current study, an integrative strategy combining the quantitative analysis of components, network anal-
ysis and experimental validation was used to explore the possible targets and pathways of CKI against HCC. 
After proving the efficacy of CKI on HCC, four main active compounds (matrine, oxymatrine, sophoridine 
and N-methylcytisine), instead of the whole ingredients of CKI were used for network pharmacology analysis. 
Through validating the experimental processes, the key validated targets (i.e., MMP2, MYC, CASP3 and REG1A) 
and key pathways (i.e., metabolism-associated pathways) were identified as mechanisms of the anti-HCC effects 
of CKI. Additionally, the results provide a scientific basis for the elucidation of the mechanisms of CKI against 
HCC.

Materials and Methods
Reagents and materials.  CKI (total alkaloid concentration of 20.8 mg/mL) was purchased from Shanxi 
Zhendong Pharmaceutical Co.Ltd. (Shanxi, China), and 5-fluorouracil was ordered from Beijing Solarbio Science 
Technology Co. Ltd. (Beijing, China). Matrine, oxymatrine, oxysophocarpine and sophoridine were obtained 
from the National Institute for the Control of Pharmaceutical and Biological Products (Beijing, China; Batch 
numbers: 110805-200508, 110780-201508, 111652-200301, 110784-201405), and N-methylcytisine was pur-
chased from J&K Scientific Ltd. (Beijing, China). High glucose DMEM, foetal bovine serum (FBS), 0.25% trypsin, 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and dimethyl sulphoxide (DMSO) were 
obtained from Sangon Biotech Co. (Shanghai, China). Sodium 3-trimethlysilyl [2, 2, 3, 3-d4] propionate (TSP) 

Figure 11.  Compound-target-metabolite network. The nodes of active compounds, targets, pathway genes, 
differential metabolites, and metabolism pathway were colored in yellow, red, blue, purple, and green, 
respectively.
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was purchased from Cambridge Isotope Laboratories Inc. (Andover, MA, USA). D2O was obtained from Norell 
(Landisville, Pennsylvania, USA). Primary antibodies against β-actin, MMP2 and Myc were purchased from 
ProteinTech (Chicago, IL, USA). The caspase-3 antibody was obtained from Cell Signalling Technology, Inc. 
(Beverly, MA, USA). The REG1A antibody was obtained from Abcam Inc. (Cambridge, MA, USA).

Cell culture and treatments.  Human hepatoma SMMC-7721 cells were kindly donated by Professor 
Xiongzhi Wu (Tianjin Medical University Cancer Institute and Hospital, China). SMMC-7721 cells were main-
tained in DMEM culture medium supplemented with 10% FBS, 100 units/ml penicillin G, and 100 μg/ml strep-
tomycin. All cells were cultured at 37 °C in a humidified atmosphere containing 5% CO2. Cells in the exponential 
phase of growth were used for all experiments. When SMMC-7721 cells reached 80% confluency, the cells 
were then continuously exposed to 1 mg/mL, 2 mg/mL, 4 mg/mL or 8 mg/mL CKI. Subsequently, the cells were 
exposed to 0.5 mg/mL, 1 mg/mL, or 2 mg/mL and 4 mg/mL matrine, oxymatrine, oxysophocarpine, sophoridine 
or N-methylcytisine, respectively.

Cell viability assay.  Cell viability of SMMC-7721 cells was evaluated using the MTT assay. Cells were seeded 
on 96-well plates with a density of 5 × 104 cells/mL in 100 µL of medium for 24 h and then were exposed to dif-
ferent concentrations of agents for 24, 48 or 72 h. Following incubation, 10 μL of MTT (5 mg/ml) was added to 
each well. After 4 h of incubation at 37 °C, the culture medium was removed and 100 μL of dimethyl sulphoxide 
(DMSO, Sangon Biotech, Shanghai, China) was added to dissolve the formazan crystals. The absorbance was 
measured at 570 nm using a microplate reader (Infinite M200 Pro, Tecan, Switzerland), and the cell viability was 
expressed as a percentage of the value of the untreated group.

Wound-Healing Assay.  SMMC-7721 cells were seeded in six-well plates at a density of 5 × 104 cells/mL. The 
centre of each well was scratched with a sterile 10-µL pipette tip. After washing with phosphate-buffered saline, 
different concentrations of CKI (0, 1, and 2 mg/ml) were added to the wells and then were incubated for 12, 24 
or 36 h. Micrograph images were taken with a microscope at the indicated time points to observe the extent of 
wound closures.

Transwell Assay.  The Transwell assay was used to evaluate the migration inhibitory activities of CKI against 
SMMC-7721 cells. The assay was performed using a Boyden chamber with an inserted micropore membrane 
(6.5 mm in diameter, 8.0 μm pore size) in 24-well plates (Corning Inc., Corning, NY, USA). Next, 2 × 105 cells 
in 200 μL of serum-free DMEM supplemented with 0.1% FBS were placed in the upper part of each chamber, 
whereas the lower compartments were filled with 600 μL of CKI (0, 1, and 2 mg/mL, 10% FBS). After 36 h of 
incubation, non-migrating cells on the top of the membrane were removed. Thereafter, the migrated cells on the 
bottom of the membrane were fixed, stained with 0.1% crystal violet, and observed under an inverted microscope 
at 100× magnification for three independent experiments.

