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Bogumił Kamiński1 · Michał Jakubczyk1 ·
Przemysław Szufel1

Published online: 24 May 2017
© The Author(s) 2017. This article is an open access publication

Abstract In the paper, we consider sequential decision problems with uncertainty,
represented as decision trees. Sensitivity analysis is always a crucial element of deci-
sion making and in decision trees it often focuses on probabilities. In the stochastic
model considered, the user often has only limited information about the true values of
probabilities. We develop a framework for performing sensitivity analysis of optimal
strategies accounting for this distributional uncertainty. We design this robust opti-
mization approach in an intuitive and not overly technical way, to make it simple to
apply in daily managerial practice. The proposed framework allows for (1) analysis
of the stability of the expected-value-maximizing strategy and (2) identification of
strategies which are robust with respect to pessimistic/optimistic/mode-favoring per-
turbations of probabilities. We verify the properties of our approach in two cases: (a)
probabilities in a tree are the primitives of the model and can be modified indepen-
dently; (b) probabilities in a tree reflect some underlying, structural probabilities, and
are interrelated. We provide a free software tool implementing the methods described.

Keywords Decision trees · Decision optimization · Decision sensitivity

1 Introduction

Sequentiality and uncertainty are inherent in managerial practice. The former means
that managers have to consider multi-staged strategies, encompassing several actions
following one another, rather than only a single action; the latter—that a company’s
payoffs depend not only on managers’ actions but also on exogenous events (states
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bkamins@sgh.waw.pl

1 SGH Warsaw School of Economics, Al. Niepodległości 162, 02-554 Warsaw, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10100-017-0479-6&domain=pdf
http://orcid.org/0000-0002-0678-282X


136 B. Kamiński et al.

of the world), which may often be perceived as random from the perspective of the
decision maker. The actions and reactions are usually intertwined, further complicating
the picture. Decision trees are used as a model that helps in discovering, understanding,
and communicating the structure of such decision problems—see Clemen and Reilly
(2001) and Waters (2011).

The decision makers are often uncertain about the exact parameters of such trees. In
one line of literature, the payoffs are defined imprecisely as intervals, e.g. see Barker
and Wilson (2012) and Cao (2014). Another approach that we focus on in the present
paper is to assume that a decision maker cannot uniquely assign the probabilities to
the possible events (Huntley and Troffaes 2012; Jaffray 2007; Walley 1991). This
was dubbed ambiguity by Borgonovo and Marinacci (2015); however, other terms are
sometimes used (e.g. second-order uncertainty). Importantly, these probabilities are
often uncertain in a non-stochastic way, precluding the assignment of any probability
distribution (hence, second-order); this was confirmed by our survey among managers
taking an MBA course (detailed description of the survey and its results are available at
http://bogumilkaminski.pl/pub/mbasurvey.pdf). Such a scenario is a natural setting for
adapting ideas from the literature on distributionally robust optimization, see e.g. the
work of Delage and Yinyu (2010) and references therein.

In what follows, we assume that if the decision maker knew the probabilities, then
she would be willing to base her decision on the expected value principle. Due to
non-stochastic distributional uncertainty there is no single expected value; hence, a
need for a sensitivity analysis (SA) arises, to learn how the output of the decision
making process changes when the input is varied—see Saltelli et al. (2009). The
importance of a thorough SA is well known and discussed by numerous publications,
e.g. Borgonovo and Tarantola (2012). Kouvelis and Yu (2013) point out that uncertainty
is a basic structural feature of any business environment and hence should be taken
into account in optimal decision making. In particular, uncertainty cannot be replaced
by a deterministic model—the optimal solution of a deterministic model is often very
different from the optimal solution of a model where uncertainty is present. Kouvelis
and Yu (2013) further show that in sequential problems the impact of these uncertainties
on decision optimality is even greater than in one-time decisions.

The case when multiple probability distributions can be considered in a decision tree
has been previously studied in the literature. Høyland and Wallace (2001) consider
assigning a probability density function to each node within a tree for sequential
decision making. However, they note that it might be difficult for a user to decide,
firstly, what probability density function should be assigned to a particular node and,
secondly, how those probabilities should be correlated. Huntley and Troffaes (2012)
present several ideas for choice functions, i.e. criteria the decision maker may use to
select a subset of strategies. For example, the maximality criterion suggests selecting
a strategy X that is not uniformly worse than some other strategy Y (uniformly worse
meaning thatY offers a greater expected value for all feasible probability distributions).
Unfortunately, this criterion may lead to multiple strategies being selected, possibly
confusing the decision maker. The solution could be to proceed the other way round:
to determine how rich the family of probability distributions may be, in order for the
base case strategy to remain optimal; a concept of admissible interval (Bhattacharjya
and Shachter 2012).
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The approach we propose is most suitable when a decision problem is solved
once but the optimal strategy is then applied in numerous individual cases. First-
order uncertainty can be addressed by calculating the expected value; however, the
distributional uncertainty cannot be averaged-out, see the discussion above, as well as
in Ben-Tal and Nemirovski (2000), Høyland and Wallace (2001), Huntley and Troffaes
(2012) and Kouvelis and Yu (2013). For example, let us consider a bank designing a
multi-step debt recovery process. The debt recovery process can be defined and solved
for a single debtor, yet the policy developed will be used in numerous cases. Since
there may be multiple potentially long paths, the histories of initial implementations
will provide only limited information for improving the estimates of the probabilities.
Another type of problem that is also addressed in our paper is the situation where
many different problems are solved and the long term outcome is what matters, e.g. a
capital investor devising financing plans for multiple start-ups. This scenario precludes
learning the probabilities from past implementations of the decision. In summary, the
setting we propose is valid when the expected value is a natural policy that should be
used to select an optimal decision, but it is not reasonable to assume that at the moment
of making the decision the decision maker may collect enough data to quantitatively
assess the distributional uncertainty of the probabilities in the decision tree.

The contribution of the paper is threefold: (1) a conceptual framework for sensitivity
analysis of decision trees; (2) a methodology for performing SA when values in several
nodes change simultaneously, and (3) a software implementation that enables practical
application of the concepts discussed in the paper. In the following three paragraphs,
the contribution is presented in more detail.

Firstly, a single conceptual framework for decision tree sensitivity analysis is cre-
ated. The framework allows us to conduct threshold proximity SA of decision trees
(Nielsen and Jensen 2003), including alternative approaches to that of maximality
alone. In particular, the framework is also able to cover the Γ -maximin criterion
(Huntley and Troffaes 2012), under its appropriate parameterization. In doing so, we
keep the SA setup simple, e.g. consider only trivial families of probability distribution
perturbations, which do not require numerous additional meta-parameters, making it
easier to apply by practitioners.

Secondly, the SA methodology proposed in the paper may be conducted simulta-
neously for multiple parameters in a tree (i.e. the variation in combination, see French
(2003)), while the standard approach in the literature is to change parameters one at
a time and then inspect the results using a tornado diagram, e.g. Briggs et al. (2006),
Briggs et al. (2012), Howard (1988), and Lee et al. (2009). We also show how the
results of such SA relate to one another for various types of trees. In particular, we
consider non-separable trees, i.e. trees in which probabilities in various parts of the tree
are interrelated, as, for instance, to represent the same state of the world. As we show
in the paper, the interrelations between the parameters both complicate the analytical
approach and can lead to non-intuitive results.

