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classified by their type and the intermolecular electrostatic 
energy. This simple structure-based binding affinity predic-
tor shows a Kendall’s Tau correlation of 0.37 in ranking the 
ligands (7th best out of 77 methods, 5th/25 groups). Those 
results were obtained from the average prediction over the 
top10 poses, irrespective of their similarity/correctness, 
underscoring the robustness of our simple predictor. This 
results in an enrichment factor of 2.5 compared to a random 
predictor for ranking ligands within the top 25%, making it 
a promising approach to identify lead compounds in virtual 
screening.

Keywords  D3R · Drug design data resource · Docking · 
Binding affinity · Ranking · Intermolecular contacts

Introduction

Molecular docking is a widely-used tool in computer-aided 
drug design to model the three-dimensional (3D) structure 
of protein–ligand complexes, study their interactions and 
predict their binding affinities [1]. Integrated with data from 
the experimental techniques like X-ray crystallography and 
Nuclear Magnetic Resonance, docking has become a power-
ful tool in designing novel therapeutics [2]. Docking consists 
of two main steps: (i) exploration of protein–ligand bind-
ing poses (sampling) and (ii) identification of biologically 
relevant models (scoring). Both steps have their own chal-
lenges such as the flexibility of entities and the accuracy of 
the scoring functions. These have been reviewed elsewhere 
[2–4].

Our integrative, information-driven, flexible dock-
ing approach HADDOCK [5, 6] addresses this structural 
modeling problem by using the available experimental 
and bioinformatics data to drive the docking process in 
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combination with a simple but robust scoring function 
for ranking. The success of HADDOCK in modeling pro-
tein–protein, protein-nucleic acid and protein–peptide 
complexes has been demonstrated numerous times (for a 
review, see [7]). HADDOCK is also consistently among 
the top scorers and predictors [8] in The Critical Assess-
ment of Predicted Interactions (CAPRI) experiment [9], 
where participants are expected to predict the 3D structure 
of an unknown biomolecular complex, given the sequence 
or the structure of the unbound partners.

While HADDOCK has also been used in several pro-
tein–ligand docking studies [4, 10–16], no systematic 
benchmarking has been reported so far, making the D3R 
Grand Challenge 2 a perfect opportunity to assess its per-
formance for this type of problem for which it was not 
originally developed. In this manuscript, we describe our 
strategy for predicting the binding poses of FXR ligands 
(Stage1), and assessing their binding affinities (Stage2), 
while discussing the main lessons learned from the 
challenge.

Materials and methods

Data

The target of the D3R Grand Challenge 2 is the Farnesoid 
X nuclear receptor (FXR), which is a nuclear hormone 
receptor activated by bile acids [17]. FXR is highly 
expressed in liver, intestines and kidneys, playing an 
important role in the regulation of bile acid homeostasis 
and cholesterol, lipid and glucose metabolisms [17–19]. 
Due to its involvement in various diseases including 
inflammatory bowel disease, colorectal cancer and type 2 
diabetes, FXR agonists have emerged as potential thera-
peutics [17–19].

In the D3R Grand Challenge 2, the FXR dataset consists 
of 36 crystal structures with a resolution below 2.6 Å and 
binding data (IC50s) for 102 compounds, including the 36 
for which a crystal structure is available (these were only 
made available in Stage2). These data have been provided 
by Roche and curated by D3R. The challenge consists of two 
stages, which are described below:

Stage1: The goal is to predict the poses of 35 ligands (one 
target is cancelled), and the affinities or rankings of all 102 
compounds. The input files provided by organizers are the 
apo crystal structure of FXR and 2D ligands in SMILES and 
SD file formats.

Stage2: The participants are expected to predict the affini-
ties or rankings of all 102 ligands with the 36 crystal struc-
tures of FXR-ligand complexes provided as additional input 
compared to Stage1.

Ligand preparation

SMILES strings of FXR-ligands were converted into 3D 
structures using OpenEye Omega Toolkit 2.6.4 [20]. Con-
formers were directly generated from SMILES by Omega 
torsional sampling, where the maximum number of con-
formers per ligand was set to 100. After this step, the con-
formers were clustered to select representative models to 
be used in the docking stage. We used for this the jclust 
hierarchical clustering of the MMTSB tools [21], with the 
maximum number of clusters set to 10 and the minimum 
number of structures per cluster to 4. For each ligand in 
Stage1, an ensemble of conformations was created by select-
ing a representative structure from each cluster.