Sample Preparation for UHPLC.  One millilitre of CKI was diluted to 10 mL with water and was filtered 
through a micropore membrane (0.22 mm; Jinteng Corp., Tianjin, China) before use.

For the quantitative determination of the five constituents in CKI samples, an accurately weighed amount of 
each reference substance was mixed and dissolved in 10 mL of methanol to obtain a stock solution with a concen-
tration of 0.502 mg/mL for matrine, 0.494 mg/mL for oxymatrine, 0.501 mg/mL for oxysophocarpine, 0.503 mg/
mL for sophoridine, and 0.499 mg/mL for N-methylcytisine.

Ingredient identification.  Ultra-performance liquid chromatography in tandem with mass spectrometry 
(UPLC-MS) (Thermo Fisher Scientific, Runcorn, Cheshire, UK) analysis was used to assess the main ingredients 
in CKI. UHPLC was conducted in tandem with mass spectrometry using a Thermo fisher U3000 UHPLC and 
Thermo Scientific Q Exactive mass spectrometer with an ESI source and the following parameters: mobile phase 
(A) acetonitrile: 0.01 mol/L ammonium acetate (pH = 8.0) = 3:2 and (B) 0.01 mol/L ammonium acetate (pH = 
8.0); injection volume 5 µL; column temperature 35 °C, using a gradient elution mode. Run times were from 0 to 
12 min up to 8% B and from 11 to 20 min up to 27% B. The UHPLC system consisted of an Acquity UPLC HSS T3 
column (2.1 × 100 mm, 1.8 µm) (waters, USA) with a 0.3 mL/min flow rate.

Target fishing for CKI.  In our previous research13, HCC-related genes were collected from the liver can-
cer databases OncoDB.HCC15 (http://oncodb.hcc.ibms.sinica.edu.tw) and Liverome16 (http://liverome.kobic.
re.kr/index.php). The validated targets of the 4 compounds were extracted from the Herbal Ingredients’ Targets 
(HIT) Database50 (http://lifecenter.sgst.cn/hit/). The predicted targets of CKI were obtained using ChemMapper51 
(http://lilab.ecust.edu.cn/chemmapper/), an online tool for predicting targets based on 3D similarity. These tar-
gets were mapped to HCC-related genes to obtain the candidate targets of CKI.

Network construction and analysis.  The associated proteins of the targets of CKI were obtained from the 
String52 (http://string-db.org/) database. Cytoscape53 was applied to eliminate duplicate interactions and to con-
struct a protein-protein interaction network. Parameters such as Average shortest path length and Betweenness 
centrality were calculated by NetworkAnalyzer54. R value was used to determine the ranks of the 48 targets by the 
following formula:

http://oncodb.hcc.ibms.sinica.edu.tw
http://liverome.kobic.re.kr/index.php
http://liverome.kobic.re.kr/index.php
http://lifecenter.sgst.cn/hit/
http://lilab.ecust.edu.cn/chemmapper/
http://string-db.org/
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where Xi is the average shortest path length, Xj is the betweenness centrality, and R is an indicator to evaluate the 
importance of a target.

Pathway analysis.  Cytoscape plugin Reactome55 was used to enrich the possible pathways involved in the 
anti-HCC effect of CKI.

Western blot analyses.  SMMC-7721 cells (5 × 104 cells/mL) were seeded on 90 × 20-mm dishes. After 
treatment, the SMMC-7721 cells were scraped off and washed twice with cold PBS. The cells were solubilized by 
RIPA lysis buffer (Beyotime, China) containing 1% phenyl methylsulphonylfluoride (PMSF, Beyotime, China) for 
30 min on ice. Whole-cell lysates were clarified by centrifuging at 12 000 rpm for 15 min at 4 °C, and the superna-
tants were collected. Protein concentrations were determined by the BCA protein assay. Equal amounts of protein 
(50 μg) were separated by electrophoresis on 12% sodium dodecyl sulphate polyacrylamide gels and were trans-
ferred onto PVDF membranes. These membranes were soaked in 5% skimmed milk dissolved with TBST buffer 
(Tris Buffer Saline supplemented with 0.1% Tween-20) for 2 h to block nonspecific binding sites. The membranes 
were then incubated overnight at 4 °C with the primary antibodies (MMP256,57, MYC58,59, Caspase3 and REG1A). 
After washing with TBST, the membranes were incubated for 2 h at room temperature with fluorescent secondary 
antibodies. After rewashing with TBST, the membranes were scanned using a fluorescent scanner (Odyssey CLX, 
Gene Company Limited, USA).