Thirdly, we provide an open source software package that calculates all the concepts
defined in the paper—Chondro. The Chondro web page can be accessed at https://
github.com/pszufe/chondro/. The software can work on the dictionary representation
of decision trees (see the documentation on the software’s home page) as well as being
able to open decision trees from SilverDecisions, a software for visual construction

123

https://github.com/pszufe/chondro/
https://github.com/pszufe/chondro/


138 B. Kamiński et al.

Fig. 1 A sample decision tree (all trees drawn using http://silverdecisions.pl/)

of decision trees, available at http://silverdecisions.pl/, which also has decision and
value sensitivity analysis functionality.

The paper is organized as follows. In Sect. 2, we introduce a formal model of
a decision tree and introduce an important distinction between two types of trees:
separable and non-separable. In separable trees, the probabilities in various chance
nodes can be changed independently; in non-separable trees, there are constraints
defining the relationships between these probabilities. We then present our methods
of SA focusing on separable trees in Sect. 3. We discuss how the non-separable case
differs in Sect. 4. Section 5 concludes the paper. The proofs of all the remarks have
been placed in the Appendix.

2 A model of a decision tree

A decision tree is constructed using a directed graph G = (V, E), E ⊂ V 2, with set
of nodes V (we only consider finite V ) split into three disjoint sets V = D∪ C ∪ T of
decision, chance, and terminal nodes, respectively. For each edge e ∈ E we let e1 ∈ V
denote its first element (parent node) and let e2 ∈ V denote its second element (child
node). In further discussion we use the following definition: a directed graph is weakly
connected if and only if it is possible to reach any node from any other by traversing
edges in any direction (irrespectively of their orientation).

Various types of nodes represent different stages of a sequential decision problem.
In a decision node, the decision maker selects an action, i.e. one of the edges stemming
from this node (one of the edges having the node in question as the parent). In a chance
node, one of the edges stemming from it (a reaction) is selected randomly. Terminal
nodes represent the end of a sequence of actions/reactions in the decision problem.
When drawing a tree, decision nodes are typically represented as squares, chance nodes
as circles, and terminal nodes as triangles, usually with the children drawn to the right
of their parents. For example, in Fig. 1 we have D = {d}, C = {c}, T = {t1, t2, t3},
and E = {(d, c), (d, t3), (c, t1), (c, t2)}.

A decision tree is equipped with two functions: one denoting payoffs, y : E → R,
and the other denoting probabilities, p : {e ∈ E : e1 ∈ C} → [0, 1]. With this for-
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malism we make the following assumptions: payoffs are defined for all edges and
may follow both actions and reactions; probabilities are defined only for edges stem-
ming from chance nodes. We allow zero probabilities in the general definition of a
decision tree, which simplifies the technicalities in subsequent sections. In Fig. 1, we
have y(d, c) = 10, y(d, t3) = 20, y(c, t1) = 20, y(c, t2) = 0 and p(c, t1) = 75%,
p(c, t2) = 25%.

The decision tree DT is a tuple (G, y, p) satisfying the following conditions:

C1) there exists r ∈ V (root) such that ∀v ∈ V \{r} there exists a unique path from
r to v, written as r � v;

C2) all and only terminal nodes have no children, i.e. ∀v ∈ V : v ∈ T ⇔ ¬∃e ∈
E : e1 = v;

C3) p(·) is correctly defined, i.e. ∀v ∈ C : ∑
e∈E,e1=v p(e) = 1;

C1 precludes loops in G and guarantees that the root is identified. We will let r(DT )

denote the root of DT . In Fig. 1, we have r(DT ) = d. We will denote all trees where
all p(·) > 0 as proper trees; if this condition is not met, we refer to the tree as improper.

For a given tree DT = ((V, E), y, p), we let DT (v) denote its subtree rooted in
v ∈ V . Formally, DT (v) = ((V ′, E ′), y′, p′) where

– V ′ = {u ∈ V : v = u or v lies on r(DT ) � u},
– E ′ = E ∩ (V ′2),
– y′ and p′ are y and p, respectively, both restricted to E ′.

In Fig. 1, if we consider DT (c), then V ′ = {c, t1, t2}, E ′ = {(c, t1), (c, t2)},
y(c, t1) = 20, y(c, t2) = 0, p(c, t1) = 75%, and p(c, t2) = 25%.

The decision maker is allowed to select actions in decision nodes. A strategy (pol-
icy) in a tree DT is defined as a decision function d : {e ∈ E : e1 ∈ D} → {0, 1}, such
that ∀v ∈ D : ∑

e∈E,e1=v d(e) = 1. Under this definition the decision maker can only
use pure strategies, i.e. explicitly select actions rather than select probabilities and
randomize actual actions. A strategy unanimously prescribes an action in every deci-
sion node, different strategies (different functions d(·)) can, however, be considered
as equally good.

We assume that the decision maker maximizes expected payoff, defined as follows:1

P(DT , d) =
⎧
⎨

⎩

0 if r(DT ) ∈ T ,∑
e:e1=r(DT ) p(e) (y(e) + P (DT (e2), d)) if r(DT ) ∈ C,

∑
e:e1=r(DT ) d(e) (y(e) + P (DT (e2), d)) if r(DT ) ∈ D.

(1)

Less formally, when being in a terminal node the expected payoff of the remain-
ing actions and reactions amounts to 0. Otherwise, in a decision (chance) node, the
expected payoff is defined recursively as the payoff (expected payoff) of the most
immediate action (reactions) plus the expected payoff of the subtree (subtrees) we
immediately reach.

A strategy d maximizing P(DT, d) will be designated as expected payoff optimal
or P-optimal. Under this definition there will usually be many P-optimal strategies,

1 Using function d defined for a larger tree DT also for subtrees, e.g. DT (e2), causes no problems.
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Fig. 2 A non-separable decision tree: chance nodes c2 and c3 are interrelated

because changing d for edges down the tree which cannot be reached with a given d or
p (if p is zero for some edges, i.e. in an improper tree) does not change P(DT , d). For
a given strategy d in DT , we let reachable set (of vertices) to denote a set of vertices
of a maximal, weakly connected subgraph of graph (V, E∗) containing r(DT ), where
E∗ = {e ∈ E : p(e) > 0 ∨ d(e) = 1}. We will characterize two strategies d1, d2
as identical, if their reachable sets are identical. Of course, multiple non-identical
strategies may also offer an equal expected payoff and be P-optimal.

For future use, we will designate an almost reachable set (of vertices) a set of ver-
tices of a maximal, weakly connected subgraph of graph (V, E∗∗) containing r(DT ),
where E∗∗ = {e ∈ E : e1 ∈ C ∨ d(e) = 1}. We will categorize two strategies d1,
d2 as strongly identical if their almost reachable sets are identical. If two strategies
are strongly identical they are identical. Conversely—identical strategies on G are
strongly identical on a subgraph of G where all subtrees starting from edges where
p(e) = 0 are removed. Thus, for a proper DT we have E∗ = E∗∗, and so the reachable
set and almost reachable set coincide for every single strategy. In such a situation two
strategies are strongly identical, if they are identical.

