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Congestive heart failure typically arises from cardiac myocyte
necrosis/apoptosis, associated with the pathological opening of
the mitochondrial permeability transition pore (mPTP). mPTP
opening decreases the mitochondrial membrane potential lead-
ing to the activation of Ca2�-independent phospholipase A2�
(iPLA2�) and the production of downstream toxic metabolites.
However, the array of enzymatic mediators and the exact chem-
ical mechanisms responsible for modulating myocardial mPTP
opening remain unclear. Herein, we demonstrate that human
heart failure activates specific myocardial mitochondrial phos-
pholipases that increase Ca2�-dependent production of toxic
hydroxyeicosatetraenoic acids (HETEs) and attenuate the activ-
ity of phospholipases that promote the synthesis of protective
epoxyeicosatrienoic acids (EETs). Mechanistically, HETEs acti-
vated the Ca2�-induced opening of the mPTP in failing human
myocardium, and the highly selective pharmacological blockade
of either iPLA2� or lipoxygenases attenuated mPTP opening in
failing hearts. In contrast, pharmacological inhibition of cyto-
chrome P450 epoxygenases opened the myocardial mPTP in
human heart mitochondria. Remarkably, the major mitochon-
drial phospholipase responsible for Ca2�-activated release of
arachidonic acid (AA) in mitochondria from non-failing hearts

was calcium-dependent phospholipase A2� (cPLA2�) identified
by sequential column chromatographies and activity-based pro-
tein profiling. In contrast, iPLA2� predominated in failing
human myocardium. Stable isotope kinetics revealed that in
non-failing human hearts, cPLA2� metabolically channels
arachidonic acid into EETs, whereas in failing hearts, increased
iPLA2� activity channels AA into toxic HETEs. These results
mechanistically identify the sequelae of pathological remodel-
ing of human mitochondrial phospholipases in failing myocar-
dium. This remodeling metabolically channels AA into toxic
HETEs promoting mPTP opening, which induces necrosis/apo-
ptosis leading to further progression of heart failure.

Congestive heart failure is a public health crisis of epidemic
proportions that typically results from cardiac myocyte necro-
sis/apoptosis leading to progressive hemodynamic compro-
mise (1–3). In animal models, it is generally believed that
cardiac myocyte cell death and heart failure are intimately asso-
ciated with the pathological opening of the mitochondrial per-
meability transition pore (mPTP)7 (3–5). Opening of this pore
dissipates the mitochondrial membrane potential and facili-
tates the production of toxic metabolites, the activation of
membrane potential-sensitive calcium-independent phospho-
lipase A2� (iPLA2�) (6), and the release/activation of proteins
mediating cell death-signaling programs (e.g. cytochrome c).
The resultant dropout of cardiac myocytes during heart failure
by either apoptosis or necrosis leads to the progression of heart
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failure, further hemodynamic compromise, and ultimately
death (7, 8). However, the precise chemical mechanisms,
enzymatic mediators, and molecular events responsible for
modulating the amount and duration of mPTP opening in both
animal and human myocardium remain largely undefined.

Previous studies have demonstrated that human myocar-
dium contains multiple different phospholipase activities
encoded by distinct genes (9 –11). Recently, we demonstrated
that genetic knock-out of the active site of iPLA2� (PNPLA8)
results in the attenuation of mPTP opening and that iPLA2� is
largely responsible for the calcium-dependent production of
oxidized fatty acid metabolites (e.g. eicosanoids, docosanoids,
and oxidized linoleic acid metabolites) emanating from the
mitochondrial compartment in murine hepatic and myocardial
tissues (12–14). Moreover, loss of mitochondrial transmem-
brane potential evoked by either inhibition of mitochondrial
electron transport chain complexes or prolonged calcium tran-
sients results in the further activation of iPLA2� (6). Collec-
tively, this sequence of events results in a feed-forward loop
promoting the autoamplification of mitochondrial lipid second
messenger generation. Mitochondria contain, or are associated
with, multiple different types of phospholipases in humans.
However, their molecular identity, their contributions to pro-
duction of signaling lipids, and the effects of the resultant
downstream metabolites in non-failing versus failing human
myocardium are unknown.

During heart failure in animal models, increases in mito-
chondrial calcium concentration and changes in calcium
dynamics are present resulting from alterations in sarcoplasmic
reticulum (SR)-mitochondrial subcellular architecture, patho-
logical SR calcium coupling, and reduced Ca2� sequestration
(15, 16). Because phospholipase-catalyzed arachidonic acid
(AA) release is the rate-limiting step in the generation of eico-
sanoid-derived signaling moieties, knowledge of the types of
mitochondrial phospholipases, Ca2�-mediated changes in
their activities, and metabolic fates of their downstream metab-
olites are essential in the mechanistic understanding of the
pathology resulting from the diverse array of toxic oxidized
lipids produced during human heart failure.

Recent studies have demonstrated that specific eicosanoids
may confer either protective or deleterious effects on myocar-
dial function (17–19). For example, increased levels of 14,15-
epoxyeicosatrienoic acid (14,15-EET) in murine myocardium
produced by either overexpression of the cytochrome P450
enzyme CYP2J3 or by genetic knock-out of soluble epoxide
hydrolase resulted in decreased mPTP opening probability,
improved preservation of mitochondrial membrane potential
(��mt), and attenuated damage after ischemia/reperfusion
(17, 20, 21). The diverse effects of prostaglandin E2 (PGE2), a
cyclooxygenase-2 product, on cardiac function have been doc-
umented, which include the reduction of cardiac ischemia/rep-
erfusion injury and a contribution to myocardial hypertrophy
via prostaglandin E2 receptor signaling (22, 23). In contrast,
12-HETE and 20-HETE induce increases in mitochondrial cal-
cium concentration and myocardial infarct size during ische-
mia/reperfusion in mice (24 –26).

Previously, we identified the prominent production of eico-
sanoids (including HETEs, EETs, and prostaglandins) in calci-

um-activated murine heart tissue and mitochondria that were
markedly reduced by genetic ablation of iPLA2� (13, 27).
Accordingly, we hypothesized that abrupt activation of mito-
chondrial phospholipases by calcium uptake into the mito-
chondria in conjunction with the loss of membrane potential
would result in the pathological activation of iPLA2� leading to
the generation of a complex array of eicosanoid metabolites and
fatty acids that contribute to the opening of the mPTP and
progression of human heart failure. Here, we demonstrate the
dramatic increase in calcium-activated HETE production at the
expense of cardioprotective EETs in failing human hearts in
comparison with non-failing human myocardium. These
changes collectively result in the increased sensitivity of mito-
chondria to calcium-induced mPTP opening and further depo-
larization leading to cardiac myocyte damage. Furthermore, we
present primary evidence of metabolic channeling of AA into
discrete eicosanoid products through the remodeling of mito-
chondrial phospholipase activities from cPLA2� in non-failing
human myocardium to iPLA2� during heart failure. Collec-
tively, this study mechanistically identifies the pathological
remodeling of cardiac phospholipases and their downstream
products resulting from altered metabolic channeling as a prin-
cipal mechanism increasing lipid-mediated mPTP opening
leading to mitochondrial dysfunction and the progression of
human heart failure.