Protein preparation

Docking simulations in Stage1 were run using an ensemble 
of 4 structures as input for the receptor. This final set of 4 
receptors was selected as follows:

1.	 28 Homologue structures were found in the RCSB/PDB 
database [22] using the “Sequence” search feature with 
the sequence of the apo form of FXR provided by D3R 
and a lower limit of 80% sequence identity. All other 
parameters were kept as default (Search algorithm: 
BLAST, Expectation value: 10, Mask low complexity: 
yes). We also specified that structures must contain a 
ligand.

2.	 Interface residues were extracted from all homologous 
structures using a 5 Å cutoff. All residues containing an 
atom located at 5 Å or less from the ligand were then 
considered as interface. The union of all these residues 
was taken and matched to the target sequence. The list 
of residues was manually curated to remove residues 
on the outer surface of the receptor. We then refined 
the residues based on their surface accessibility (SA) 
in the FXR apo structure (<40% backbone or sidechain 
SA) using NACCESS [23]. Finally, some residues with 
a SA below 40% were reintroduced manually (mainly 
residues in loops). The identified interface residues were 
subsequently used for clustering the receptor (see point 
3 below).

3.	 Any structure with one or more gaps at the interface was 
discarded (11) leaving 18 structures (17 homologues + 1 
apo) for the calculation of a pairwise backbone-RMSD 
after a fitting step on the interface residues using ProFit 
[24]. HADDOCK’s default clustering method [25] was 
applied on the RMSD matrix and generated 4 clusters 
when used with 0.5 Å threshold and a minimum cluster 
size of 2. It is worth noting that the apo structure was 
not clustered with these criteria. Two other structures 
(1ot7_B [26] and 3p88 [27]) were not clustered as well. 
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Cluster representatives with the best resolution and 
1ot7_B were chosen as templates. 3p88 was discarded 
because it was too close from a representative of cluster 
#2.

4.	 Based on 4 templates (1osv [26], 1ot7_B, 3dct [28], 3olf 
[29]), a new set of interface residues were computed 
using a 4 Å cutoff to define if a residue was interact-
ing with the ligand or not. These residues were used 
as active residues in the docking runs (see Table S1 in 
Online Resource for the list).

5.	 For ensemble docking with HADDOCK, we mutated 
all residues diverging from the reference structure 
(apo form) to the respective residue with PyMOL [30]. 
Ensemble docking refers to the use of multiple starting 
conformations for one or more of the binding partners 
within the same docking run. All combinations of the 
various conformations are selected as starting point 
for the docking. How many times each conformation 
is sampled will thus depend on the number of confor-
mation in the ensemble and the number of generated 
models at the rigid-body docking stage (see “Docking” 
below).

Revised protocol for ligand and protein preparation 
in Stage2

In Stage2, 36 crystal structures for FXR1-36 protein–ligand 
complexes were provided by the organizers. We used those 
structures to revisit our docking protocol and identify the 
major limiting factor for our docking performance in Stage1. 
By docking with either bound ligand or receptor, we found 
that it is mainly the receptor conformation that limits our 
accuracy in generating near-native poses (see “Results and 
discussion” section). Accordingly, we identified the ligand 
that is most similar to FXR1-36 for targets FXR37-102 
based on the Tanimoto distance calculated using fmcsR [31] 
and ChemmineR packages [32]. The corresponding receptor 
conformation was used as the protein input for all docking 
runs in Stage2.

As for input ligand ensemble, we followed the Stage1 pro-
tocol with an additional criterion enriching the major cluster: 
For the cases where less than 10 clusters were identified, 
remaining elements of the major cluster were additionally 
included in the docking ensemble, until the ensemble size 
reached the maximum of 10.