Before we discuss the sensitivity analysis methods, we need to introduce the concept
of separability proposed by Jeantet and Spanjaard (2009). A decision tree is separable if
changing the probabilities in one chance node does not automatically require changing
any probabilities in any other chance node (in other words, condition C3 given in the
definition of a decision tree in Sect. 2, is sufficient for the probabilities in the tree to be
correctly specified). Formally, the set of all allowed probability distributions across all
chance nodes is equal to the Cartesian product of the possible probability distributions
in every chance node, see Jeantet and Spanjaard (2009).

Often, the probabilities across two or more chance nodes may be interrelated,
e.g. entire subtrees may be repeated in the decision tree (coalescence), and two different
chance nodes may represent the same uncertain event. In Fig. 2, a host is wondering
who will come to her party, and the presence of Alice and Bob is independent. Changing
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the probability of Bob showing up requires an analogous change in the other chance
node, i.e. chance nodes c2 and c3 are interrelated. For future use, observe that Alice
and Bob are amiable but dislike each other and the party is only going to be fun if
exactly one is present.

Probabilities in different chance nodes may also be interrelated, if they are derived
(e.g., using Bayes’ formula) from a common, exogenous parameter. In this case, chang-
ing this parameter requires recalculating all the derived probabilities.

If at least two chance nodes are interrelated, we will characterize the entire decision
tree as non-separable. Mathematically, non-separability denotes that not all functions
p are allowed; e.g. in Fig. 2, all such p where p(c2, t1) 
= p(c3, t3) are forbidden.

When analyzing non-separable trees, we consider a space of assessed probabilities
which are separable (using terminology presented in Eidsvik et al. (2015)); they need
not be directly represented in the tree. The inferred probabilities are used in the tree,
and they are derived from the assessed probabilities via formulas, possibly linking
more than one assessed probability in a given edge. In what follows, we assume that
inferred probabilities are continuous in assessed probabilities, which is true when
using Bayes’ formula.

As a side note, observe that we could alternatively use a space of assessed (general)
parameters, i.e. numbers not necessarily restricted to [0, 1] intervals, etc. This change
would introduce a qualitative difference between separable and non-separable cases
and would require redefining the approach to sensitivity analysis in a way that rendered
the two cases less compatible, which is undesirable.

3 Sensitivity analysis in separable trees

In this section, we propose several approaches to SA in separable trees. Even though
this case may be of limited use in practice, as it requires all the uncertainties to be
different along every branch of the tree, it makes it easier to define the ideas first, before
proceeding to non-separable trees in the next section. Below, in the first subsection, we
focus on the threshold SA, where we analyze how stable a P-optimal strategy is. Then,
we focus on the scenario SA, and define an optimal strategy for various scenarios of
probability perturbation (the range of perturbations for which the currently optimal
strategy remains optimal can still be calculated). The notions defined here are then
discussed for non-separable trees in Sect. 4.

The decision maker may consider the amount of ambiguity regarding different
probabilities as different, and for that reason we introduce an additional function
s : C → [0, 1], representing whether a given node should be subject to sensitivity
analysis. In the simplest approach, the decision maker could choose the values of s(c)
from the set {0, 1}, then s(c) = 1 denotes that c should be subject to sensitivity analysis,
as the probabilities of events stemming out of this node are not given precisely, and
s(c) = 0 denotes that probabilities are given precisely. Values between 0 and 1 could
also be used to denote various degrees of ambiguity (and the formulas below account
for this possibility). The choice of the value is subjective and left to the judgment of
the decision maker. For instance consider three chance nodes c1, c2 and c3. Chance
node c1 represents a coin toss, so the decision maker sets s(c1) = 0 as she assumes
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that the probabilities are known. Then the decision maker feels that she is twice as
certain about the value of probabilities in c2 than c3, so she sets s(c2) = 0.5 and
s(c3) = 1.

3.1 Stability analysis

We define the distance between two decision trees DT ′ = ((V, E), p′, y′) and DT
= ((V, E), p, y) to be:

||DT, DT ′||s = max
e∈E,e1∈C

|p′(e) − p(e)|
s(e1)

. (2)

Observe that the structure of the trees (i.e. (V, E)) must be identical and that the
distance depends on s(·). Payoff functions do not impact the formula and do not
need to be identical (typically they will be). In Eq. (2), we take 0

0 = 0, effectively
forbidding any perturbation for chance nodes with s(·) = 0, meaning that the decision
maker is fully confident with the assigned probabilities. Moreover, in SA we assume
that ∃v ∈ C : s(v) > 0 (i.e. the the decision maker is uncertain of at least one
probability). The above definition is a generalization of the total variation distance for
multiple probability distributions (maximum of total variation distances), cf. Tierney
(1996).

For further reference, we define a minimum positive sensitivity value:

s̃ = min{s(v) : v ∈ C, s(v) > 0} (3)

Observe that in the simple case, where s(v) ∈ {0, 1}, we have s̃ = 1.
For a given tree DT , sensitivity function s(·), and a P-optimal strategy, d, we say d

is ε-stable, if it is also P-optimal for any DT ′ such that ||DT, DT ′||s ≤ ε. In a given
tree, DT , with sensitivity function, s, we then define a stability index of a P-optimal
strategy d as:

I (DT, d, s) = sup{ε ∈ [0,+∞]: d is ε-stable}. (4)

We include d explicitly as an argument of I (·, ·, ·) because more than one strategy
may be P-optimal for DT . Observe that Eq. (4) does not yield any results for a non-
P-optimal d (having to calculate sup ∅). The definition of I (DT, d, s) follows from
the following remark, showing that the region of stability is convex.

Remark 1 Take 0 ≤ ε1 ≤ ε2, a separable decision tree with some sensitivity function
s(·), and a P-optimal strategy, d. If d is ε2-stable, it is also ε1-stable. If d is ε1-stable
for ε1 ≥ 1/̃s, it is also ε2-stable.

The interpretation of I (DT, d, s) is straightforward and should be intuitive even for
a non-technical decision maker: if none of the initial probabilities assessed imprecisely
change by more than I (DT, d, s), then the strategy remains optimal. Thus, the larger
the I (DT, d, s), the more confident the decision maker may feel about the original
P-optimal strategy, as a larger deviation is allowed with no consequences for the
recommended course of actions.
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Based on the properties of I (DT, d, s) stated in Remark 1, we can numerically
approximate I (DT, d, s) using a bisection in [0, 1/̃s ]. For instance, in the simple
case where s̃ = 1 we check the stability for ε = 1

2 ; if d is stable, we check ε = 3
4 , if d

is not, we check ε = 1
4 , etc. Verifying stability for a given ε in separable trees can be

done via backward induction. Intuitively, we need to try to modify probabilities (where
allowed, i.e. s(·) > 0) in such a way that d is not picked as optimal when solving the
tree. That requires worsening the expected payoffs for chance nodes on the optimal
path (for the almost reachable set) and improving the payoffs for chance nodes off
the optimal path, both in backward induction. Changing payoffs in a single node is
done via reallocating probabilities between edges stemming out of this node (cf. Eq. 1)
and can be done, for example, using a greedy algorithm or linear programming, as
convenient.

A unique P-optimal strategy will have a non-trivial region of stability as indicated
by the following remark.