Results

Remodeling of human mitochondrial eicosanoid production in
non-failing versus failing human myocardium

To assess whether alterations in eicosanoid molecular spe-
cies are present in failing versus non-failing human heart mito-
chondria, we incubated mitochondria from non-failing or fail-
ing human myocardium in the absence or presence of calcium
ion as described under “Experimental procedures.” Reaction
products were identified and quantified using charge-switch
derivatization with LC-MS/MS (14, 28) and selected reaction
monitoring with HRAM (high resolution accurate mass) mass
spectrometry of product ions as reported previously (14).
Intriguingly, mitochondria (and their tethered/associated
membranes) prepared from non-failing human myocardium
exhibited a substantial increase in the initial rate of produc-
tion of a wide range of eicosanoid molecular species after
calcium challenge, including cytoprotective EETs (Fig. 1,
A–D). In sharp contrast, similar calcium challenge of mito-
chondria from failing human myocardium produced robust
increases in multiple lipoxygenase metabolites, including 5-,
8-, 11-, 12-, and 15-HETEs. Critically, in failing myocardium,
calcium stimulation did not result in significant increases in
salutary 14,15-EET production (Fig. 1, A and B), although
the enzymes to catalyze the oxidation of released AA to
14,15-EET were clearly present in failing myocardium (see
below). Moreover, large Ca2�-dependent increases in pro-
inflammatory PGE2 were manifest in conjunction with
decreases in cardioprotective prostacyclins (29 –31) (mea-
sured as their stable end products, 6-keto-PGF1�) in mito-
chondria from failing hearts.
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Failing human myocardium is more susceptible to
calcium-induced opening of mPTP in comparison with
non-failing human myocardium

Despite the importance of the mPTP channel in mediating
cardiac myocyte cell death programs, to the best of our knowl-
edge, no previous investigations have explored alterations in
mPTP opening in non-failing versus failing human hearts.
Accordingly, we incubated isolated human heart mitochondria
with calcium ion and measured mitochondrial swelling indica-
tive of mPTP opening. Although high-resolution respirometry
revealed that oxidative phosphorylation of mitochondria iso-
lated from non-failing and failing hearts was not significantly
different (Fig. S1), calcium challenge of mitochondria dramat-
ically increased swelling of mitochondria from failing hearts in
comparison with non-failing hearts (Fig. 2A). Inclusion of inor-
ganic phosphate (Pi), a potent inducer of mPTP opening in
animal models, only moderately increased swelling of human
myocardial mitochondria without affecting the relative sensi-
tivity of non-failing versus failing heart mitochondria to calci-
um-induced mPTP opening (Fig. 2B). The expression levels of
known transition pore regulators (32, 33) (e.g. adenine nucleo-

tide translocase (ANT), voltage-dependent anion channel
(VDAC), and cyclophilin D (CypD)) were not different in non-
failing versus failing hearts as assessed by Western blot analyses
(Fig. 2C). Thus, the observed susceptibility of failing heart mito-
chondria to calcium-induced swelling was not due to altera-
tions in the content of pore-regulating proteins, but rather to
their maladaptive regulation by different modulators in non-
failing versus failing human hearts.

HETEs activate the calcium-induced mitochondrial
permeability transition pore opening

To determine whether the dramatic increase in HETE pro-
duction was mechanistically responsible for the increase in sen-
sitivity to mitochondrial swelling, mitochondria from failing
human myocardium were treated with specific inhibitors of
either cyclooxygenases (COX), lipoxygenases (LOX), or cyto-
chrome P450 monooxygenases (CYP450). Remarkably, inhibi-
tion of LOX activity with baicalein (Baic) completely abolished
calcium-activated mPTP opening of failing heart mitochon-
dria, whereas CYP450 inhibition with MSPPOH dramatically
exacerbated swelling (Fig. 3A). Because MSPPOH-enhanced
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Figure 1. Mass spectrometric analysis and quantitation of eicosanoids generated by non-failing and failing human heart mitochondria stimulated by
calcium. Myocardial mitochondria were isolated from non-failing (control) and failing hearts by differential centrifugation as described under “Experimental
procedures” and then sonicated in HEPES buffer (10 mM HEPES (pH 7.4) containing 10% glycerol and 1 mM DTT). Mitochondrial homogenates were incubated
in the absence of Ca2� (EGTA) or the presence of 200 �M free Ca2� at 35 °C for 20 min. The reaction was stopped by addition of methanol (20% v/v final
concentration) at 4 °C and diluted with water after addition of internal standards (250 pg each of TXB2-d4, PGE2-d4, and 12-HETE-d8). Eicosanoids were
immediately isolated by solid-phase extraction, derivatized with AMPP, and analyzed by HRAM mass spectrometry. The resultant production of HETEs (A), EETs
(B), and Prostaglandins (PGs) (C) is shown with the average � S.E. (n � 6 for non-failing control hearts and n � 6 for failing hearts). *, p � 0.05, and **, p � 0.005
for control (non-failing) versus failing hearts. ‡, p � 0.005, and §, p � 0.05 for EGTA versus Ca2�. A representative LC-MS spectrum from non-failing control heart
mitochondria in the absence (EGTA) or presence of Ca2� is displayed in D.
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mitochondrial swelling appears inhibitable with cyclosporine
A, inhibition of CYP450 likely facilitate cyclophilin D-depen-
dent mPTP opening (Fig. 3B). Inhibition of COX enzymes with
ibuprofen (Ibu) did not affect human failing heart mitochon-
drial swelling. Similarly, mPTP opening of non-failing heart
mitochondria was dramatically promoted by preincubation
with MSPPOH, although the induction time for mitochondrial
swelling was significantly longer than that of failing heart (Fig.
3C). These distinct effects resulting from selective inhibition of
discrete oxygenases demonstrate the prominent role of signal-
ing eicosanoids in the enhancement or attenuation of mPTP
opening in failing human myocardium. Mitochondrial swelling
data with oxygenase-specific inhibitors are consistent with the
HRAM mass spectrometric analyses of mitochondria demon-
strating higher HETE levels in mitochondria from failing hearts
accompanied by decreased calcium-stimulated EET produc-

tion in comparison with non-failing hearts (Fig. 1). Importantly,
exogenous provision of selected HETEs reversed the protection
from mPTP opening conveyed by baicalein treatment (Fig. 3D).
Although multiple HETEs were promoters of mitochondrial
swelling (Fig. 3D), the lipoxygenase products 12-HETE and
15-HETE are likely of greater pathophysiological significance
because they are prominent in human myocardium, and Ca2�

stimulation generated substantially greater amounts of these
eicosanoids in failing human heart mitochondria (Fig. 1). This
notion is further supported by the observation of the inability of
CYP450 hydroxylase(s) to generate effective amounts of
20-HETE after calcium stimulation in either non-failing or fail-
ing human myocardial mitochondria (Fig. 1).