Access to the experimental structures of the ligands 
allowed us to examine the accuracy of the OMEGA gen-
erated conformers. The top panel of Fig. S1 in Online 
Resource provides an overview of the RMSDs of the ligand 
poses. The median RMSD of the generated poses for all 
targets was 1.9 Å, the median RMSD of the poses selected 
for docking for stage 1 was 2.2 Å and the median RMSD of 

the poses selected for stage 2 was 1.8 Å. Overall, OMEGA 
generated accurate—if not quite near-native—models.

Docking

Docking was performed with the HADDOCK2.2 web server 
[6]. The docking protocol of HADDOCK consists of three 
stages: (i) rigid-body docking by energy minimization from 
random orientations of the starting conformations—“it0” 
stage, (ii) semi-flexible refinement of the interface by simu-
lated annealing in torsion angle space—“it1” stage and (iii) 
short molecular dynamics refinement in explicit solvent—
“water” stage. In the semi-flexible stage (it1), protein inter-
face residues (all those within 5 Å of the ligand) and the 
ligand are treated as flexible. The calculations are guided 
by the ambiguous interaction restraints defined based on the 
binding pocket of the receptor (Point 2 under protein prepa-
ration above). For the D3R competition we used the buried 
settings of the small ligand protocol which had been bench-
marked on the ASTEX dataset [33] [unpublished data]. 
Compared to the HADDOCK default settings, the buried 
binding site protocol scales the intermolecular energy terms 
(van der Waals and electrostatic) by a factor of 0.001 to 
allow penetration of the ligand into the protein binding site. 
This is required since the starting configurations for dock-
ing are randomly rotated and separated molecules. Accord-
ingly, because models can contain clashes due to the scal-
ing down of intermolecular interactions, the weight of the 
van der Waals energy term for scoring the initial rigid-body 
docking poses (it0) was set to 0.

Additionally, we fine-tuned the docking settings for 
Stage1 by testing on various structures of the FXR receptor 
bound to a plethora of ligands (namely 1osv, 1ot7, 3dct, 3hc5 
[34], 3olf, 3omm [29]). Using the SMILES strings of those 
ligands we created ensembles of conformers as described 
in the “Ligand preparation” section, which we proceeded 
to dock against the ensemble of receptors generated during 
“Protein preparation” stage. The models were then compared 
with the bound complexes to determine the final docking 
settings. Based on those results, and considering the bur-
ied and rather hydrophobic nature of the binding pocket, 
we decided to base our selection of poses on the models 
obtained after the semi-flexible refinement stage (it1) of 
HADDOCK instead of the final, water-refined models. We 
increased the sampling to 10,000 and 400 poses for it0 and 
it1, respectively. All docking settings were left at default 
values except for the ones listed in Table S1 in Online 
Resource. The parameters and topologies for the ligands 
were obtained automatically by the HADDOCK server using 
a local version of PRODRG [35], which discards non-polar 
hydrogen atoms.

In both stages, two sets of restraints were provided to 
the server to guide the docking: (1) ambiguous interactions 
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restraints in which the ligand and all residues in the bind-
ing pocket were defined as active to draw the ligand inside 
it—this was only used in it0 (50% of those restraints were 
randomly deleted for each docking trial); (2) unambiguous 
interaction restraints in which only the ligand was defined 
as active and the protein binding pocket as passive were 
used for the subsequent flexible refinement stage (it1). In this 
refinement phase, no energy penalty is generated if a binding 
pocket residue does not contact the ligand, which allows the 
ligand to explore the binding site. The top 5 poses from it1 
stage were selected for submission.

The scoring function used for ranking the poses is the 
standard HADDOCK score for the flexible refinement (it1) 
which is defined as:

where BSA is the buried surface area in Å2, Edesol an empiri-
cal desolvation energy term [36]. The intermolecular ener-
gies are calculated using the OPLS united atom force field 
parameters [37] for non-bonded atoms, using a 8.5 Å cut-
off with a shifting function for the electrostatic energy and 
switching function between 6.5 and 8.5 Å for the van der 
Waals energy. For the electrostatics energy, a dielectric con-
stant of 10 is used.

Binding affinity prediction

For Stage1 of the challenge, we used the HADDOCK score 
to rank the affinities of 102 compounds. For Stage2, we 
developed both a ligand-based and a structure-based bind-
ing affinity predictor, which are described below.

