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Abstract Computational protein binding affinity predic-
tion can play an important role in drug research but per-
forming efficient and accurate binding free energy calcula-
tions is still challenging. In the context of phase 2 of the
Drug Design Data Resource (D3R) Grand Challenge 2 we
used our automated eTOX ALLIES approach to apply the
(iterative) linear interaction energy (LIE) method and we
evaluated its performance in predicting binding affinities
for farnesoid X receptor (FXR) agonists. Efficiency was
obtained by our pre-calibrated LIE models and molecular
dynamics (MD) simulations at the nanosecond scale, while
predictive accuracy was obtained for a small subset of
compounds. Using our recently introduced reliability esti-
mation metrics, we could classify predictions with higher
confidence by featuring an applicability domain (AD) analy-
sis in combination with protein—ligand interaction profil-
ing. The outcomes of and agreement between our AD and
interaction-profile analyses to distinguish and rationalize the
performance of our predictions highlighted the relevance
of sufficiently exploring protein—ligand interactions during
training and it demonstrated the possibility to quantitatively
and efficiently evaluate if this is achieved by using simula-
tion data only.
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Abbreviations

AD Applicability domain

CI Confidence index

D3R Drug Design Data Resource
FEP Free energy perturbation
FXR Farnesoid X receptor

GC2 Grand Challenge 2

LIE Linear interaction energy

MD Molecular dynamics

QSAR Quantitative structure—activity relationship
RMSE Root-mean-square error

SDEP  Standard deviation in prediction

TI Thermodynamic integration
Introduction

Drug development starts with the discovery of molecules
that specifically and favorably interact with the pharmaco-
logical or drug target. In silico ligand-binding free energy
(AGy,,s prediction is a valuable method in early drug dis-
covery, as it can save resources by predicting (optimized)
interactions between lead compounds and drug targets and/
or off-target receptors [1, 2]. However, it is challenging to
develop an accurate in silico prediction method that can be
considered a descent trade-off with speed and efficiency
[1-4]. To evaluate available methods for AG,,,, predic-
tions and to get free-energy specialists further engaged
in the development of the computer-aided drug discovery
field, Drug Design Data Resource (D3R) held the Grand
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Challenge 2 (GC2, https://drugdesigndata.org/about/grand-
challenge-2), a community challenge to predict binding
poses and binding free energies of ligands without any affin-
ity data provided to participants a priori. This blind predic-
tion is invaluable as unbiased test for current state-of-the-art
methods and can serve as catalyst for further development.
In GC2, the challenge is to predict binding free energies of
agonists of farnesoid X receptor (FXR), a protein belonging
to the nuclear receptor superfamily and is mainly expressed
in liver, intestine, adrenal gland, and kidney. FXR is known
to play a key role in regulating cholesterol and bile acid
homeostasis, hence FXR agonists can be potential therapeu-
tics for dyslipidemia and diabetes [5].

There is a variety of methods for calculating AG,,,,;, from
empirical scoring functions to more reliable and robust
alchemical free energy methods such as thermodynamic
integration (TI) [6] and free energy perturbation (FEP) [7].
As an alternative, end-point methods such as molecular
mechanics combined with Poisson—-Boltzmann or general-
ized Born and surface area continuum solvation (MM/PBSA
or MM/GBSA) [8] and linear interaction energy (LIE) [9]
perform faster than alchemical free energy methods but
can still be more accurate compared to empirical scoring
functions by explicitly including protein- and ligand-con-
formational sampling. In LIE, binding free energies are
directly calculated from differences in ligand—surrounding
interaction energies between the bound and unbound states,
without including solvent—access and entropic terms as in
MM/PSBA [2], but LIE predictions need pre-calibration of
empirical parameters for the system of interest based on an
external set of training data [10].