Oxidation of exogenously added deuterated arachidonic acid
versus endogenously produced arachidonic acid in
mitochondria from non-failing and failing myocardium

To determine whether alterations in the enzymic activities of
AA oxidases in non-failing versus failing heart mitochondria
were responsible for the differences in the profiles of eicosanoid
products, we compared their rate of production using deuter-
ated isotopes of arachidonic acid examined under initial rate
conditions. Mitochondrial sonicates from non-failing or failing
human hearts were incubated with exogenous deuterated
arachidonic acid (d8-AA) in the absence or presence of Ca2�.
The results demonstrated minimal differences in deuterated
oxylipin production using d8-AA in the presence of EGTA or
Ca

2�

treatments in either non-failing and failing myocardial
mitochondria (Fig. 4). Moreover, these results demonstrate
that AA availability to the downstream oxidative enzymes was
rate-determining in the synthesis of the measured eicosanoids
because if exogenously added d8-AA was present, no substan-
tive differences in deuterated eicosanoid production in non-
failing versus failing hearts occurred. In stark contrast, non-
labeled HETE (H�) production from endogenous AA in failing
heart mitochondria, even in the presence of exogenous d8-AA,
was markedly higher than that in non-failing heart mitochon-
dria (Fig. 4A). The production of virtually all non-labeled salu-
tary EETs in failing human heart mitochondria was drastically
reduced in comparison with non-failing heart mitochondria.
However, substantive amounts of d8-labeled EETs (especially
14,15-EET) were readily produced when exogenous d8-AA was
present. These results demonstrate that the enzymes for EET
production were present in failing myocardium, but the en-
dogenously generated AA upon calcium challenge could not
be metabolically channeled to EET production (Fig. 4B).
Cyclooxygenase-mediated prostaglandin E2 (PGE2) production
using endogenous AA was Ca2�-dependent, and the rate of
production of both thromboxane and prostacyclin was dramat-
ically reduced in mitochondria from failing hearts (Fig. 4C).
Mitochondrial preparations from failing human hearts possess
less capacity for the production of prostacyclins (e.g. 6-keto-
PGF1�), even after the addition of exogenous substrate, dem-
onstrating a deficiency of prostacyclin synthase activity and/or
failure of metabolic channeling of the released AA to reach its
thromboxane synthase target (Fig. 4C). Collectively, these
results demonstrate the importance of calcium for the produc-
tion of eicosanoid products, the tight metabolic regulation of
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Figure 2. Increased sensitivity of mitochondria from failing human myo-
cardium to calcium-induced swelling in comparison with non-failing
mitochondria. Mitochondria were isolated from non-failing and failing
hearts by differential centrifugation and resuspended in Mitochondrial Swell-
ing Buffer (3 mM HEPES (pH 7.4), containing 0.23 M mannitol, 0.07 M sucrose, 5
mM succinate, and 2.5 �M rotenone) in the absence (n � 14 for non-failing
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was initiated by addition of 70 �M Ca2� and monitored by the decrease in
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mitochondrial phospholipases in non-failing hearts, and the
differential metabolic channeling of released AA in non-failing
versus failing human myocardium.

Mitochondrial-associated phospholipases A2 in non-failing
versus failing human myocardium

The remarkable differences in the rates of eicosanoid synthe-
sis in non-failing versus failing hearts led us to further investi-
gate the Ca2� dependence and sensitivity of the mitochondrial
phospholipase activity responsible for the release of the AA
precursor for downstream oxygenation. Incubation of non-fail-
ing heart mitochondria with Ca2� resulted in the dramatic and
selective release of AA with only modest increases in other sat-
urated and unsaturated fatty acids (Fig. 5 and Fig. S2). Concom-
itant with AA release, only lysophosphatidylcholines (LPCs)
containing 16:0-diacyl or plasmenyl 16:0- (P16:0-) vinyl ether

linkages were significantly increased upon calcium challenge.
These results suggest that a highly active Ca2�-stimulated
phospholipase preferentially hydrolyzes arachidonoylated
phosphatidylcholine and plasmenylcholine (PC) molecular
species present in the non-failing human heart (Fig. 5). In con-
trast, mitochondria from failing hearts demonstrated a mark-
edly reduced capacity to release AA in response to calcium
challenge with substantially less AA selectivity and attenuated
LPC production (Fig. 5 and Fig. S2).

Next, we sought to identify the major heart mitochondrial
PLA2 enzyme(s) responsible for the release of AA from human
mitochondria from non-failing and failing human myocar-
dium. The results demonstrated that �80% of Ca2�-activated
AA release and LPC production containing either 16:0 fatty acyl
or plasmenyl residue in non-failing heart mitochondria were
inhibited by a non-selective serine hydrolase inhibitor, methyl
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Figure 3. Differential effects of eicosanoid molecular species on mPTP opening. A, isolated mitochondria from failing hearts (n � 6) were preincubated for
10 min with 10 �M baic, 20 �M Ibu, or 40 �M MSPPOH for selective inhibition of lipoxygenase, cyclooxygenase, or cytochrome P450 enzymes, respectively. After
preincubation, mitochondrial swelling was initiated by addition of Ca2�. **, p � 10�5, and ¶, p � 10�6 when compared with Ca2� alone (Ctl). B, intact
mitochondria from failing hearts were preincubated with 1 �M cyclosporine A (CsA) with or without 40 �M MSPPOH for 10 min at 25 °C. Mitochondrial swelling
was monitored by addition of Ca2� (left panel). The final �A540 end-point measurements at 30 min are presented (right panel, n � 4 – 8). C, isolated mitochondria
from non-failing control (n � 5) and failing hearts (n � 7) were preincubated with or without 40 �M MSPPOH for 10 min at 25 °C for inhibition of cytochrome
P450(s). Mitochondrial swelling was monitored after addition of Ca2� (left panel). The final �A540 end point measurements at 20 and 30 min are presented in the
middle and right panels, respectively (n � 4 – 8). §, p � 0.005. N.S., not significant. D, isolated mitochondria from failing hearts (n � 4) were preincubated for 10
min with 10 �M baic in the absence or presence of either 5-, 12-, 15-, or 20-HETE (4 �M final concentrations). Mitochondrial swelling was initiated by addition
of Ca2�. Representative tracings for mitochondrial swelling and the absorbance decreases at 540 nm after 30 min of incubation are presented. *, p � 0.05, and
**, p � 0.0005.
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arachidonyl fluorophosphonate (MAFP) but not by either (S)-
BEL ((S)-bromoenol lactone, a selective calcium-independent
phospholipase A2� inhibitor), (R)-BEL (a selective iPLA2�
inhibitor), Pyr (pyrrolidine derivative, a cPLA2�-specific inhib-
itor), or AACOCF3 (arachidonyl trifluoromethyl ketone, a
generic phospholipase inhibitor) (Fig. 6, A and B). In stark con-
trast, 50% of Ca2�-dependent AA release in failing heart mito-
chondria was inhibited by (R)-BEL (Fig. 6C) with lesser inhibi-
tion with (S)-BEL, indicating both the presence and increased
activity of iPLA2� in the failing heart. Subsequent highly sensi-
tive Western analyses demonstrated that the calcium-indepen-
dent phospholipase A2� (iPLA2�), calcium-dependent phos-
pholipase A2� (cPLA2�), and cPLA2� were not detectable in
non-failing heart mitochondria (data not shown), whereas the
level of a 74-kDa iPLA2� isoform associated with mitochondria
was moderately increased in failing hearts (Fig. S3). Consistent
with the results of PLA2 activity assay, mPTP opening in failing
myocardial mitochondria was substantially inhibited by the
iPLA2� inhibitor (R)-BEL, whereas (S)-BEL was less effective.
Furthermore, a cPLA2�-specific inhibitor did not affect the cal-
cium-induced opening of the mPTP (Fig. 6D). Collectively,
these data indicate that a loss of the majority of mitochondrial
calcium-dependent PLA2 activity occurs in failing human
heart resulting in a decline of protective downstream eico-
sanoids (e.g. CYP450 products and prostacyclin), whereas
iPLA2� emerges as the predominant mitochondrial phos-
pholipase activity in failing myocardium leading to the pro-
duction of toxic fatty acids (e.g. palmitic acid by its sn-1 acyl
chain specificity (11)) and HETEs predisposing to mPTP
opening during heart failure.