Ligand‑based binding affinity predictor

We designed a target-specific ligand based binding affinity 
predictor, based on the assumption that similar ligands bind-
ing to the same protein should have similar binding affinities. 
From the database BindingDB [38], we retrieved 229 ligands 
that bind to the FXR protein with reported experimental 
IC50 data. We calculated the ligand similarity using Atom 
Pair (AP) and Maximum Common Substructure (MCS) 
measurements, as implemented in ChemmineR and fmcsR 
packages [31, 32]. For this, we computed the pairwise simi-
larity matrix among the training data (i.e., the 229 ligands). 
This matrix was used to train a Support Vector Regression 
(SVR) model using LibSVM software (version 3.21) [39]. 
During the training process, we transformed IC50 data into 
ln(IC50). We evaluated the SVR predictor on the training 
data using 10 repeats of 5-fold cross-validation. The AP met-
ric outperformed the MCS metric (Table 1). We, therefore, 
in the subsequent analysis used AP to train our predictor. 

(1)
HADDOCK score = 1.0 × E

vdW
+ 1.0 × E

elec

+ 1.0 × E
desol

− 0.01 × BSA

Table 1   Comparison of the prediction performance of atom-pair and 
maximum common substructure predictors on the training dataset 
using 10 repeats of 5-fold cross-validation

Atom-pair Maximum com-
mon substruc-
ture

Kendall’s Tau 0.52 ± 0.01 0.50 ± 0.01
Pearson’s correlation coef-

ficient
0.70 ± 0.01 0.68 ± 0.02

Fig. 1   Examples of successfully predicted ligand poses in Stage1 
for (a) FXR-27 (b) FXR-34 with a l-RMSD of 1.27 and 1.94  Å, 
respectively. The receptor conformations are shown as cartoon and 
the ligands as stick representation. The reference crystal structure is 
colored grey and the model as slate
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The binding affinity of the D3R ligands was then calculated 
using our predictor with the similarity matrix between the 
102 D3R ligands and the training data (the 229 ligands from 
BindingDB).

Structure‑based binding affinity predictor

Recently, we have introduced a residue–residue contact-
based method for the prediction of the binding affinity in 
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protein–protein complexes [40], implemented in the web-
server PRODIGY (PROtein binDIng enerGY prediction) [41, 
42]. This simple structural-based approach has led to one of 
the best performing predictors so far reported on a large and 
heterogeneous set of data [43, 44], with Pearson’s Correlation 
of 0.73 between the predicted and the experimental values 
and a root mean-squared error of 1.89 kcal mol−1.

For Stage2 of this D3R challenge we designed an adapted 
version of our contact-based prediction for protein–ligand 
complexes. From the 2P2I database [16], we retrieved 200 
protein–ligand complexes with experimentally measured Ki 
(inhibition constant) and available crystal structure. Ki values 
were converted to free energy (ΔG) by applying the equa-
tion ΔG = RTln(Ki), in which R is the gas constant and T the 
temperature. For each entry, we ran the HADDOCK refine-
ment protocol in order to collect the intermolecular energy 
terms reported in Eq. 1. This consists of the final refinement 
stage of HADDOCK without any initial perturbation of the 
starting structures. We then calculated the number of atomic 
contacts (ACs) within the distance threshold of 10.5 Å (this 
cutoff was optimized to obtain the best correlation). We fur-
ther classified the ACs according to the atom involved in the 
interaction (C = Carbon, O = Oxygen, N = Nitrogen, X = All 
other atoms). We used this combination of structural- and 
energy-based terms to train a multiple linear regression model 
with R [45] performing 4-fold cross validation. We applied 
Akaike’s Information Criterion (AIC) stepwise selection 
method implemented in R to avoid overfitting and identify the 
significant features. The resulting binding affinity predictor 
ΔGscore model for ranking the targets based is shown in Eq. 2:

where ACCC, ACNN, ACOO and ACXX are the ACs between 
Carbon–Carbon, Nitrogen–Nitrogen, Oxygen–Oxygen and 
between all other atoms and polar hydrogens, respectively. 
Eelec is the electrostatic energy calculated through the HAD-
DOCK refinement protocol.