Here we use our automated implementation [11, 12 and
L. Capoferri et al. (submitted)] of an iterative version of
LIE [13] in which protein-ligand binding poses (as obtained
from ligand docking into possible different protein con-
formations [14]) are used as input for different molecular
dynamics (MD) simulations of the bound state. The pre-
dicted free energy of binding (AG,,,,) is estimated as the
weighted sum of MD ensemble-averaged electrostatic (AVf’e
) and van der Waals (A VI.VdW) interaction energies between the
ligand (lig) and its surrounding (surr) in complex with the
protein (bound) and free in solution (unbound) by following
linear response theory (Eq. 1).

pre:
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parameters  and f are empirically calibrated and the off-set
parameter y can be optionally included in the equation. The
contributions of each individual simulation are calculated
by weighting them as follows [13]:

e_AGpr(d,i/ kgT

Wi = Z e_AGpred,i/kBT (2)

The need for pre-calibrated parameters poses challenges
on the availability of sufficient data for training, and may
lead to limited applicability of a trained model in terms
of the chemical space covered by the training compounds.
Here we used experimentally observed binding free energies
(AG,,) [5, 15—-17] for the different D3R GC2 subclasses of
FXR binders to develop three different local LIE models for
the subclasses. In addition, we used our recently introduced
approach for quantitative applicability domain (AD) analysis
[12] to evaluate if chemical space was sufficiently covered by
the training compounds used for model calibration. Several
methods to quantitatively perform AD analyses have been
reported for ligand-based QSAR approaches before [18, 19].
However, this task is especially challenging when informa-
tion on protein structure, interactions and/or dynamics is
included as well in the prediction, like in LIE modeling. As
a remedy, our AD approach [12] evaluates the applicability
and reliability of a given LIE model towards (sets of) query
compounds based on simulation data only. We previously
tested the performance of our method for AD analysis to a
structurally diverse set of binders of the flexible cytochrome
P450 isoform 1A2 (CYP 1A2) and could successfully dis-
tinct a multifarious subset of 14 external test compounds
with experimental accuracy in their binding free-energy pre-
diction, from eight outliers in the test set [12]. In the current
study, we evaluate our fully automated pipeline [L. Capoferri
et al. (submitted)] for training and reliability assessment of
iterative LIE models for the prediction of FXR binding free
energies for D3R GC2 compounds. The pipeline requires
prepared protein and ligand structures as only input, and
uses MD simulations on the ns time scale only.

Computational methods
Model training for the D3R Grand Challenge 2 dataset

For GC2, we collected data sets of experimentally estimated
FXR-binding ICs, values from literature via ChEMBL [20],
which were used to obtain the Cheng-Prusoff estimate of
observed binding free energies AG ,; [21]. These AG,,, val-
ues were used for training local LIE models for the benzimi-
dazole [5, 15] [ICs, assay method: Scintillation proximity
assay (SPA)], isoxazole [16] (SPA), and sulfonamide [17]
[time-resolved fluorescence energy transfer (TR-FRET)]
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classes of compounds. The external data sets for the benzi-
midazoles and sulfonamides were split into a literature train-
ing and test set, which are presented in Tables S1 and S2 of
the supplementary material together with AG ,; values and
ChEMBL identifiers. Molecular structures of the training
and test set compounds can be found in Figures S1 and S2 of
the supplementary material. The models were subsequently
used for AG,,,,, predictions for the respective classes of D3R
compounds (Figure S3); for the D3R spiro-containing com-
pounds, the sulfonamide model was used.

For the selection of protein crystal structures for use in
docking and subsequent MD, we found that crystal struc-
tures provided by Roche at the start of the second stage of
GC2 (https://drugdesigndata.org/about/grand-challenge-2)
can be grouped in two types of structures (conformation 1
or 2, Fig. 1), based on the conformation of the helices adja-
cent to the binding site of the co-crystallized ligands. This
observation is in line with comparisons to the FXR struc-
tures from PDB [5, 15, 16]. Based on the protein conforma-
tions observed in the co-crystallized structures of Roche, we
chose to use PDB structure 30MK [15] (conformation 1) as
protein template for use in the benzimidazole LIE model,
and conformation 2 structures as templates for the isoxazole
(BFXV) [16] and sulfonamide models (3BEJ) [22]. For the
miscellaneous compounds in the D3R data set, the benzimi-
dazole, isoxazole, or sulfonamide model was used to calcu-
late AG,,,,.4, depending on the protein conformation obtained
for the miscellaneous ligand in the crystal structure provided
by Roche. Protein structure preparation steps before docking

Fig. 1 TIllustration of the observed variation of FXR crystal struc-
ture conformations in terms of the helices adjacent to the co-crystal-
lized binding site of ligand (conformation 1: green (PDB ID 30MK
[15]), conformation 2: red (3FXV [16])). Figure was generated using
PyMOL (The PyMOL Molecular Graphics System, version 1.8
Schrodinger, LLC.)