Identification of the predominant calcium-activated
phospholipase activity in non-failing human mitochondria as
cPLA2� by sequential column chromatographies followed by
activity-based protein profiling

In aggregate, these results suggested the presence of a previ-
ously unidentified phospholipase activity in human myocardial
mitochondria that is calcium-sensitive and AA-selective and is
present in either greater abundance or possesses a higher spe-
cific activity in non-failing relative to failing myocardium.
These intriguing observations led us on a campaign to identify
this unknown mitochondrial PLA2 in non-failing human
hearts. Our strategy employed protein extraction at high pH
for solubilization and sequential column chromatographies,
including DEAE, chromatofocusing (Mono P), and Mono Q
FPLC (Fig. 7A, Fig. S4, and Table 1) followed by activity-based
protein profiling using a serine hydrolase inhibitor as probe.
The highly purified active fractions collected from the final
Mono Q column were loaded onto an SDS-polyacrylamide gel,
silver-stained, and either trypsinized in situ or utilized for activ-
ity-based protein profiling with desthiobiotin-fluorophospho-
nate (Fig. 7B). Trypsinolysis of the active protein from the
Mono Q column and analysis of the resultant peptides by ESI-
nano LC-MS/MS identified multiple signature fragmentation
peptides of cPLA2� (i.e. 526YGAYVPTELFGSELFMGR543 and
553ICYLQGMWGSAFATSLDEIFLKpTAGpSGLSFLEW-
pYR587) (Fig. 8). Furthermore, the peptides from trypsinolysis
of SDS-polyacrylamide gel (red dotted box in Fig. 7) were also
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Figure 4. Deuterated (d8-) and non-labeled (H-) eicosanoid production in
the presence of exogenous d8-arachidonic acid in non-failing control
and failing human heart mitochondria. Isolated mitochondria (1 mg) were
placed in 10 mM HEPES buffer (pH 7.4) containing 10% glycerol and 1 mM DTT,
and homogenized by sonication on ice. Mitochondrial phospholipase activity
was activated by addition of either 2 mM EGTA or 0.2 mM free Ca2� in the
presence of 8 nmol of d8-AA at 35 °C. After 20 min of incubation, the reaction
was terminated by addition of methanol to 20% (v/v) final concentration at
4 °C. Eicosanoids were immediately extracted by solid phase extraction with
internal standards, derivatized with AMPP, and analyzed by high-resolution
high mass accuracy mass spectrometry. The quantities of deuterated (D8-)
and non-labeled (H-) eicosanoids, including HETEs (A), EETs (B), and prosta-
glandins (C), were determined by calculations based on either internal stan-
dards (250 pg each of TXB2-d4 and PGE2-d4) or by calibration utilizing an
external standard (250 pg of 12-HETE-d8) and are presented as the average �
S.E. (n � 4). §, p � 0.05, and §§, p � 0.01. *, p � 0.05, and **, p � 0.005 when
compared with EGTA incubations.
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identified as cPLA2� fragmentation (i.e. 191GDGpTAPREEYG-
SRQLQLAVPGAYEK215 and 1MLWALWPRWLADK13) (Fig.
S5). These results clearly indicated that cPLA2� was the
unknown mitochondrial phospholipase in non-failing myocar-
dium responsible for the production of the majority of arachi-
donate release (Fig. 8). Although the protein that co-chromato-
graphed with the PLA2 activity was not readily detectable by
silver staining due to its high specific activity and low abun-
dance, the power of activity-based protein profiling with des-
thiobiotin labeling followed by biotin immunoblotting con-
firmed the identity of cPLA2� as the major PLA2 in non-failing
human myocardial mitochondria.

Discussion

Myocardial mitochondria undergo marked changes in size,
lipid content, lipid second messenger generation, and bioener-
getics in animal models after prolonged opening of the mPTP
by various pathological stimuli (e.g. ischemia/reperfusion).
These changes result from maladaptive calcium dynamics, the
dissipation of membrane potential (��mt), and the increase uti-
lization of ketone bodies that feed into the tricarboxylic acid
cycle at succinate likely increasing the generation of reactive
oxygen species (7, 34 –36). However, previous reports as well as
results from this study did not demonstrate alterations in mito-
chondrial oxygen consumption, respiratory coupling, or differ-
ent responses to various respiratory agonists and antagonists in
mitochondria from failing human hearts (37, 38). Accordingly,
the conclusions from those studies suggested that alterations in
mitochondrial function were not responsible for the progres-
sion of human heart failure. However, no previous work has
investigated alterations in human mitochondrial lipid content,
lipid second messenger generation, or the identity and changes
in the enzymic mediators responsible for maladaptive lipid sig-
naling upon pathological stimuli (e.g. calcium overload and
decreased membrane potential) manifest in heart failure. The
present results demonstrate the following: 1) the profound
remodeling of Ca2�-dependent mitochondrial phospholipase

activities during heart failure from cPLA2� to iPLA2�; 2) the
dramatic alterations in lipid second messenger production in
failing hearts resulting in the generation of toxic HETEs and
decreases in salutary EETs; 3) the differential metabolic chan-
neling of AA released by cPLA2� in comparison with iPLA2� in
non-failing versus failing myocardial mitochondria; and 4) the
ability of HETEs to promote Ca2�-induced mPTP opening fur-
ther activating iPLA2� and its production of toxic HETEs in an
autoamplification process (Fig. 9). Collectively, these results are
the first to identify human mitochondrial Ca2�-activated phos-
pholipases as mediators of alterations in the metabolic channel-
ing of AA to discrete oxidized metabolites during heart failure
and the bidirectional roles of oxidized arachidonic acid in either
the protection or damage to human mitochondria challenged
by calcium.

Alterations in the amplitude and duration of calcium tran-
sients in failing myocardium/myocytes have been found to be
elevated during diastole, decreased during systole, and pro-
longed during diastolic relaxation in animal models (39, 40).
The delay in the relaxation phase has been correlated with defi-
cient calcium uptake due to decreases in sarcoplasmic reticu-
lum Ca2�-ATPase (SERCA2a) expression and activity as well as
decreased phosphorylation of phospholamban during heart
failure (39, 40). The resultant alterations in calcium uptake and
delayed sequestration during heart failure likely predispose
heart mitochondria to mPTP opening through Ca2� activation
of mitochondrial phospholipase(s) and subsequent production
of cardiotoxic lipid second messengers. Consistent with this
notion, our recent findings have demonstrated that murine
myocardial mitochondrial iPLA2� is activated by calcium and
that iPLA2� loss of function in cardiac myocytes markedly
attenuates Ca2�-induced mPTP opening, generation of proin-
flammatory oxidized lipid metabolites (e.g. eicosanoids, doco-
sanoids, and oxidized linoleic acid metabolites), and membrane
potential dissipation resulting in reduction of infarct size dur-
ing cardiac I/R in mice (13, 27).
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Figure 5. Ca2�-dependent activation of phospholipase(s) in non-failing human heart mitochondria releases arachidonic acid, which is dramatically
attenuated in failing human heart mitochondria. Isolated mitochondria from human non-failing control (n � 7) and failing (n � 9) hearts were placed in 10
mM HEPES buffer (pH 7.4) containing 10% glycerol and 1 mM DTT, and homogenized by sonication on ice. Activation of phospholipase(s) was measured
following the addition of either 2 mM EGTA or 0.6 mM free Ca2� at 35 °C. After 10 min of incubation, the reaction was terminated by addition of 2 ml of
chloroform/methanol (1:1) in the presence of internal standards (d4-16:0-fatty acid, 17:0-LPC) followed by phase separation. Extracted fatty acid (A) and LPC (B)
molecular species were identified and quantified in the negative and positive ion modes, respectively, utilizing a mass spectrometer. §, p � 0.001; **, p � 0.005,
and ¶, p � 10�5 when compared with EGTA treatment. C, mitochondrial homogenates obtained from non-failing (control, n � 5) and failing (n � 5) hearts were
incubated with 0 (2 mM EGTA), 5, 15, 75, 180, and 600 �M free Ca2� for 10 min at 35 °C. AA was quantified by mass spectrometry. *, p � 0.05, and **, p � 0.005
when compared with non-failing controls.
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The cardioprotective effects of CYP450 products and the
toxic effects of certain HETEs produced by both CYP450 and
LOX enzymes have been studied in animal models of heart
failure. For example, EETs and a soluble epoxide hydrolase
inhibitor have been demonstrated to reduce infract size dur-
ing I/R and improve cardiac function by preventing cardiac
fibrosis (20, 41, 42). In contrast, cardiac overexpression of
12/15-LOX was reported to result in systolic dysfunction,
inflammation, cardiac fibrosis, and macrophage infiltration
(43, 44).