For each of the top 10 it1 poses from the docking runs 
we calculated the ΔGscore and took the average. We finally 
ranked the ligands according to the predicted values of our 
averaged ranking-score.

Results and discussion

Binding pose predictions

Following the protocol described in Methods, we sub-
mitted 5 binding poses per target in Stage1. Two of the 

(2)

ΔG
score

= 0.343794 × E
elec

− 0.037597 × AC
CC

+ 0.138738 × AC
NN

+ 0.160043 × AC
OO

− 3.088861 × AC
XX

+ 187.011384

successfully predicted cases are shown in Fig. 1, where 
the ligand RMSD (l-RMSD, defined as the RMSD of the 
ligand heavy atoms after fitting on receptor backbone) is 
less than 2.5 Å. The performance per target in the pre-
diction phase is indicated in Fig. 2 (dark grey box plots) 
for our submitted five poses. We have at least one model 
within 2.5 Å of the bound state in 6 out of 35 targets with 
an average l-RMSD of 5.1 Å for all targets. This rather low 
performance encouraged us to revisit the ligand and pro-
tein preparation protocols, as described in “Revised proto-
col” section. In particular, we investigated whether confor-
mational changes/sampling is the limiting factor (Fig. 3). 
Our docking performance in Stage1 is compared to that 

Fig. 4   Comparison of the top100 models for the protocols used for 
stages 1 and 2. Each bar corresponds to structures belonging to runs 
for the indicated target. The coloring of the bars separates the struc-
tures in 3 classes. Structures colored black have a l-RMSD smaller 
than 2.5 Å, structures colored dark gray have a l-RMSD between 2.5 
and 3.5  Å and structures with a l-RMSD of greater than 3.5  Å are 
colored light gray. The top-ranked structures are the ones close to 
zero on the y-axis
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using either the bound ligand, bound receptor or both. Our 
performance reaches 83% success rate for bound–bound 
docking. The largest improvement compared to Stage1 is 
obtained if the bound conformation of the receptor is used. 
Moreover, revisiting the ligand sampling also increased 
the docking success from 14 to 20% for top5 (data not 
shown). This prompted us to select for Stage2 the recep-
tor conformation containing the most similar ligand to the 
ligand to be docked (see “Material and methods”) and a 
resampled ensemble of ligand conformations. The result-
ing improvement can be easily observed in Fig. 2 (light 
grey box plots), where the average l-RMSD is reduced to 
4.1 Å and 13 out of 35 targets are within the 2.5 Å cut-off. 
We can also clearly see that there is plenty of room for 
optimizing our scoring function since in most cases we did 
generate reasonably good predictions (shown as circles) 
in the pool of 400 refined models, but these did not make 
it in the top5.

Additionally, we investigated whether the revised proto-
col improves the sampling. Figure 4 compares Stage1 and 

Stage2 binding poses, where the y-axis reflects the ranking 
of the top 100 structures at the end of it1 for each target, 
with higher ranked structures being close to zero. The color-
ing of the bars depends on the l-RMSD of the model to the 
bound complex, with darker shades corresponding to lower 
l-RMSD values. As is evident from Fig. 4, the revised pro-
tocol dramatically improves the sampling as low l-RMSD 
structures are identified and tend to be ranked higher.

We should also note that the ligand parameters were 
obtained automatically by the HADDOCK server using 
PRODRG—the only currently supported option on the 
server—with its known limitations. Especially the accuracy 
of the charge assignment by PRODRG can be questioned 
[46]. In a previous study on the prediction of the binding 
affinity of protein–protein interaction inhibitors [16], we 
have compared PRODRG and ACPYPE [47] for ligand 
parameter generation showing that the HADDOCK score 
calculated with the two parametrizations scheme are corre-
lated (R2 = 0.73). While the van der Waals and desolvation 
energies are essentially identical, the electrostatic energies 

Fig. 5   Comparison of predicted 
ln(IC50) with experimental 
ln(IC50) using our ligand-based 
binding affinity predictor
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differ substantially (R2 = 0.33), which might well affect the 
quality of our docking poses.