Remark 2 Take a separable (not necessarily proper) decision tree, DT , with some
sensitivity function, s(·). Assume all P-optimal strategies are strongly identical
(have the same almost reachable set). Then, for any P-optimal strategy, d, we have
I (DT, d, s) > 0.

The stability index is specific for the decision problem as a whole in the following
sense.

Remark 3 Take a separable proper decision tree, DT , with some sensitivity func-
tion, s(·). For any two P-optimal strategies, d1 and d2, we have I (DT, d1, s) =
I (DT, d2, s).

Remark 3 will often hold trivially in proper trees in the following sense. If there
exist two, non-identical P-optimal strategies, d1 and d2, and there is a non-degenerate
chance node being in the reachable set of only one of them, then I (DT, d1, s) =
0 = I (DT, d2, s). (A chance node is called non-degenerate, if the expected pay-
off, cf. equation 1, calculated in this node has a non-zero derivative with respect to
probabilities p(·)). If there is no such non-degenerate chance node for any pair of
non-identical P-optimal strategies, then the stability index will be equal and greater
than zero. For proper trees, we can then simply let I (DT, s) denote the stability index,
meaning it is valid for any P-optimal strategy.

The stability index of two strongly identical strategies is also equal for improper
trees (not necessarily for two identical strategies: they may start differing when part of
a tree starts being reachable after perturbing probabilities). Using Remark 2, we also
see that if all P-optimal strategies are strongly identical, then this (unique) index will
be greater than 0.

Generally, for improper trees there can exist two P-optimal strategies with different
stability indices. For example, if in Fig. 1 we set p(c, t1) = 0, p(c, t2) = 1 and
y(d, t3) = 10 and allow perturbation of the probabilities in the chance node c, then
both strategies, involving d(d, t3) = 1 (lower branch of the tree) and d(d, c) = 1
(upper branch), are P-optimal, but the stability index of the first is equal to 0 and that
of the second is equal to 1.
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The managers we surveyed expressed an interest in seeing which strategy is optimal
when the perturbation of probabilities is unfavorable and they had strong interest in
the most likely outcome of a decision. Regarding the former, observe that unfavorable
perturbation may mean different perturbations in a single chance node, depending
on which actions are selected in subsequent (farther from the root) nodes. Regarding
the latter, we find that simply deleting all edges except for the most likely ones is too
extreme and seek to embed this mode-favoring approach into the general framework of
maximizing the expected value with modified probabilities. We present our approach
in the following subsection.

3.2 Perturbation approach

For a given tree, DT , strategy, d, a sensitivity function, s, and a perturbation bound,
ε ∈ [0,+∞], we define a worst-case-tending expected payoff:

Pmin(DT, d, s, ε) = min
{DT ′ : ||DT,DT ′||s≤ε}

P(DT ′, d). (5)

Using a standard maxi-min approach from robust optimization theory (Ben-Tal et al.
2009), we denote strategy d as Pmin,ε-optimal, if it maximizes Eq. (5). Obviously,
Pmin,0-optimality coincides with P-optimality. If ε ≥ 1/̃s then applying Pmin,ε-
optimality coincides with a standard Wald (maximin) rule.

Analogously, we can consider a best-case-tending perturbation:

Pmax(DT, d, s, ε) = max
{DT ′ : ||DT,DT ′||s≤ε}

P(DT ′, d) (6)

and define a Pmax,ε-optimal strategy as the one that maximizes Eq. (6). Again, Pmax,0-
optimality coincides with P-optimality, and Pmax,1/̃s-optimality coincides with a
standard maximax rule.

From the computational perspective, for a given ε we can simply look for a Pmin,ε-
optimal and a Pmax,ε-optimal strategy by backward induction, modifying probabilities
in chance nodes appropriately. Repeating the calculations for various ε provides an
approximate split of the [0, 1/̃s ] interval into subintervals in which various strate-
gies are Pmin,ε-optimal and Pmax,ε-optimal. Interestingly, it may happen that a single
strategy is Pmin,ε-optimal (Pmax,ε-optimal) for two (or more) subintervals separated
by another subinterval. For example, in Fig. 3 the strategy involving d(d1, c1) = 1
is optimal for baseline probabilities (displayed in the figure), is not Pmin,0.1-optimal
(as its expected payoff can fall under such perturbation down to 10), and again is
Pmin,1-optimal (its expected payoff cannot fall any further).

We now want to introduce a mode-tending perturbation of probabilities, i.e. putting
more weight on the most probable events or increasing the contrast between the
assigned probabilities—an approach explicitly required by the surveyed managers
(in a way, representing being even more certain about the initial assignment of prob-
abilities). Several approaches could be considered here, therefore it is worthwhile
explaining why we adopted a specific one by beginning with a discussion of other
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Fig. 3 An exemplary separable decision tree where Pmin,ε-optimality regions are not convex

possibilities. Defining the worst(best)-case-tending can be looked at as finding, for a
given node, the set of new probabilities (x = (x1, . . . , xn), probabilities of respective
edges stemming from the node), within a ball of radius ε centered at original probabil-
ities (p = (p1, . . . , pn)) that minimizes (maximizes) the average payoff of respective
subtrees weighted with x. One natural idea would be to utilize an analogous approach
but, instead, to maximize the average p weighted with x, which would enforce putting
even more emphasis on likely events (we would tend to increase those components of
x which correspond to the large components of p). The disadvantage of this approach
is that reversing it (minimizing the average) leads not to assigning equal probabilities
to all the events (within respective chance nodes, which we would consider as natural),
but to selecting the least-likely events, which is an odd scenario.

Another approach would be to use the entropy of x. That works nicely for maxi-
mization (leading to Laplacean, equal probabilities), but does not unequivocally select
one set of probabilities when minimizing entropy. That is why we decided to use diver-
gence (Kullback and Leibler 1951), given by the formula

DKL(P||Q) =
∑

i∈A

P(i) log

(
P(i)

Q(i)

)

, (7)

where P and Q are discrete probability distributions having the same domain A. It
is a measure of the non-symmetric difference between two probability distributions.
For various x with a given entropy, we want to select the one that is closest to the
original p, i.e. minimizes DKL(x||p). It can be written equivalently as the following
optimization task for x with parameter θ :

minimize DKL(x||p)

subject to: DKL(x||u) = θ ∧ x ≥ (0) ∧
n∑

i=1

xi = 1,
(8)
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Fig. 4 The lower part of a Machina triangle with paths for four various probability distributions (dots)
perturbed with a softmax formula. ε-balls shaded in gray for two initial distributions

where u = ( 1
n , . . . , 1

n ) (of length n). Taking θ = 0 yields equal probabilities (Laplace
case), and that is why using DKL(x||u) in a constraint is more illustrative than entropy
(while equivalent). Increasing θ leads to considering distributions more and more
concentrated in single points. Solving this task yields a convenient looking formula,
presented in the following remark.

Remark 4 The solution of the optimization problem (8) for various values of θ yields
x changing along the path given by the following soft-max formula with parameter
γ ∈ [0,+∞[:

xi = pγ

i∑n
j=1 pγ

j

. (9)

Using γ is more convenient than using θ : γ = 0 implies equating all probabilities
in x (and corresponds to θ = 0), γ = 1 implies using original probabilities x = p
(corresponds to θ = DKL(p||u)), and for γ → +∞ the probabilities in x concentrate
in a mode (modes) of p (all xi corresponding to probabilities pi less than max pi
tend to 0, and all the remaining ones tend to equal positive values). Simple algebraic
manipulations show that dxi/dγ |γ=1 > 0 if and only if pi >

∏n
j=1 p

p j
j , i.e. a

geometric mean of pi weighted by pi . In short, if pi is large, it gets larger; and if it is
small, it gets smaller.