The results of this study identify dramatic increases in both
the rate of production and steady-state amounts of toxic HETEs
in mitochondria from failing human myocardium. As far as we
are aware, this study is the first to demonstrate the prominent
roles of HETEs in regulating mPTP opening in either experi-

mental animals or in human myocardium after calcium chal-
lenge. Our results obtained by utilizing selective pharmacolog-
ical inhibitors suggest the intriguing possibility that the
sensitivity of failing myocardium to stress and its predisposition
to necrosis/apoptosis is increased by the up-regulation of Ca2�-
activated phospholipase-initiated HETE production at the
expense of salutary EETs.

A completely unanticipated finding in this study is the
remodeling of mitochondrial phospholipases during heart fail-
ure. It was originally thought that AA precursor release for sub-
sequent eicosanoid production in human hearts would be det-
rimental to cardiac function on multiple levels, including lethal
arrhythmias, inflammation, and hemodynamic performance.
However, the results of initial rate analyses using stable isotopes
in conjunction with HRAM mass spectrometry indicate that
the generation of endogenous AA by mitochondrial phospho-
lipase(s) and the resultant downstream eicosanoid metabolites
in non-failing hearts are remarkably different from those in
human failing hearts. Accordingly, it became important to
identify the salutary mitochondrial phospholipase(s) in non-
failing hearts. Through sequential chromatographies in con-
junction with activity-based protein profiling and high mass
accuracy proteomics (45, 46), we quite unexpectedly identified
the predominant phospholipase activity associated with non-
failing human heart mitochondria as cPLA2�. In stark contrast,
the predominant mitochondrial phospholipase activity in fail-
ing hearts was catalyzed by iPLA2� generating toxic HETEs
which, in combination with a prominent decrease in protective
EETs, likely results in alterations in surface charge and potential
in the mitochondrial membrane (27, 47). Moreover, previous
studies by our group reported the regiospecific PLA1 activity of
iPLA2� with phospholipids containing polyunsaturated fatty
acids at the sn-2 position. This results in palmitate release in the
plane of the inner membrane. Palmitate has previously been
shown to be a potent activator of mPTP opening that, when
generated in the plane of the inner membrane, could rapidly
diffuse laterally to amplify mPTP opening (11, 27, 48). Thus, a
single enzyme, iPLA2�, has dual regulating pathways for open-
ing of the mPTP, each of which are dependent upon the gener-
ation of lipid-signaling molecules (e.g. palmitate and oxidized
PUFAs). Furthermore, these results identify inhibition of
iPLA2� as a high value pharmacological target to prevent the
progression of heart failure by attenuating cardiac myocyte
dropout from necrosis and apoptosis.

A second unexpected outcome of this study is the demon-
stration that AA generated in human myocardial mitochondria
is not due to cPLA2�, which is considered to be the canonical
pathway for AA generation as reported in numerous other
studies. Instead, AA release in mitochondria from non-failing
human myocardium is largely the result of cPLA2� that is under
tight control to release AA that is channeled into the produc-
tion of cardiac protective metabolites. These findings are par-
ticularly relevant considering that mitochondria represent 30%
of myocardial volume, and human mitochondrial phospholip-
ids contain large amounts of esterified AA, thereby emphasiz-
ing the important roles of mitochondrial phospholipases in
human heart function during health and disease. Although
cPLA2� from mouse has been cloned (49, 50), its primary struc-
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Figure 6. Pharmacological inhibition of PLA2 activities differentiates
non-failing myocardial mitochondrial PLA2s from those present in fail-
ing human heart. Isolated mitochondria from human non-failing control
(n � 5) (A and B) and failing hearts (n � 8) (C) were placed in 10 mM HEPES
buffer (pH 7.4) containing 10% glycerol and 1 mM DTT and homogenized by
sonication on ice. Mitochondrial homogenates were preincubated with 10
�M (S)-BEL, 10 �M (R)-BEL, 2 �M Pyr, or 10 �M MAFP for 10 min or with 25 �M

AACOCF3 for 30 min at 25 °C. Mitochondrial phospholipase reactions were
initiated by addition of 2 mM EGTA or 0.6 mM Ca2� at 35 °C. After 10 min of
incubation, the reactions were terminated by addition of chloroform/metha-
nol (1:1, v/v). The lipid products including AA, 16:0-LPC, and 16:0 plasmenyl
LPC (P16:0 LPC) were extracted by a modified Bligh-Dyer method in the pres-
ence of lipid internal standards and quantified by mass spectrometry. ¶, p �
10�5 in A when compared with Ca2� treatment. *, p � 0.01, and **, p � 0.001
in B. *, p � 0.05 in C when compared with Ca2�-activated AA release. D, intact
mitochondria isolated from human failing hearts (n � 9) were placed in swell-
ing buffer and preincubated with vehicle alone, 10 �M (S)-BEL, 10 �M (R)-BEL,
or 2 �M Pyr for 10 min at 25 °C. Mitochondrial swelling was initiated by addi-
tion of 10 �M EGTA (�Ca2�) or 70 �M Ca2�. Final decreases in absorbance at
540 nm indicative of mPTP opening after 30 min of incubation are shown as
the mean � S.E. *, p � 0.05, and **, p � 0.01 when compared with Ca2�-
induced mitochondrial swelling.
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ture is substantially different (only 73% homology to the human
isoform) and there have not been any studies published to the
best of our knowledge on human cPLA2�. Critically, failing
myocardium has a deficiency in generating or directing the
cPLA2�-mediated release of arachidonic acid to the synthesis of

beneficial eicosanoid metabolites. Furthermore, these results
show that the necessary oxygenase enzymes for conversion of
AA to salutary eicosanoids products are present in failing
human myocardium, but that they cannot be accessed by AA
release from phospholipases active in failing human hearts. We
note that cPLA2� has not been previously reported in human
myocardium nor has its utility in the production of salutary
eicosanoids been recognized.