(addition of missing atoms and residues, assignment and
fixing of charged and protonation states, deletion of atoms
with fractional occupancies, and subsequent energy mini-
mization) were conducted using ModLoop [23] and UCSF
Chimera version 1.10.2 [24].

Binding free energy prediction workflow

For model training and testing and for the predictions sub-
mitted to GC2, we used our in-house pipeline eTOX ALLIES
[L. Capoferri et al. (submitted)], which works as an auto-
mated workflow to combine molecular docking, MD, and the
iterative LIE method, in order to calculate AG,,,, of target
compounds. It uses automated least-square fitting to train
model parameters based on the curated experimental binding
free energies. The trained model can subsequently be used
to predict AG,,,,,, of query compounds, and the reliability of
a prediction is indicated in terms of the cumulative score in
confidence index (CI) values obtained from AD assessment,
see below.

After the stereochemistry of training or query compounds
was inspected and corrected in 3D format using MOE (MOE
version 2015.10, Chemical Computing Group Inc., Canada),
their 3D SMILES string was used as input for e7TOX ALLIES,
which uses Open Babel 2.3.9 [25] to perform ligand prepara-
tion (generation of 3D coordinates if necessary and neutrali-
zation or protonation according to pH 7.4 depending on the
model settings). All compounds from the literature train-
ing and test sets were simulated in neutral forms. Amber-
Tools15 [26] was then employed to create ligand topologies
for use in MD according to the General Amber Force Field
(GAFF) [27] and AM1-BCC QM potential [28], and this
full topology generation was run automatically and con-
verted to GROMACS format using ACPYPE (Rev: 7828)
[29]. Docking was carried out by ParaDockS 1.0.1 [30] with
a docking radius of 1.0 nm and the docking center set to
the center-of-mass coordinates of co-crystallized ligands.
Representative docked ligand conformations used as input
structures for MD were obtained after principle component
driven geometric clustering of the obtained ligand docking
poses. For that purpose, principle component analysis (PCA)
was performed on the docking poses with coordinates of
the heavy atoms taken as the variables [12]. After dimen-
sionality reduction, the PCA scores were used for k-means
clustering [31]. Any additional component or cluster was
taken into account if this led to a further increment of at
least 5% of the explained variance in coordinate space or
scores, respectively. The medoids of the obtained clusters
were chosen as representative binding poses (typically 2-3
per ligand) and were used as input for the MD simulations.
Prior to MD, protein-ligand structures were energy mini-
mized, solvated in TIP3P water [32] molecules (~11,000),
and CI~ and Na* counter ions were added to neutralize the
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system. Thermal pre-equilibration, temperature coupling,
pressure coupling, (grid-based) pair-list update frequency,
and long-range treatment of non-bonded interactions dur-
ing MD were performed as described previously [12]. All
energy minimizations and MD simulations including 1 ns
production runs were performed using GROMACS 4.5.5
[33] and the Amber14SB force field to describe the protein
[34]. Ordinary least squares (OLS) fitting for model train-
ing was performed using the Python scikit-learn 0.17 [35]
package, and LIE parameters (i.e., a, f, and y) from training
(see below) were used to predict AG,,,, of the D3R chal-
lenge compounds. An overview of the workflow is depicted
in Fig. 2.