In Fig. 4, we illustrated paths of x (thick lines) for various starting points (p, four
thick dots). In the figure, we can see two coordinates of a three-element vector of
probabilities, with the third being residual value, a well known technique called a
Machina triangle (Machina 1987), we only show the lower half of it). For γ = 0,
all the paths meet in ( 1

3 , 1
3 ); for γ → +∞, they wander towards vertices of the

triangle. As can be seen, the paths may be straight segments but may also involve
non-monotonicity, both in the γ ∈ [0, 1] and in γ ∈ [1,+∞[ part. We denoted with
shaded regions various ε-balls around two original probabilities (A and D).

We can now define Pmode,ε-optimality. For a given ε ≥ 0 we transform in each
chance node the probabilities according to Eq. (9) for as large γ as possible while
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||DT, DT ′||s ≤ ε. Such γ can be found by means of any one-dimensional root-
finding algorithm, since increasing γ increases maxi |xi − pi |. Observe that in each
chance node γ is selected independently. For these perturbed probabilities, we select
the expected payoff maximizing decision, denoting it as Pmode,ε-optimal. Repeating
the calculations for various ε provides an approximate split of the [0, 1/̃s ] interval
into subintervals in which various decisions are Pmode,ε-optimal.

The notions of stability and P·,ε-optimality can be linked.

Remark 5 Take a separable tree, DT , with a sensitivity function, s(·). If d is P-
optimal, then it is also Pmin,ε-optimal, Pmax,ε-optimal, and Pmode,ε-optimal for any
ε ≤ I (DT, d, s).

The relation between stability and P·,ε-optimality is illustrated in Fig. 5. The left part
presents an exemplary tree with three strategies d1, d2, and d3 (setting, respectively,
d(d1, c1) = 1, d(d1, c2) = 1, and d(d1, c3) = 1) and baseline probabilities. d1
is P-optimal. The right part presents the impact of modifying probabilities on the
expected payoff of these three strategies. The horizontal axis presents the deviation in
the probability of selecting the upper edge (leading to t1, t3, and t5, respectively); the
probability for the lower edge changes residually. We independently set the individual
deviations for d1, d2, and d3, but we decide jointly on the range of feasible deviations
(the width of a shaded region). Expected payoffs are denoted with solid, dashed, and
dotted lines for d1, d2, and d3, respectively. If we allow the probabilities to vary in
the range of ε1 ≈ 3.63%, then d1 remains P-optimal, while beyond this range it may
start losing to d2 (when p(c1, t1) and p(c2, t3) are decreased, marked with a thin
horizontal line). If the decision maker is confident that the initial probabilities are
imprecise by no more than 3.63%, then d1 is definitely a good choice.

If the probabilities may vary by more than 3.63%, then d1 may not be P-optimal.
Then, the decision maker may prefer to make a safe choice, i.e. select a strategy that
offers the greatest expected payoff in the case of the most unfavorable perturbation.
Obviously, for perturbations within ε1, d1 is such a strategy (cf. Remark 5). As Fig. 5
shows, for deviations smaller than ε3 ≈ 26.67%, d1 remains Pmin,ε-optimal. Only
when we allow a larger deviation, may the possible expected payoff of d1 be worse
than the worst possible expected payoff of d3; hence, d1 ceases to be the safest choice.

If we think in terms of the most likely outcomes, then no matter which deviation
is allowed, d1 remains Pmode,ε-optimal, because mode-tending means increasing the
probability of a greater payoff for d1 and of a smaller payoff for d2 and d3 (in all cases
it denotes moving to the right in Fig. 5).

One more remark is due. The results of the stability analysis and P·,ε-optimality
depend strongly on how the decision problem is structured. For instance, we can split a
single edge stemming out of a chance node into two edges and assign them half of the
original probability. Nothing has changed in terms of the base case representation of the
problem. However, a given ε now effectively allows for twice as large a variation in the
probability of the event (before split), and so the results of all the analyses may change.
On the one hand, this may be perceived as a disadvantage of the proposed methods but,
on the other hand, we would argue that selecting a particular way of representing the
problem apparently provides insight into how a decision maker perceives the distinct
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Fig. 5 An exemplary decision tree (above) with sensitivity analysis (below) for three strategies (going to c1,
c2, and c3 represented with thick solid, dashed, and dotted line, respectively). The horizontal axis denotes
the deviation in the probability of going to the upper node (t1, t3, and t5, respectively) independently for each
strategy. c1 is optimal for baseline probabilities, shaded regions illustrate boundaries for stability (dark),
Pmax,ε-optimality (medium), and Pmin,ε-optimality (light). It is Pmode,ε-optimal for all the deviations
(mode-tending requires maximizing Δp). Gray horizontal lines drawn to help see where expected payoffs
equate (observe that the expected payoff of the decision to choose c3 temains constant for Δp > 20% as
probability of t6 is equal to 20%). ε1 ≈ 3.63%, ε2 = 8%, and ε3 ≈ 26.67%

uncertainties, events, and imprecise probabilities. It is therefore not surprising that
changes in perception should be reflected in changes in the results of SA.

4 Sensitivity analysis in non-separable trees

In non-separable trees, the probabilities in various chance nodes cannot be perturbed
independently, which represents a challenge for the algorithms presented above. Back-
ward induction would not yield the correct results, e.g. in Fig. 2, when assessing
Pmin,ε-optimality (assuming this tree is a part of some decision), backward induc-
tion would increase p(c2, t1) (i.e. Bob present) in c2 and at the same time increase
p(c3, t4) (i.e. Bob not present) in c3.

As mentioned in the last part of Sect. 2, this could be modeled in terms of some addi-
tional restrictions on the p(·) function but we find it more intuitive to assume that the
probabilities reflected in the tree are derived from some more primitive probabilities,
assessed probabilities (denoted with capital P), which themselves are separable and
represent discrete distributions. In the case illustrated in Fig. 2, this assumption would
imply using two assessed probabilities: P(Alice present) and P(Alice not present)
(P(A) and (P(¬A) in short, used to define p(·) in c1) and P(Bob present) and
P(Bob not present) (P(B) and P(¬B), similarly used to define p(·) in c2 and c3).

We now suggest defining s(·) and calculating ε-deviations in the space of assessed
probabilities. This approach requires redefining the notions introduced in Sect. 3 into
the space of assessed probabilities. Hence, we require that assessed values are indeed
probabilities, rather than arbitrary parameters and that they represent discrete distribu-
tions (in a sense, virtual chance nodes). For example, for the distribution function FA,
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Fig. 6 A sample non-separable decision tree for which Remark 3 does not hold (x is an assessed probability
initially set to 0.5)

representing the fact of Alice being present or not, we have two assessed probabilities
P(A) and P(¬A). For concrete values of s(FA) and ε, we have the constraint that
neither of these probabilities in SA can diverge from the initial values by more than
s(FA)ε.