Cell collection for NMR analysis.  All experiments included six independent replicates. Cells were har-
vested by scraping and then were rinsed with 4 mL of PBS after treatment with 4 mg/mL CKI for 24 h. The mixture 
was centrifuged at 1000 r/min for 5 min. Next, the supernatant was discarded and the cell pellet was rinsed with 
4 mL of PBS. The precipitate was then collected, immediately frozen in liquid nitrogen, and stored at −80 °C. To 
isolate extracellular metabolites, 10 mL of extracellular medium was pipetted from cells. The samples were sub-
sequently centrifuged at 1000 r/min for 10 min. The collected supernatant, which was used as the extracellular 
fraction, was immediately frozen in liquid nitrogen and stored at −80 °C.

Sample preparation for NMR analysis.  The cells and culture broth were removed from −80 °C and 
thawed at 4 °C according to the literature60 with minor adjustment. The extracellular medium was prepared for 
freeze-drying by taking 2 mL of the medium. Cell extraction for repeated freeze-thaw and ultrasonic disruption 
was conducted according to the following procedure. After repeated freeze-thawing 5 times, the cell pellets were 
kept on ice for 5 min before being re-suspended in 1 mL of ice-cold methanol/water (1/2, v/v), and ultrasonic dis-
ruption for 5 min on the ice (sonicate 5 s, stop 9 s). The supernatant was collected after centrifugation at 13000 r/
min for 10 min at 4 °C, and 1 mL of methanol aqueous solution was added to the precipitate. The above ultrasonic 
sieving was repeated and the supernatant was collected two times in 5-mL EP tubes for lyophilization.

The lyophilized powder of cells and fluids of cells were dissolved in 600 µL of phosphate buffer (0.1 M, 
KH2PO4/Na2HPO4, pH 7.4) containing 0.005% and 0.02% TSP, respectively, as well as 10% D2O. After centrifu-
gation (13,000 r/min, 4 °C, 10 min), 600 µL of supernatant was transferred into a 5-mm NMR tube for analysis.
1H-NMR Measurement.  The 1H-NMR spectrawere recorded at 298 K using a Bruker 600-MHz AVANCE 
III NMR spectrometer (Bruker Biospin, Germany) and the noesygppr1d pulse sequence for water suppression. 
The 1H-NMR spectrum for each sample consisted of 64 scans requiring 5 min of acquisition time with the fol-
lowing parameters: spectral width 12,345.7 Hz; spectral size 65,536 points; relaxation delay of 1.0 s; acquisition 
time of 2.654 s. All spectra were manually phased and baseline corrected using MestReNova software (Mestrelab 
Research, Santiago de Compostella, Spain). Chemical shifts were referenced to TSP at δ 0.00. Regions distorted 
by residual water (δ 4.5~5.0) were excluded in the subsequent analysis. Each spectrum was then segmented at 
0.01-ppm intervals across the chemical shift 0.50~9.00; each data point was normalized to the sum of its row and 
then was exported as a text file for further multivariate statistical analysis.

Multivariate pattern recognition analysis.  The normalized integral values were then subjected to mul-
tivariate data analysis using SIMCA-P 13.0 software (Umetrics, Sweden). Partial least-squares-discrimination 
analysis (PLS-DA) was performed to distribute and separate different groups in a supervised manner. Next, the 
PLS-DA model was validated by the response values of the permutation test in which the class membership was 
randomly shuffled 200 times. Additionally, another supervised pattern recognition approach—orthogonal projec-
tion to latent structures discriminant analysis (OPLS-DA)—was then performed to improve the classification of 
the different groups, as well as to screen the biomarkers. The corresponding loading, where each point represents 
a single NMR spectral region segment, was used to identify which spectral variables contributed to the separation 
of the samples on the scores plot. Variable importance in the projection (VIP) values and coefficients were also 
applied to screen the important variables.

Metabolic pathway analysis.  The potential metabolic pathway was analysed by using MetPA. Potential 
biological roles were evaluated using the MetaboAnalyst enrichment analysis tool. Metscape, the metabolic net-
work analysis and visualization tool (http://metscape.ncibi.org./)61, was used to generate the compound network 
associated with each of the differential metabolites.
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Content determination of representative metabolites.  The contents of pyruvate (PA) and glutamate 
(Glu) were determined according to the manufacturer’s protocols (Komin, Suzhou, China), which were based on 
extraction with a specific extract and then using a colour reagent for colour development.

Construction a compound-target-metabolite network.  According to the network constructed by 
MetScape, 174 key genes involved in differential metabolites were obtained. Subsequently, the potential inter-
actions between the 174 genes and 48 targets of CKI were obtained from the String database. A bio-network of 
compound-target-metabolite was constructed using Cytoscape software.

Statistical analysis.  Quantitative data were presented as means ± standard error of mean (SEM) from three 
or more independent repetitions. Student’s t test was used to test the differences between two groups, and one-way 
ANOVA followed by Dunnett post hoc test was used for statistical analysis to determine significant differences 
of three or more groups. All preprocessed NMR data were imported into the software package SIMCA-P 13.0 
(Umetrics, Sweden) for multivariate data analysis. P < 0.05 was deemed to indicate statistical significance.
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