For every compound, AG,;,;, was calculated using aver-
age ligand-environment interaction energies as obtained
from the multiple MD simulations that started from the
different poses obtained from clustering of binding poses
during molecular docking [12], using weighting accord-
ing to Eq. 2 [13], and simulations were run twice per bind-
ing pose [14] with interaction energy values written out to
disk every 10 ps. Average interaction energies for unbound
ligands were obtained from separate duplicated 1 ns produc-
tion simulations of the ligand solvated in (approximately
650 mol) TIP3P water molecules [32] using the same MD
settings as for the protein—ligand complexes. Subsequently,
interaction profiles between ligands and FXR as obtained
from the simulations for all binding poses were analyzed
using an in-house Python script, to identify protein ligand
interaction types using rule-based protocols described in the
supplementary material of [36].

AD assessment
As recently introduced by us [12], the reliability of the

LIE predictions was estimated using the following quan-
titative AD assessment approach. We use five AD criteria

Ligand
Preparation
+ Open Babel 2.3.9

+ AmberTools15

« ACPYPE (Rev 7828)

+ FXR structure (PDB
ID: 30MK)

+ Training compounds
(n=122)

* ParaDockS 1.0.1
* k-means clustering

Input Files Docking

Fig. 2 Schematic overview of the automated (iterative) LIE work-
flow used in this work. The pipeline starts from ligand and protein
structure preparation, followed by docking and MD simulations. The
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or confidence indices (ClIs) to obtain this estimation. The
CIs include the four parameters described in reference [12],
together with an estimate if AG,,,,, falls within the range of
experimental values used in model training. A score of 0 is

assigned per index according to the following rules:

1. AG,,,, should fall within the range defined by the mini-
mum and maximum values of calculated AG,,,, of train-
ing compounds.

2. The chemical similarity of the ligand (represented as
Tanimoto score, TS) should be higher than the cutoff
defined, which is the lowest TS value gained by com-
paring each training compound with the most similar
compound within the training set.

3. Average ligand—protein interaction energies in terms of
the AV and AV should fall within the 95 percentiles
of the training compounds based on the Mahalanobis
distance calculated from the centroid for the training
compounds.

4. The per-residue decomposition to the van der Waals
interaction energies of the test compounds are projected
onto the principal component analysis (PCA) space of
the training compounds score as well as the orthogonal
distances, and should be within the 95 percentiles of the
training compounds distribution.

5. Per-residue decomposition to the electrostatic interac-
tions, evaluated in the same way as the van der Waals
interaction energies under 4.

For every violation, the score for the corresponding rule
is assigned a value of 1. The resulting value for the (total) CI
score belonging to the binding free-energy prediction of a
given query compound is then obtained by summation of the
individual scores, and ranges from O (no violation and high
confidence) until 5 (all violated and low confidence) [12].

Prediction

« Scikit-learn 0.17
* a, B, y parametrization

+ GROMACS 4.5.5
+ Twice replicated 1 ns
productions

« D3R dataset (n = 46)
+ Applicability domain
(AD) analysis

LIE parameters are trained based on MD trajectories and used for
predicting AG,,,, for external test or D3R compounds



J Comput Aided Mol Des (2018) 32:239-249

243

Table 1 Model parameters for the LIE models for the benzimida-
zole, isoxazole and sulfonamide classes of compounds, and respective
errors and correlation metrics for the literature training sets

Benzimidazole Isoxazole Sulfonamide
a 0.33 0.10 0.14
p 0.12 0.10 0.08
Y -13.0 -31.8 -334
RMSE 3.8 29 2.9
SDEP, go.cv 4.1 37 3.8
r Pearson 0.68 0.55 0.52
p Spearman 0.65 0.52 0.58

y, root-mean-square error (RMSE) and standard error of prediction
for leave-one our cross-validation (SDEP;q_cy) are given in kJ
mol ™!

Results and discussion
Model training and testing based on literature data

The results of the training of our LIE models are summa-
rized in Table 1 and S1 (supplementary material). Correla-
tions between observed experimental AG ,, and calculated

AG,,,., values are depicted in Fig. 3. The performance of the

Benzimidazole

-50 -50

A Gabs

Fig. 3 Correlations between experimentally observed and calculated
binding free energies AG (kJ mol™!) for the literature training com-
pounds in the benzimidazole, isoxazole, and sulfonamide models.