Collectively, this study demonstrates the profound remodel-
ing of mitochondrial phospholipase activities and metabolic
channeling of arachidonic acid in non-failing versus failing
human myocardium resulting in dramatic alterations in
eicosanoid second messenger generation and metabolite
profiles in failing hearts. Accordingly, myocardial phospho-
lipases are prime targets for pharmacological intervention
because they likely initiate a series of cellular events that
collectively conspire to accelerate the progression of human
heart failure. Considering the activation of iPLA2� mediated
by calcium or membrane potential and its resultant produc-
tion of toxic HETEs, which open the mPTP, future studies
should target the prevention of the activation of human
myocardial iPLA2� and/or the generation of its detrimental
downstream toxic products.
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fraction was collected by ultracentrifugation at 100,000 	 g. Next, the mitochondrial extract was applied to sequential DEAE and chromatofocusing Mono P
columns as described under “Experimental procedures” (Fig. S4). Fractions with phospholipase A2 activity (identified using [14C]PAPC as substrate) were
collected at each chromatographic step for high-resolution separation utilizing a Mono Q FPLC column. A, elution profile of the identified PLA2 activity
following Mono Q chromatography as monitored by UV absorbance (280 nm) and release of [14C]arachidonic acid from [14C]PAPC. Active fractions from the
Mono Q FPLC column were resolved by SDS-PAGE and visualized by silver staining (B) or were incubated with desthiobiotin-fluorophosphonate for labeling of
serine hydrolases prior to separation by SDS-PAGE and subsequent Western blot analysis to visualize resultant biotinylated proteins (C). A protein band was
identified in which the intensity of labeling by desthiobiotin-fluorophosphonate correlated well with the observed PLA2 catalytic activity in each fraction
(fractions 25–27 in the red dotted box in B). Hsp70, 70-kDa heat shock protein; MCAD, medium-chain acyl-CoA dehydrogenase; SCAD, short-chain acyl-CoA
dehydrogenase.

Table 1
Purification table for the predominant human mitochondrial phos-
pholipase A2

Myocardial mitochondria (200 mg) were isolated from human non-failing human
heart, resuspended in 20 mM Na2CO3 buffer (pH 11.4, containing 10% glycerol, 2
mM EGTA, and 2 mM EDTA), and homogenized by brief sonication. Phospholipase
A2 activity in the supernatant after ultracentrifugation was purified by multiple
chromatographic steps, including DEAE, Mono P chromatofocusing, and Mono Q
FPLC through following the release of [14C]AA from [14C]PAPC substrate. It should
be noted that the initial yield of crude homogenates assigned as 100% is certainly
underestimated due to substantial isotope dilution of the radioactive substrate by
endogenous lipids present in the mitochondrial homogenate. The amount of pro-
tein in the active fractions from each chromatographic step was determined by a
Bradford protein assay with BSA as standard. The details for each protein purifica-
tion step are described under “Experimental procedures.”

Mitochondria
(200 mg)

Total
protein

Total
activity

Specific
activity

Purification Yield

mg nmol/min nmol/min�mg -fold %
Crude homogenates 200 0.94 0.0047 1 100
pH 11.4 extraction 62 0.53 0.0085 1.8 53
DEAE 6.8 2.9 0.43 91 306
Mono P 0.5 1.3 2.7 510 138
Mono Q 0.018 1.6 87 18,596 170
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Experimental procedures

Reagents

Ibuprofen, baicalein, MSPPOH, AACOCF3, BEL, MAFP,
5-HETE, 12-HETE, 15-HETE, 20-HETE, arachidonic acid,
d8-arachidonic acid, TXB2-d4, PGE2-d4, and 12-HETE-d8 were
purchased from Cayman Chemical. N-((2S,4R)-4-(Biphenyl-
2-ylmethyl-isobutyl-amino)-1-[2-(2,4-difluorobenzoyl)-ben-
zoyl]-pyrrolidin-2-ylmethyl)-3-[4-(2,4-dioxothiazolidin-
5-ylidenemethyl)-phenyl]acrylamide (cPLA2� inhibitor, a
pyrrolidine derivative) was obtained from EMD Millipore. Des-
thiobiotin-fluorophosphonate was purchased from Thermo
Fisher Scientific. Lipid internal standards, including 17:0-LPC
and d4-16:0-fatty acid, were purchased from Avanti Polar Lip-

ids, Inc., and Cambridge Isotope Laboratories, Inc. A rabbit
polyclonal antibody directed against human iPLA2� was gener-
ated in our laboratory as described previously (12). Antibodies
against biotin, VDAC, ANT, and CypD were obtained from
Santa Cruz Biotechnology. Unless otherwise indicated, all re-
agents for chromatographic protein purification, proteomic
analysis, and mitochondrial studies were obtained from Sigma
or Thermo Fisher Scientific.

Collection of human non-failing and failing heart tissue

All human tissue was collected with the written informed
consent received from participants as a part of an Institu-
tional Review Board- (IRB)approved protocol at Washington
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Figure 8. Identification of the purified human myocardial mitochondrial PLA2 as cPLA2� by mass spectrometric proteomic analysis. Active fractions
from the Mono Q FPLC column (Fig. 7) were trypsinized, and the resultant peptides were analyzed by mass spectrometry (NanoLC-MS/MS) utilizing a protein
sequence database using the SEQUEST algorithm. An excellent correlation between observed and predicted b and y ions for the tryptic peptides correspond-
ing to residues 526 –543 (A) and 553–587 (B) of human cPLA2� was obtained. Interestingly, multiple phosphorylated residues were identified in the 553–587
peptide. p, phosphorylation; #, oxidation.
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University School of Medicine. Clinical variables from a vari-
ety of fields were collected on each heart failure patient by
the clinical heart failure and heart transplant service as a part
of a separate IRB-approved protocol. Human heart tissue
was obtained from Mid-America Transplant (St. Louis, MO)
and the Washington University Translational Cardiovascu-
lar Tissue Core. Tissue from the left ventricular apex of fail-
ing human hearts was collected at the time of ventricular
assist device (VAD) implantation. Tissue from the left ven-
tricle and left ventricular apex of non-failing human hearts
was obtained from organ donors having a heart deemed
unsuitable for transplantation due to donor age, epicardial
(non-occlusive) coronary vascular disease, or high risk
behavioral profile. All tissue was trimmed of excess fat and
washed in cold phosphate-buffered saline and then placed in
ice-cold mitochondrial isolation buffer or freeze-clamped at
the temperature of liquid nitrogen for later mass spectral and
metabolic analyses.

Isolation of human heart mitochondria

Human heart tissue from non-failing and VAD (failing)
donors was collected in Mitochondrial Isolation Buffer
(MIB: 0.21 M mannitol, 70 mM sucrose, 0.1 mM potassium-
EDTA, 1 mM EGTA, 10 mM Tris-HCl, 0.5% fatty acid-free
BSA (pH 7.4)) at 4 °C. Fat and fibrous tissues were removed
prior to extensive washing of the myocardial sample with
isolation buffer to remove residual blood. After cutting into
small pieces and chopping briefly with a razor blade on ice
(4 °C ambient temperature) in mitochondrial isolation
buffer, the heart tissue was homogenized using 12–15 passes
with a Teflon homogenizer at a rotational speed of 120 rpm.
Next, the homogenate was centrifuged for 5 min at 850 	 g,
and the supernatant was collected and centrifuged at 7200 	
g for 10 min. The mitochondrial pellet was resuspended in
MIB without BSA and EGTA and then centrifuged again for
7200 	 g for 10 min. The resultant pellet was resuspended in
either mitochondrial respiration buffer, mitochondrial
swelling buffer, or HEPES buffer (for the determination of
PLA2 activity).