A new problem arises in the non-separable case, since the expected payoff is in
general no longer convex in the space of assessed probabilities. In our example from
Fig. 2 it amounts to 15 for P(A) = 1

2 , P(B) = 1
2 , and to 20 for P(A) = 1, P(B) = 0

and P(A) = 0, P(B) = 1, and to 10 for P(A) = 1, P(B) = 1 and P(A) = 0,
P(B) = 0. Thus, if we want to find a pessimistic or an optimistic evaluation of a
given strategy, d, and ε, we have to use an algorithm that takes into account that there
might be multiple local minima of the expected payoff. In our implementation, we
use a simple grid search over assessed probabilities but for large trees a more efficient
algorithm might be needed (e.g. a genetic algorithm). In consequence, looking for
a Pmin,ε-optimal or a Pmax,ε-optimal strategy is more difficult than in the separable
case: an exhaustive search over all strategies in a decision tree is required and for a
single considered strategy a global optimization has to be performed. Determining
the Pmode,ε-optimal strategy remains straightforward: it suffices to perturb assessed
probabilities using the softmax rule and to calculate the optimal strategy in the modified
tree.

Remarks 1, 2, and 5 remain valid in the non-separable case, and the proofs follow
the same lines. Observe that only Remark 2 requires the assumption that mapping
between assessed and inferred probabilities is continuous. Remark 3 is unfortunately
not true, see Fig. 6 for an example. In the decision tree, x is an assessed probability,
initially set to 0.5. The probabilities in chance nodes c1 and c2 are derived from x .
Two strategies (d(d, t1) = 1 and d(d, c1) = 1) are P-optimal, but the former remains
so for any perturbation of x (stability index equal to 1), and the latter ceases being
P-optimal for any perturbation (stability index equal to 0), as 4x(1 − x) < 1 for
x 
= 0.5.

Let us examine how the proposed methodology works in a more complicated, non-
separable case. Consider an investor owning a plot of land, possibly (a priori probability
amounting to 70%) hiding shale gas layers. The plot can be sold immediately (800,
all prices in $’000). The investor can build a gas extraction unit for a cost of 300. If
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gas is found, the profit will amount to 2,500 (if not, there will be no profit, and no
possibility of selling the land). Geological tests can be performed for a cost of 50, and
will produce either a positive or a negative signal. The sensitivity amounts to 90%,
and the specificity amounts to 70%. The installation can be built after the test or the
land may be sold for 1,000 (600) after a positive (negative) test result.

As mentioned in Sect. 2, representing this problem from the decision maker’s per-
spective requires transforming the above probabilities. Observe that the probabilities,
as given in the text above, are not logically interrelated, so they can be modified without
forcing other probabilities to be changed also. Thus, they form the assessed proba-
bilities, namely: P(gas), sensitivity, and specificity. All three probabilities represent
binary distributions; in order to simplify the notation further, we propose performing
a sensitivity analysis of these probabilities (however, it should be remembered that
the complements of these probabilities are also assessed probabilities). We keep in
mind that in general we perform the sensitivity analysis on discrete distributions—
this would be important, if we had more than two possible outcomes in a distribution
represented by assessed probabilities.

The structure of actions and reactions available to the decision maker requires using
another set of probabilities, as presented in Fig. 7. The tree-probabilities are linked to
the assessed ones via the following formulas:

P(pos. test) = Sensitivity × P(gas) + (1 − specificity) × P(no gas),

P(neg. test) = (1 − sensitivity) × P(gas) + specificity × P(no gas),

P(gas|pos. test) = Sensitivity × P(gas)

P(pos. test)
,

P(gas|neg. test) = (1 − sensitivity) × P(gas)

P(neg. test)
,

which are continuous functions of assessed probabilities.
It is P-optimal to perform the test and build the gas extraction system only when the

result is positive (sell the land otherwise). On the bottom Fig. 7 we can see the stability
and perturbation analysis assuming that sensitivity and specificity values are known
exactly (i.e. s(specificity) = 0 and s(sensitivity) = 0). The dark shaded regions
illustrate the boundary for stability ε1 ≈ 3.42%. For the mode Pmode,ε-optimality
and Pmax,ε-optimality perturbation the same epsilon value is valid; for larger ε the
optimal strategy changes to dig (the right side of the dark area). The Pmin,ε-optimality
perturbation does not change the optimal strategy up to ε2 ≈ 39.59%; for larger ε the
optimal strategy is to sell (the left side of the light-gray area).

Now let us assume that the investor does not know the exact values of sensitivity
and specificity for the existence of gas test, although this uncertainty is quite low.
Specifically, we assume s(P(gas)) = 1, s(specificity) = 0.1, and s(sensitivity) = 0.1.
The stability of the base optimal strategy (test: sell if negative, dig if positive) is 2.90%.
It is natural that the stability has decreased in comparison to the previous scenario as we
allow sensitivity and specificity to be perturbed and they do not affect the immediately
dig strategy. Pmode,ε and Pmax,ε perturbations in the range ε ∈ [0%, 4.16%[ do not
change the P-optimal strategy while for the ε ∈]4.16%, 100%] the optimal strategy
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Fig. 7 A non-separable decision tree for the gas problem (above) with sensitivity analysis (below) for the
assessed probability P(gas) with fixed sensitivity and specificity. The reachable set for P-optimal strategies
in the tree (above) are marked with thicker edges. The strategies are represented with lines and depend on the
assessed probability. The strategy sell for negative test)/dig otherwise (solid thick line) is optimal for baseline
probability P(gas) = 0.7. The dark shaded regions illustrate the boundary for stability ε1 ≈ 3.42%. For the
mode Pmode,ε-optimality and Pmax,ε-optimality perturbation the same epsilon value is valid; for larger ε

the optimal strategy changes to dig (see the right side of the dark area). The Pmin,ε-optimality perturbation
does not change the optimal strategy up to ε2 ≈ 39.59%; for larger ε the optimal strategy is to sell (see the
left side of the light-gray area)

is to immediately dig. Again, this result (wider interval for base optimal strategy)
might have been expected, since a favorable perturbation of sensitivity and specificity
increases their values and thus makes the base optimal strategy more attractive. Finally,
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for the Pmin,ε perturbation in the range ε ∈ [0%, 37.14%[, the optimal strategy does
not change while for ε ∈]37.14%, 100%] the optimal strategy is to immediately sell.
Similarly to previous perturbation methods, the decrease of the interval width for
the base decision follows the fact that sensitivity and specificity do not affect the
immediately sell strategy.

5 Concluding remarks

In the paper, we presented a framework for performing SA in decision trees when
some probabilities are not known precisely. In this framework, we tried to encom-
pass what managers declared to be of interest when analyzing decision problems with
uncertainty: verifying the impact of modifying probabilities on the decision remain-
ing optimal, thinking in terms of unfavorable/favorable perturbations, or thinking in
terms of most likely outcomes. All these approaches can be unified in a single model,
calculated in the software we provide, and illustrated for sample cases (see Fig. 5). We
found that it is crucial whether the probabilities in the tree can be set independently
between various chance nodes, i.e. whether a tree is separable. If not, then a more
complicated approach needs to be taken to define the model, and additionally more
complex algorithms to perform SA need to be used.