Table 2 Overall statistics for literature test set for the benzimida-
zole and sulfonamide models, including standard errors of prediction
(SDEPy in kJ mol™1), total number of literature test compounds (n),

Isoxazole

models was evaluated by two types of quality metrics, i.e., in
terms of correlation coefficients (r Pearson and p Spearman)
and averaged deviations from experimental values (i.e., root-
mean-square error for the training set (RMSE), and stand-
ard error in prediction (SDEP| ,_cy) using leave-one out
cross-validation). The benzimidazole model showed higher
correlation coefficients (r=0.68, p=0.65) compared to the
isoxazole and sulfonamide models (r=0.55, p=0.52 and
r=0.52, p=0.58, respectively), and higher values for LIE
parameters « and f (and a lower off-set y value). RMSE and
SDEP; oo_cvy of the benzimidazole model are larger than
for the two other models (Table 1), but still within typical
experimental accuracy [37].

We tested the performance of the three models by
computing binding free energies for the external test sets
obtained from literature (Table 2). For the benzimidazole
models, r Pearson is 0.64 but the standard error in pre-
diction (SDEPy) for the test set is relatively high (5.9 kJ
mol~!). AD assessment was then applied to this dataset, and
the compounds were categorized based on their CI scores
(Table 2 and S2). From the 23 compounds of the benzi-
midazole test set, 8 compounds were categorized with CI
score =0, 6 showed a CI score of 1, and 9 compounds had
a Cl score of 2. By evaluating the deviation of AG,,,,, from

Sulfonamide

-50 -45 -40

AGobs AGobs

The solid line represents ideal correlation and dashed lines indicate
an error interval of +5 kJ mol™!

and number of compounds per CI category (with CI values represent-
ing the number of AD criteria violated by the respective subsets of
ligands)

n SDEPy r Pearson CI=0 Cl=1 CI=2 CI=3 Cl=4 CI=5
Benzimidazole 23 59 0.64 8 6 9 - - -
Isoxazole - - - - - - _ _ _
Sulfonamide 7 3.9 -0.23 - 3 3 1 - -

@ Springer
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Table 3 Standard deviation in prediction (SDEP.y, in kJ mol™") and
correlation metrics for benzimidazole compounds of the literature test
set for all test set benzimidazole predictions (All), and as specified
per subsets of test compounds with indicated CI scores

n SDEP.y r Pearson p Spearman
All 23 5.9 0.64 0.56
CI=0 8 5.0 0.79 0.71
CI=1 6 6.8 0.59 0.71
CI=2 9 6.1 0.61 0.37
CI=3 0 - - -
Cl=4 0 - - -
CI=5 0 - - -

experimental AG ,, per CI category (Table 3), it can be seen
that for the compounds with predicted confidence score =0,
SDEP_y, is within experimental accuracy [37], whereas for
increased CI scores this deviation is larger. This finding sup-
ports the use of our AD assessment approach to predict the
quality of our predictions. It should be noted however that
in this specific case the number of literature test compounds
with CI score =0 was relatively low (8/23).

The confidence in our predictions using the isoxazole and
sulfonamide models was affected by limited availability of
calibration data and the lack of test compounds with CI
score=0 (Table 2 and S2). The limited number of training
data (n=11) for isoxazoles hampered the use of an external
test set and for the seven sulfonamide test compounds from
literature, the linearity metrics showed negative correlation
with experiment (r Pearson = —0.23) and no compound fell
in the CI=0 category despite the ligand similarity between
training and test compounds. Ligand similarity was con-
firmed by our observation that the score for AD criteria 2
was 0 for all test compounds, indicating that similar com-

46 benzimidazole, 4 isoxazole, and 6 miscellaneous com-
pounds. For the sulfonamide and spiro compounds, we only
submitted compounds with CI score < 2, including respec-
tively 3 and 1 compounds only. The details on our D3R
predictions can be found in Table S2 of the supplementary
material and are summarized in Table 4.