Binding affinity

Ligand‑based binding affinity prediction

A Support Vector Regression model based on ligand simi-
larity using Atom Pair (see “Material and methods”) was 
used for ligand-based prediction of the binding affinities. 
The Kendall’s Tau between the ranking of the experimental 
and our predicted binding affinities is 0.27, which is the third 
best performance out of five participants. The correlation 
between the two sets can be visualized in Fig. 5.

Although this method does not perform as well as our 
structure-based predictor (see below) it has as major advan-
tage that it does not require a structural model and is there-
fore extremely fast.

Structure‑based binding affinity prediction

The correlation scores (Kendall’s Tau) of the binding affin-
ity rankings calculated for stages 1 and 2, for all groups 

are summarized in Fig. 6. We clearly performed better in 
Stage2 with a correlation of 0.37 against 0.27 in Stage1, 
where we used only HADDOCK scores for ranking. In terms 
of Pearson’s Correlation coefficient between the predicted 
scores and the experimental binding affinity, our prediction 
performance improved from 0.40 in Stage1 to 0.51 in Stage2 
with the structure-based predictor (see Online Resource—
Fig. S2). Interestingly, averaging the ΔGscore over the top10 
models resulted in a correlation of 0.37 while using only the 
top scoring model yielded 0.28. Considering that our top10 
poses are rather heterogeneous in their conformations, our 
binding affinity predictor seems rather robust and not too 
sensitive to the exact conformation of the ligand. Further 
investigations are needed to dissect those results and inves-
tigate the impact of energetics and the quality of the models 
on the ranking performance.

We also investigated the potential of our ranking pre-
dictor for identification of lead compounds. We defined as 
true positive the targets which are within the top N ranked 
compounds of both the predicted and experimental bind-
ing affinity rankings (N: 1,2…,102). Then, we calculated 
the positive predictive value (PPV), which is equal to the 
number of true positives divided by the number of predicted 
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and 2. The top panel reports the results of Stage1 and the bottom one 
of Stage2. Bars colored light gray correspond to groups which did not 

provide submissions for all targets. The bars colored dark gray cor-
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positives (top N ranked targets according to BA predictor). 
We plotted PPV as a function of N together with the diago-
nal which represents a random prediction (RP) (Fig. 7). We 
also report the enrichment factor (PPV/RP) on the top of 
Fig. 7. This analysis indicates that our predictor reaches a 
2.5-fold improvement in correct identification of effective 
ligands in the top 20–25% compared to random.

Conclusions

Our participation in the D3R Grand Challenge 2 was an 
opportunity to evaluate and revisit our docking and rank-
ing protocols. Our pose prediction performance in Stage1 
was far from optimum, which led us to investigate the effect 
of ligand/protein conformer selection on the docked model 
quality. We identified the conformation of the receptor as 
main limiting factor, which led us to select receptor con-
formers for Stage2 based on ligand similarity, which sig-
nificantly improved our pose prediction performance. This, 
together with a biasing of the major cluster for ligand con-
formers as explained in ‘Revised protocol’ increased our 
overall prediction success.

As for ranking in Stage2, we developed two different BA 
predictors: A ligand-based one and structure-based one. 

Our ligand-based predictor is computationally efficient 
since it does not require any 3D structural model for train-
ing. However, it does not perform as well as our structure-
based predictor (Kendall’s tau is 0.27 and 0.37 for ligand 
and structure-based, respectively). Using the structure-based 
predictor, which considers the number and type of intera-
tomic contacts, for affinity ranking dramatically improved 
our overall performance for binding affinity prediction, 
with our ranking compared to the other submitted methods 
improving from 32nd/57 for Stage1 to 7th/77 for Stage2 (and 
if only considering a single submission per group per cat-
egory, from 18th/27 (Stage1) to 5th/25 (Stage2) among all 
groups participating to the challenge).

As final observation, it is worth noting that our ranking 
was based on the average score calculated over the top 10 
poses (which are heterogeneous in most cases, particularly 
with respect to the ligand orientation in the binding pocket—
see Fig. 2). This averaging yielded better predictions than 
only using the top1 (Kendall’s tau 0.37 and 0.28 for top10 
and top1, respectively). This simple contact-based predictor 
seems to show promise as virtual screening tool to select a 
fraction of effective ligands, yielding an enrichment factor 
of about 2.5 for the top 25% of compounds compared to a 
random selection.
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