Mitochondrial swelling assay

Isolated human myocardial mitochondria were placed in
Mitochondrial Swelling Buffer (3 mM HEPES (pH 7.4), contain-
ing 0.23 M mannitol, 0.07 M sucrose, 5 mM succinate, and 2.5 �M

rotenone in the presence or absence of 1 mM KH2PO4) at 4 °C.
For experiments examining the effects of PLA2 inhibition or
arachidonic acid oxygenase inhibition, mitochondria were
pretreated with the following inhibitors: 10 �M (R)- or (S)-
BEL ((E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-
tetrahydropyran-2-one), 2 �M pyrrolidine cPLA2� inhibitor,
10 �M baicalein (5,6,7-trihydroxyflavone), 40 �M MSPPOH
(N-(methylsulfonyl)-2-(2-propynyloxy)- benzenehexanamide),
20 �M ibuprofen (2-(4-isobutylphenyl)propanoic acid), or
dimethyl sulfoxide (DMSO) vehicle alone (0.5% v/v) for 10 min
at 23 °C. Mitochondrial swelling was initiated by addition of 70
�M CaCl2 (final concentration) or 10 �M EGTA as control.
Decreases in the absorbance at 540 nm indicative of mitochon-
drial swelling were measured at 15-s intervals using a Spectra-

Max M5e microplate reader (Molecular Devices, Sunnyvale,
CA).

High-resolution mitochondrial respirometry

Human heart tissue collected from control (non-failing) and
VAD (failing) donors was placed in ice-cold Mitochondrial Iso-
lation Buffer (MIB: 0.21 M mannitol, 0.070 M sucrose, 0.1 mM

K-EDTA, 10 mM Tris-HCl, 1 mM EGTA, 0.5% BSA (pH 7.4)) in
a Petri dish on ice. Heart tissue was immediately diced into
small millimeter-sized pieces with a razor blade, transferred to
a 15-ml Potter-Elvehjem Teflon-pestle glass-mortar tissue
grinder with 7 ml of MIB. The tissue was homogenized using a
motor-driven pestle operated at 120 rpm. The homogenate was
then centrifuged in 10 ml of MIB for 7 min at 850 	 g. The
supernatant was carefully collected and centrifuged at 10,000 	
g for 10 min. The final pellet was resuspended in MIB with no
BSA. High-resolution respirometry was performed using a
2-ml chamber OROBOROS� Oxygraph 2K (Innsbruck, Aus-
tria). Respiratory measurements were performed at 30 °C
utilizing 50 �g of mitochondria in MiRO5 buffer. The rate of
oxygen consumption was calculated as a time derivative of
oxygen concentration using the DatLab Analysis software
(OROBOROS�, Innsbruck, Austria). Respiration was started
by the addition of either pyruvate (5 mM)/malate (5 mM),
palmitoylcarnitine (20 �M)/malate, glutamate (10 mM)/
malate, or pyruvate (5 mM)/glutamate (10 mM)/malate (State
2) followed by sequential addition of ADP (1.25 mM) (State
3), succinate (5 mM) (State 3 Max), rotenone (0.5 �M), oligo-
mycin (2.5 �M) (State 4), N,N,N
,N
-tetramethyl-p-phe-
nylenediamine (5 �M) with ascorbate (0.5 mM), and antimy-
cin A (1 �M). All values reflect the subtraction of residual
oxygen consumption after addition of antimycin A. The
quantity of mitochondrial protein was determined using a
PierceTM BCA protein assay kit according to the manufactu-
rer’s instructions.

Determination of phospholipase activity in mitochondrial
homogenates

Isolated human myocardial mitochondria placed in HEPES
buffer (10 mM HEPES (pH 7.4) containing 1 mM DTT and 10%
glycerol) were sonicated for 20 s with a Branson sonicator using
1-s pulses at 30% power. The protein contents of the sonicated
mitochondria were then determined using a Bradford protein
assay (Bio-Rad) with bovine serum albumin as standard. For
experiments examining the effects of PLA2 inhibition, mito-
chondria were preincubated with the inhibitors (10 �M (R)-
BEL, 10 �M (S)-BEL, 25 �M arachidonyl trifluoromethyl ketone
(AACOCF3), 10 �M methyl arachidonoyl fluorophosphonate
(MAFP), or 2 �M pyrrolidine) or DMSO vehicle alone (1% v/v,
final) for 15 min at 23 °C. Mitochondrial phospholipase activity
was initiated by adding either 2 mM EGTA or CaCl2 at the
indicated concentrations at 35 °C for 10 min, and then reactions
were terminated by sequential addition of 2 ml of chloroform/
methanol (1:1, v/v), internal standards (d4-16:0 free fatty acid
and 17:-0-LPC), and 700 �l of 10 mM LiCl. After vigorous vor-
texing, samples were centrifuged to promote phase separation,
and the chloroform layer was collected and dried under nitro-
gen stream. The remaining lipids were then re-extracted with 3

Ca2�-activated phospholipases A2 in human heart mitochondria

J. Biol. Chem. (2018) 293(1) 115–129 125



ml of chloroform/methanol/water (1:1:1, v/v/v), and those lip-
ids present in the chloroform layer were dried under nitrogen
stream. Identification and quantitation of extracted free fatty
acid and LPC molecular species were performed in the negative
and positive ion modes, respectively, utilizing a TSQ Quantum
Ultra mass spectrometer (Thermo Fisher Scientific, San Jose,
CA) equipped with an automated nanospray apparatus
(Advion Bioscience, Ithaca, NY) as described previously (11).
In some cases, fatty acids were also analyzed in positive ion
mode after chemical derivatization with AMPP under the
same reaction conditions as eicosanoid AMPP derivatization
(see below).

Identification and quantitation of eicosanoids by LC-MS/MS

Mitochondrial homogenates in HEPES buffer at the indi-
cated concentrations were incubated in the presence of either 2
mM EGTA or 0.2 mM free Ca2� for 20 min at 35 °C. The reaction
was stopped by addition of methanol (20% v/v final concentra-
tion) at 4 °C and diluted with water after addition of internal
standards (250 pg each of TXB2-d4, PGE2-d4, and 12-HETE-
d8). The solution was immediately applied to a Strata-X solid-
phase extraction cartridge preconditioned with 1 ml of metha-
nol followed by 1 ml of 10% methanol. The cartridge was then
washed with 1 ml of 5% methanol twice, and the remaining
solvent was flushed out with N2 at a pressure of 5 p.s.i. Bound
eicosanoids were eluted with 1 ml of methanol containing 0.1%
glacial acetic acid. All cartridge steps were carried out using a
vacuum manifold attached to a house vacuum line. After
evaporation of the organic solvent with a SpeedVac, isolated
eicosanoids were derivatized with N-(4-aminomethylphenyl)
pyridinium (AMPP), as described previously (28). Briefly,
eicosanoids were dissolved in 12.5 �l of ice-cold acetonitrile/
N,N-dimethylformamide (4:1, v/v) followed by addition of 12.5
�l of ice-cold 640 mM (3-(dimethylamino)propyl)ethyl carbo-
diimide hydrochloride in HPLC grade water. Eicosanoid
derivatization was initiated by adding 25 �l of 5 mM N-hydroxy-
benzotriazole and 15 mM AMPP and heating at 60 °C for 30
min. The derivatized eicosanoids were separated by RP-HPLC
utilizing a C18 reverse-phase column (Ascentis Express,
2.7-�m particles, 150 	 2.1 mm) at 23 °C using a linear mobile
phase gradient with solvent A (0.1% glacial acetic acid in water)
and solvent B (0.1% glacial acetic acid in acetonitrile) at a flow
rate of 0.2 ml/min. The solvent gradient was programmed as
follows: 0.0 –5.0 min, 25% B; 5.0 –7.0 min, 25–35% B; 7.0 –20.0
min, 35– 60% B; 20.0 –20.1 min, 60 –100% B; 20.1–24.0 min,
100% B; 24.0 –25.0 min, 100% B to 25% B and 10-min isocratic
hold at 25% B (14). The separated derivatized eicosanoids were
analyzed after infusion into a hybrid tandem mass spectrometer
(LTQ-Orbitrap, Thermo Fisher Scientific) via selected reaction
monitoring in the positive ion mode with sheath, auxiliary, and
sweep gas flows (arbitrary units) of 30, 5, and 1, respectively.
The capillary temperature was set to 275 °C, and the electros-
pray voltage was 4.1 kV. Capillary voltage and the tube lens
voltage were set to 2 and 100 V, respectively. Instrument con-
trol and data acquisition were performed using Thermo Xcali-
bur Version 2.1 software. For stable isotope labeling experi-
ments utilizing d8-arachidonic acid (d8-AA), it is critical to first
remove residual oxidized d8-AA from the original stock by

reverse-phase HPLC. In addition, mitochondrial phospho-
lipase activity assay described above was performed in the pres-
ence of 8 nmol of d8-AA, which was purified by HPLC to
remove residual oxidized AA, during the 20-min reaction time.
Quantitation of eicosanoids was performed by using either
internal standards, including 250 pg each of TXB2-d4, PGE2-d4,
or calibration of an external standard such as 250 pg of
d8-12-HETE.