After the experimentally determined binding affinities
for the D3R compounds were released, it was inferred that
the submitted sulfonamide, spiro, isoxazole and miscella-
neous compound predictions showed substantial deviation
from experimental values. SDEP values were 16.3, 8.3, 4.1
and 7.5 kJ mol~! respectively, in line with CI values of 2
(or higher for the miscellaneous compounds), Table 4 and
S2. The individual CI scores indicate a narrow scope of the
diversity in structures and protein interactions covered by the
corresponding training sets used, and/or a restricted range
of AG,,, values e.g. for the sulfonamide training set (—36.3
to —48.5 kJ mol~!, Table S1) when compared to the ranges
of AG,,, values of —24.8 to —38.0 kJ mol~' and —24.8 to
—45.2 kJ mol~! for the D3R sulfonamide and spiro com-
pounds, respectively, Table S2.

For the D3R benzimidazoles, 9 out of 46 compounds fell
into the CI score =0 category while the rest fell into CI=1
until CI=4 (Table 5 and S2). After the experimental values
were released, we found that SDEPy, is lowest and within
5.0 kJ mol™! for the nine compounds with CI score=0.
However, when one or two of the AD criteria parameters was
violated (for in total 34 ligands), the attributed SDEPy, is
substantially higher, i.e., 9.6 and 8.8 kJ mol ™!, respectively,

Table 5 Standard deviation in prediction (SDEP¢y in kJ mol™!) and
correlation metrics for benzimidazole compounds of the D3R set for
all D3R benzimidazole predictions (All) and as specified per subset
of compounds with indicated CI score

pounds may be involved in different protein—ligand interac- n SDEP.y r Pearson p Spearman
tions during simulation.

All 46 8.6 -0.09 -0.08
D3R compound predictions Cl1=0 0 >0 0.31 0.37

CI=1 19 9.6 -0.29 -0.33
The D3R Grand Challenge 2 involved predicting AGpred for g=§ 1; ?? 0.04 0.07
102 FXR agonists. Here, we report the performance of our CI_4 | 1.6 . - -
workflow for this set of compounds. The prediction work- CI_5 0 ‘ - -
flow is identical to the ones used for calculating AG,,,,, val- - - _ _
ues for the literature test set. We submitted predictions for
Table 4 Total number of n CI=0 cl=1 Cl=2 CI=3 Cl=4 CI=5
predictions (n) and number of
predictions per CI category Benzimidazole 46 19 15 2 1 -
for each subclass model of the Isoxazole 4 2 _ 1 3
D3R dataset (with CI values )
representing the number of Sulfonamide 3 - 3 - - -
AD criteria violated by the Spiro 1 - 1 - - -
respective ligands) Miscellaneous 6 - 3 1 2 -

@ Springer
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Table 5. For the compounds with either CI=3 or CI=4,
the trend is less conclusive (with SDEPy, values of 1.1 and
16.7 kJ mol™!, Table 5), but this refers to three compounds
only and it does not change our finding that when consider-
ing binders with CI score =0, the SDEP decrease to 5.0 kJ
mol~! and r Pearson and p Spearman increase up to 0.51 and
0.37, respectively, compared to the corresponding data for
all predictions. Nevertheless, it should be realized that this
includes a limited number of compounds and more diverse

Fig. 4 Relative frequencies of 0

FXR interactions during MD A
with training (a) literature test
(b) and D3R (c) sets of ben-
zimidazole ligands. Asterisks
indicate hotspots Ser90 and
Thr127

60

Contact frequency

60

Contact frequency

60

Contact frequency

experimental calibration data would be needed to extend
this dataset further.

Protein-ligand interaction profile analysis

We further analyzed our benzimidazole model in terms of
the interactions with the protein target as observed during
the MD simulations. We evaluated the dominant interac-
tions between the benzimidazole compounds and amino acid
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residues of the FXR active site and checked whether they
have consensus with each other as well as with the ones fea-
tured in available co-crystalized structures. The frequency
with which each ligand-residue interaction occurs per simu-
lation is described as horizontally stacked bar (distinguished
by colors for different types of interactions) in Figs. 4, 5 and
6. Because of their relatively large abundancy, hydrophobic
contact frequencies are presented in the figures after being
divided by an arbitrary factor of 10.