Our approach to SA allows the decision maker to examine the advantages and
disadvantages of the available decision alternatives from several angles. Figure 5
nicely illustrates how various approaches to SA can yield different answers. As with
all the decision support tools—it is the decision maker who needs to make the final
decision and is responsible for it.

As mentioned in the introduction, the methods we suggest can be linked to ideas dis-
cussed, e.g. by Huntley and Troffaes (2012): Γ -maximin, maximality/E-admissibility,
and interval dominance. Hence, Pmin-optimality is directly equivalent to Γ -maximin.
Still, the difference is that rather than treating the set of probability distributions as
given exogenously, we build it endogenously instead, verifying how large it can be
(in terms of Eq. (2), around the baseline probabilities) for the base-case P-optimal
strategy to be Pmin-optimal.

The stability index defines a set of probability distributions in which the P-
optimal strategy is the only maximal and the only E-admissible one. Again, in our
approach we do not use maximality/E-admissibility to make a choice for a given set
of probabilities but instead define the strength of the P-optimal strategy by looking
at how imprecise the original probabilities can be for this strategy to remain the only
maximal/E-admissible one. In our approach, the difference between maximality and
E-admissibility is inconsequential.

The situation is more complicated for interval dominance. The P-optimal strategy
is surely not interval dominant beyond the stability index. For separable trees, the P-
optimal strategy will also be interval-dominant within the region defined by the stability
index if it does not have a common chance node with another decision. Otherwise,
the P-optimal strategy may not be interval dominant even within the region defined
by the stability index, see Fig. 8 (selecting t4 in d2 is obviously P-optimal and it
is 1-stable, while it does not interval-dominate selecting t3 when probabilities can
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Fig. 8 An example: interval dominance does not hold within the stability region of a P-optimal decision
(to go down from d2)

by changed by 0.1). That suggests that our approach is significantly different from
interval dominance.

The ideas presented in the present paper also relate to the information-gap theory
proposed and developed by Ben-Haim (2001), where one measures for each strategy
how much uncertainty is allowed (i.e., how large a deviation of model parameters is
allowed) for the considered strategies to definitely offer a pay-off greater than some
assumed minimal level (i.e. the robustness), or in another approach: how much uncer-
tainty is needed to make it possible for the strategies to offer some assumed desired
outcome (i.e. the opportuneness). Both approaches, ours and Ben-Haim’s, are local,
i.e., there is some baseline value of uncertain parameters from which the deviations
are considered (and not simply a family of possible parameterizations is considered).
Also, in both approaches no probability distributions are assigned to the deviations.
Lastly, we consider both the unfavorable and favorable deviations, as analogs of robust-
ness and opportuneness, respectively. Nevertheless, there are important differences.
Firstly, we apply our ideas specifically to decision trees; hence, the contribution of
the present paper also lies in how the ideas are implemented in that particular context.
Secondly, the line of thinking in the information-gap approach goes from the desired
outcome (e.g., minimal required outcome) to the amount of uncertainty (guaranteeing
this threshold is exceeded), while we treat the amount of ambiguity related to param-
eters as the starting point and proceed towards the recommended strategy (and, e.g.,
the minimal guaranteed outcome). We find treating the ambiguity as primitive and the
resulting satisfaction as an outcome to be more intuitive and to follow the cause-effect
path. Thirdly, we also present our own additional extensions to the SA (e.g., mode
favoring deviations).

There are some limitations to the present study and pertinent ideas for further
research. We used a very simple definition of the distance between two trees, cf.
Eq. (2). This metric allows multiple probabilities to differ simultaneously from their
baseline values, not aggregating individual differences to reflect that overall the set of
probabilities changed substantially (as, for example, the sum of absolute deviations
would do). We would maintain that as long as the probabilities in various chance nodes
are unrelated (i.e. we consider separable trees), this is a desired feature. The decision
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maker can express the degree of imprecision (and possibly differentiate it between
various nodes with s(·)) but this imprecision can simultaneously affect several chance
nodes: being more incorrect in one chance node does not increase the precision of
knowing the true probabilities in some other chance node. Moreover, such a definition
is simple and intuitive to understand for the decision makers.

We only calculate the stability index of the optimal strategy. At first glance, it may
be of interest to know how stable the second-optimal strategy is, especially if the
stability index of the optimal strategy is small. Should the stability index of the second
best one (somehow defined) be large, we might be tempted to select it, since it looks
robust, even if only second-optimal. For example, assume the stability index for the
first-optimal d1 equals 0.02 (i.e. 2 pp), and for the second optimal d2 it amounts to as
much as 0.3 (i.e. 30 pp). The true interpretation, however, would be the following. If
baseline probabilities sufficiently approximate the true ones (within 2 pp), then d1 is
sure to maximize the expected payoff (be optimal). If the imprecision is larger than 2
pp (but smaller than 30 pp), then d1 might not be optimal (d2 might be); yet d1 might
still be optimal for deviations larger than 2 pp! These stability indices guarantee that if
the deviation is within 30 pp, then either d1 or d2 is optimal, but there is still no reason
to favor d2 over d1. This is also related to the fact that in our research we focused
on decision sensitivity (Nielsen and Jensen 2003), and not value sensitivity, i.e. we
analyze when the optimal strategy changes with varying input, not by how much the
payoff is reduced.

If the decision maker is concerned with a possibly greater negative impact of per-
turbations on one strategy and wants to select a safe (even if not optimal) strategy,
then Pmin,ε-optimality is the appropriate concept. Figure 5 nicely shows that even if
the optimal strategy has a relatively small stability index, it is still very safe for large
deviations, i.e., it offers the highest guaranteed (worst-case) expected value. Observe
that putting greater weight on less favorable outcomes (for each strategy separately)
may also be interesting when no ambiguity is present. It may be taken to represent risk
aversion somewhat similarly to rank-dependent utility models, in which we re-weight
the probabilities, overweighting the extremely unfavorable and underweighting the
extremely favorable ones—see Quiggin (1982). In the case of Pmin,ε-optimality, for
sufficiently small ε we only reweight two single outcomes (the most unfavorable and
the most favorable one) in a given chance node, but this reweighting builds up over
multiple chance nodes in a non-trivial way (e.g. perturbed probabilities in one chance
node being multiplied by perturbed probabilities in another chance node). Another
approach to model risk aversion would be to transform payoffs to von Neumann–
Morgenstern utilities (we would have to attribute the utilities only up to the edges just
before the terminal nodes or account for the fact that the marginal utility is diminishing
as payoffs aggregate along the paths in the tree).
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Appendix: Proofs

Proof (of Remark 1) The first part of the remark follows from {DT ′ : ||DT, DT ′||s ≤
ε1} being a subset of {DT ′ : ||DT, DT ′||s ≤ ε2}. The second part follows, as {DT ′ :
||DT, DT ′||s ≤ 1/̃s } contains all possible p(·) parameterizations of the considered
tree (any change of probabilities is within the allowed limits). This second part is
useful in numerical procedures to determine I (DT, d, s) effectively by bisecting over
the interval [0, 1/̃s ]. ��
Proof (of Remark 2) Take any P-optimal strategy d. Let d1, d2, …, dn denote strate-
gies non-strongly-identical to d (a finite set for finite trees). It must be P(DT, di ) <

P(DT, d) for i ∈ {1, 2, . . . , n}, as d is a unique P(·)-maximizing strategy (up to
being strongly identical). Observe that

1. P(DT, d, s)−max{P(DT, d1, s), . . . , P(DT, dn, s)} is a continuous function of
p(·),

2. changes in p(·) do not change the almost reachable set of any strategy, and so the
set of strategies strongly identical to d is left unchanged,

3. strongly identical strategies have the same expected payoff (for a given p(·)).
Observations 1–3 give the required result. Properness is not used. ��
Proof (of Remark 3) We follow the proof by contradiction.