Purification of human heart mitochondrial phospholipase A2

Mitochondria isolated from non-failing human hearts were
placed in 20 mM Na2CO3 buffer ((pH 11.4) containing 10% glyc-
erol, 2 mM EGTA, and 2 mM EDTA) and sonicated for 20 s with
1-s pulses at 30% power. Insoluble membrane material was
removed by ultracentrifugation at 100,000 	 g for 1 h, and the
soluble fraction was diluted with 20 mM Tris-Cl (pH 7.4),
loaded to a 1-ml HiTrap-DEAE (GE Healthcare) column
equilibrated with the same buffer and eluted with a stepwise
NaCl gradient (0 – 0.5 M NaCl). Active fractions were identified
by a PLA2 assay utilizing L-�-1-palmitoyl-2-arachidonoyl-
[arachidonoyl-1-14C]-sn-glycero-3-phosphocholine ([14C]PAPC)
(PerkinElmer Life Sciences)/1-(1Z-octadecenyl)-2-oleoyl-sn-
glycero-3-phosphoethanolamine (7:5) as substrate. The re-
leased [14C]AA was extracted into chloroform using the
Bligh-Dyer method and isolated by TLC, and its quantity was
determined by liquid scintillation counting. After desalting
active fractions using a gel filtration column (Bio-Rad) with
Mono P equilibration buffer (20 mM bis-Tris-Cl (pH 6.3)
containing 2% glycerol), the active PLA2 was loaded onto a
Mono P chromatofocusing column (GE Healthcare) and
resolved with a linear gradient from pH 6.0 to 4.0 by utilizing
Polybuffer 74 (GE Healthcare). Mono P active fractions
determined by radioactive PLA2 assay were diluted with
Mono Q equilibration buffer (20 mM Tris-Cl (pH 7.4) con-
taining 10% glycerol), loaded onto Mono Q column (GE
Healthcare), and resolved with a linear NaCl gradient (0-
0.4 M). Active Mono Q fractions were determined using
[14C]PAPC as substrate. The amount of protein in active
fractions from each of the chromatographic steps was deter-
mined using a Bradford Protein Assay (Bio-Rad) with BSA as
standard. For activity-based protein profiling, the fractions
from the Mono Q column were incubated with 0.5 �M des-
thiobiotin-fluorophosphonate for 30 min in the presence
of 1 mM Ca2�. Reactions were terminated by addition of
SDS-PAGE sample loading buffer. Following electrophore-
sis, immunoblot analysis was performed to identify biotiny-
lated target proteins.

In-gel digestion of proteins for identification by mass
spectrometric analyses

Protein bands visualized with silver staining were excised
from the gel, cut into small pieces (�1 mm3), and destained
twice by incubating with a freshly prepared 1:1 (v/v) solution
(300 �l) of 30 mM potassium ferricyanide and 100 mM sodium
thiosulfate for 8 min. The solution was discarded, and the gel
pieces were washed four times with 1 ml of water. After
incubation with 100% acetonitrile for 15 min at 23 °C, the
solution was discarded. The gel pieces were dried utilizing a

Ca2�-activated phospholipases A2 in human heart mitochondria

126 J. Biol. Chem. (2018) 293(1) 115–129



SpeedVac, rehydrated in 25 mM ammonium bicarbonate (pH
7.8) containing 12.5 �g/ml trypsin, and then incubated on
ice for 45 min. Excess liquid was removed, and 25 mM ammo-
nium bicarbonate (pH 7.8) was added to cover the gel pieces.
Following overnight incubation at 37 °C, the supernatant
was removed and transferred to a siliconized microcentri-
fuge tube on ice. Next, 30 �l of 25 mM ammonium bicarbon-
ate (pH 7.8) was added and incubated for 20 min at 23 °C.
The supernatant was removed and combined with the super-
natant from the previous step. Finally, 30 �l of 50% acetoni-
trile containing 5% formic acid was added to the gel pieces,
which were then incubated for 20 min at 23 °C. The resultant
supernatant was combined with the supernatants from the
previous steps. This extraction step was repeated once, and
the peptide extracts were combined and evaporated to near
dryness using a SpeedVac. The peptide extract was reconsti-
tuted in 5% acetonitrile containing 0.1% formic acid for anal-
ysis by ESI-NanoLC-MS/MS.

ESI-NanoLC-MS/MS analysis

Trypsinized peptide samples were loaded onto a PepMap100
C18 precolumn (300 �m 	 1 cm, Dionex, Sunnyvale, CA) by a
Surveyor autosampler (Thermo Fisher Scientific, San Jose, CA).
The precolumn was then washed with 0.1% formic acid for 5
min. Trypsinized peptides from the precolumn were eluted
with a gradient from 95% of mobile phase A (0.1% formic acid in
water) and 5% of mobile phase B (0.1% formic acid in acetoni-
trile) to 10% of A and 90% of B onto a reverse-phase C18 ana-
lytical PepMap100 Nano-LC column (75 �m 	 15 cm, Dionex,
Sunnyvale, CA) at a flow rate of 200 nl/min for 150 min. The
eluted peptides were injected into an LTQ-Orbitrap mass
spectrometer (Thermo Fisher Scientific, San Jose, CA) by a
TriVersaTM Nanomate system (Advion, Ithaca, NY) at a con-
stant spray voltage of 1.7 kV. The mass spectrometer was
operated in a data-dependent acquisition mode. Each full
mass scan (from m/z 300 to 1600) in the Orbitrap was fol-
lowed by tandem mass product ion analysis of the five most
intense peaks from the full mass spectrum in the ion trap.
The mass spectrometer was calibrated using the manufactu-
rer’s recommended positive mode calibration solution con-
taining L-methionyl-arginyl-phenylalanyl-alanine acetate,
Ultramark 1621, and caffeine. The mass accuracy was within
5 ppm at mass values from m/z 130 to 2000. Resolving pow-
ers (at m/z 400 Th) of 30,000 in full scan mode and 15,000 in
MS2 were used. For MS2 product ion analyses, the normal-
ized collision energy of 30% was applied; the activation time
was set at 30 ms with an activation parameter q � 0.25, and
precursor ions were isolated within a mass window range of
2 Th. The acquired data were searched against a customized
protein sequence database using the SEQUEST algorithm.
All positive identifications were individually confirmed.

Statistical analyses

A two-tailed Student t test was routinely performed to deter-
mine the significance of differences between two groups. A p
value of �0.05 was considered significant. All data were
reported as average � S.E.
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