100

Fig. 5 Relative frequencies of

FXR interactions during MD CI=0
with literature benzimidazole
. 80
test compounds with a CI score
of 0, 1, or 2. Asterisks indicate
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Figure 4 shows that in the simulations of the training, lit-
erature test and D3R compounds, hydrogen bonds frequently
occur between ligands and two hotspots identified in the
FXR structure, i.e., Ser90 and Thr127, see Fig. 7. These key
interaction residues were also reported in literature studies
of FXR crystal structures in complex with benzimidazole
compounds [5, 15] and can be observed as well in the Roche
crystal structures for the 21 FXR-benzimidazole complexes
that were released during GC2.
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Fig. 6 Relative frequencies of
FXR interactions during MD
with D3R benzimidazole com-
pounds with a CI score of 0,

1, 2, 3, or 4. Asterisks indicate
hotspots Ser90 and Thr127
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Fig. 7 Training compound CHEMBL1642356 in complex with FXR,
residues Ser90 and Thr127 are shown in stick representation as well.
Figure was generated using VMD version 1.9.2 [38]

When inspecting the interaction profiles obtained from
simulations of test and D3R compounds as clustered based
on the CI scores for their predictions, the profiles varied
between them in a similar way for both subsets, Figs. 5 and
6. Our analysis shows that for the compounds for which our
AD analysis predicts highest confidence in AG,,, (i.e. for
those with CI score =0), Ser90 and Thr127 interactions are
most frequently observed. Figures 5 and 6 show that their
frequencies become smaller for predictions with lower con-
fidence (i.e., with higher CI score) and that hotspot inter-
actions are in these cases taken over by interactions with
other residues such as Arg89 and Asn41. This indicates that
compounds with lower CI score (higher confidence) tend
to have more similar dominant interactions, with a higher
frequency and less mixed with interactions to other non-
hotspot residues. Interestingly, the high frequency of hotspot
interactions observed during MD of the D3R compounds
with lowest CI score did not necessarily coincide with a
correspondence between the starting ligand-binding poses
for MD and binding orientations observed in crystal struc-
tures from Roche (as released during GC2). Whereas the
crystal structures show large correspondence in typical bind-
ing poses for benzimidazole compounds, we observed root-
mean-square deviations in atomic positions between docked
MD-starting poses and corresponding poses in the Roche
structures of up to 0.5 nm. When retrospectively calibrating
an LIE model for selected benzimidazole compounds from
the D3R dataset (with the benzimidazole co-crystallized
Roche structure /hoia as protein template) for which we
could use docked poses with similar binding orientations
as in the co-crystallized D3R structures only, we obtained a
benzimidazole LIE model with similar values for a (0.33),
£ (0.08) and y (—13.0 kJ mol~") but with lower predictiv-
ity (RMSE=4.4 kJ mol~!, SDEP, ,,_cy = 4.8 kJ mol~!,

@ Springer

r Pearson=0.41, p Spearman =0.28) than for our trained
benzimidazole model, cf. Table 1.

Conclusions

We reported here our participation in D3R GC2 by employ-
ing eTOX ALLIES, an automated workflow for binding affin-
ity prediction with AD analysis. The methodology consists
of molecular docking, MD simulation, and iterative LIE to
calculate binding free energies of query compounds by using
pre-calibrated parameters obtained from curated experimen-
tally observed binding free energies from literature. This
semi-empirical end-point method represents an alternative
for calculating binding affinities with feasible speed and
accuracy.

When applied to the blind binding affinity prediction for
D3R GC2 farnesoid X receptor agonists, we assessed the
predictive reliability by attributing applicability domain
(AD) analyses to measure the confidence of the performed
calculations. Using confidence scores we were able to dis-
tinguish predictions with low and high confidence, which
can thus be an indicator of the performance of our approach.
For the small set of (9) predictions with highest confidence,
experimental accuracy was obtained (SDEP=5.0 kJ mol™h).
We additionally analyzed protein—ligand interactions during
MD and compared MD-starting ligand-binding poses with
crystal structure data, and observed that the frequency of
hotspot interactions (with FXR residues Ser90 and Thr127)
gave a direct indication of the confidence in our predictions.
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