Take two P-optimal strategies, d1 and d2. Obviously, P(DT, d1)−P(DT, d2) = 0.
Assume without loss of generality I (DT, d1, s) > I (DT, d2, s). Then I (DT, d1, s) >

0, and so there exists a tree DT ′ with perturbed probabilities in which d1 is P-optimal
while d2 is not. Hence, in DT ′ we have P(DT ′, d1) − P(DT ′, d2) > 0. Notice,
additionally, that the expression P(DT ′, d1) − P(DT ′, d2) is continuous in the prob-
abilities of the tree for any probabilities (e.g. those of DT , DT ′).

We will show that there exists a tree DT ∗ arbitrarily close to DT (in the sense
of Eq. 2) such that P(DT ∗, d1) − P(DT ∗, d2) < 0, which yields a contradiction
as it would forbid I (DT, d1, s) > 0. Note, that for that purpose it suffices to show
that DT (more precisely: values of probabilities for DT ) is not a local extremum of
Δ(X)

def= P(X,d1)−P(X,d2), as then in the vicinity of DT we must also have Δ(·) < 0. We
will verify that DT is not an extremum by inspecting the Hessian, H , of Δ(X) at DT .

P(X, d1) can be be written as a sum of products of probabilities of reaching respec-
tive terminal nodes (products of probabilities along the paths) and total payoffs for
these nodes (sum of payoffs along the paths). We can additionally in each chance node
express a single probability as a residual value. Thus, Δ(X) is also a sum of products
of this type. See Fig. 9 for illustration. Decision setting d(d, c1) = 1, denoted d1,
offers the expected payoff equal to 30(1 − p1), while setting d(d, c2) = 1, denoted
d2, offers the following expected payoff:

10p2 + 20p3(1 − p4 − p5) + 45p3 p4 + 30p3 p5(1 − p6) + 40p3 p5 p6,
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Fig. 9 Illustration to the proof of Remark 3

which simplifies to 10p2+20p3+25p3 p4+10p3 p5+10p3 p5 p6. Then the difference
in payoffs is given as 30 − 30p1 − 10p2 − 20p3 − 25p3 p4 − 10p3 p5 − 10p3 p5 p6.

Due to the properness of the tree and the fact that one probability in every chance
node was left out as a residual we can at least to some extent freely perturb all the
parameters in the above-defined expression. Also note that each single probability is
either absent or present in the first power. Therefore, for any single probability p, we
have ∂2Δ/∂p2 = 0, and so the main diagonal of H only contains zeros. Now consider
any two probabilities, denoted pA and pB to avoid confusion with the exemplary
parameters of Fig. 9. If ∂2Δ/∂pA pB 
= 0 at DT , then, by Sylvester’s criterion, H is
non-definite (as after reorganizing probabilities the second principal minor is negative),
and so Δ(X) does not have an extremum at DT , which completes the proof. We are
left with the case that all ∂2Δ/∂pA pB = 0 at DT . In the next step we will show how
that leads to Δ(X) being a linear function of probabilities.

We can always select pA to be a parameter defined in a chance node not having
any chance node descendants (e.g. take pA to be p6 in the exemplary tree in Fig. 9).
Then pA can be multiplied by any other probability at maximum in one element of the
rearranged sum of products defined above (e.g. p6 is multiplied once by p3 and once
by p5, and not at all by p2 or p4). As the cross partial derivative is zero, then the whole
product must be equal to zero at DT (due to the properness the zeroing must happen
via zero constant parameters rather than other probabilities in the product being equal
to zero). Thus we can remove from our sum of products all the elements containing
probabilities defined in the chance nodes farthest from the root (not having chance
node descendants). But then the probabilities defined for the second to last chance
nodes can only appear in at most one product, and so can be removed (e.g. having
removed −10p3 p5 p6, now p5 only appears in one product, i.e. −10p3 p5). Proceeding
recursively we can remove all the terms containing two probabilities or more and end
up with a linear function of probabilities. The remaining two cases also need to be
analyzed.
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If no probabilities are left in the linear function, i.e. Δ(X) is trivially a constant
function, then it must be that Δ(DT ) = 0 and so Δ(·) ≡ 0, which would contradict
Δ(DT ′) > 0. Hence, there must be some probabilities left in the linear function. We
can then use properness to see that any of these probabilities can be slightly perturbed
to increase or decrease Δ(X), and so DT is indeed no extremum. ��
Proof (of Remark 4) We can rewrite the optimization problem given by Eq. (8) as:

minimize
n∑

i=1

xi ln (xi/pi )

subject to:
n∑

i=1

xi ln (nxi ) = θ ∧
n∑

i=1

xi = 1 ∧ xi ≥ 0.

We can discard non-negativity constraints, as we are working with logarithms of
xi . If we deal with improper trees, then, for the Kullback–Leibler divergence to be
defined, we have to fix xi = 0 for such i that pi = 0. Therefore we can solve the
above problem using a system of Lagrangean equations:

n∑

i=1

xi ln (nxi ) = θ ∧
n∑

i=1

xi = 1 ∧ ∀i : ln(xi/pi ) + 1 = λ1(ln(nxi ) + 1) + λ2.

If ∀i pi = n−1 (a degenerate case that starting distribution is equal to the uniform
one), then λ1 = 1, λ2 = 2 ln(n) and all admissible xi are equally good.

If pi s are not constant, then λ1 
= 1 and:

n∑

i=1

xi ln (nxi ) = θ ∧
n∑

i=1

xi = 1

∀i : xi = ApBi ∧ A = exp

(
1 − λ1(1 + log(n)) − λ2

1 − λ1

)

∧ B = 1/(1 − λ1),

where λ1 and λ2 are determined using the constraints. A solution always exists when∑n
i=1 xi ln (nxi ) = θ can be satisfied, i.e. for θ ∈ [0, ln(n)[, and this maps to non-

negative values of B (A is a normalizing constant). This means that in Eq. (9) γ can
take any non-negative value. ��
Proof (of Remark 5) d is P-optimal for any DT ′, ||DT, DT ′||s ≤ I (DT, d, s).

1) Take specifically DT ′ which minimizes P(DT ′, d). Observe that d’s expected
payoff is greater than or equal to the expected payoffs of other decisions for DT ′,
and so and so must be greater than or equal to the expected payoffs of every other
decision for its most unfavorable perturbation.

2) For any other decision, take specifically DT ′ that maximizes this decision expected
payoff. Still, d’s expected payoff is greater or equal, and so d’s most favorable
perturbation must offer greater or equal expected payoff.
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3) Selecting a mode-tending perturbation does not depend on the specific decision
under consideration; hence, for this mode-tending perturbation d will be surely
P-optimal. ��
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