
Myopia, or nearsightedness, is one of the most common 
ocular abnormalities in the world. Myopia is caused by 
light focusing in front of the retina instead of directly on it, 
resulting in blurred images. Myopia affects approximately 
25% of Americans and has reached epidemic proportions 
in Southeast Asia, with nearly 80% of the entire population 
affected with the disease.

Myopia is known to be a complex trait affected by a 
variety of genetic and environmental factors [1,2]. Factors 
such as hours of near work and education level have been 
shown to positively correlate with the disease, while factors 
such as outdoor activity have been shown to have protec-
tive effects [1]. Genetic studies have used population-based 
genome-wide association studies (GWASs) and family-based 
linkage studies. GWASs became popular in the mid- to late 
2000s with the advent of commercially available genotyping 
arrays and have been effective in identifying multiple risk 
variants for negative refractive error [3-8]. Most risk variants 
identified in GWASs have a common minor allele frequency 

(MAF; >0.05) and have a small to moderate effect on risk of 
myopia.

Family-based linkage studies are complementary to 
GWASs and have several unique characteristics. These 
studies have a natural advantage for finding rare, highly 
penetrant causal variants. Family-based studies do not need 
as many samples as population-based studies to obtain suffi-
cient power to detect rare variants because rare variants may 
be common within a particular family even if they are rare in 
the general population. Family-based studies are not affected 
by population stratification as each family is analyzed as a 
single unit and not in a group. Each family receives its own 
logarithm of the odds (LOD) score, which can be added 
across families. Finally, family-based studies can exploit 
large linked haplotypes within a family unit. Individuals 
in a population-based study are distantly related, and the 
massive number of meioses through countless generations has 
created exceedingly small haplotypes, with only the variants 
that are closest together exhibiting linkage disequilibrium 
(LD). In family studies, the founding haplotypes for each 
family member are determined solely by the haplotypes 
of the family founders, which are only a subset of all the 
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Purpose: To determine genetic linkage between myopia and Han Chinese patients with a family history of the disease.
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Conclusions: We report a significant genetic linkage between myopia and Han Chinese patients at 10q26.13. 10q26.13 
contains several good candidate genes, such as TACC2 and the known age-related macular degeneration gene HTRA1. 
Targeted sequencing of the region is planned to identify the causal variant(s).
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haplotypes that exist in the general population. Because the 
majority of family-based studies are based on small families 
(two to four generations), only a limited number of recom-
binations can occur between variants that are moderately 
far apart on a chromosome. This results in a longer linked 
haplotype that can provide more power to detect variants 
along the haplotype (even if the causal variant is rare or not 
genotyped). Association studies have low power to identify 
rare variants so if a single gene has multiple rare variants in 
the population (each of which causes relatively large increases 
in risk of a disease), then linkage studies observe different 
linked haplotypes in this region across multiple families, but 
the association may not be detectable due to low power; see 
Figure 1 for a visual example. One drawback of the linkage 
approach is that the linked haplotype along the significant 
linkage region may contain a large number of candidate genes 
and potential causal variants because the limited number of 
meioses observed in each linked family may not be adequate 
to narrow the linked region around each causal variant to a 
small region. For an excellent introduction to these concepts, 
see Nussbaum et al. [9].

The development of cheaper genotyping and sequencing 
methods within the past few years has made family-based 
studies more useful as these studies have more power 
(compared to population-based association studies) to detect 
individual rare variants that have a large effect on the pheno-
type of interest. Generally, linkage studies have better power 
to detect causal variants which are highly penetrant while 
association studies have better power to detect common 
causal genetic variants of a small or modest effect. More 
detailed discussion on family-based linkage studies versus 
association studies can be found in several reviews [10,11].

Complex traits such as myopia have high amounts of 
locus heterogeneity, meaning they have multiple variants 
across the genome contributing to risk. Most of these variants 
are expected to be common variants of low effect (best identi-
fied by association), but one can also expect some rarer vari-
ants that confer a greater effect (best identified by linkage). 
This is what we have seen in many complex traits the most 
prominent of which is breast cancer. Linkage analyses of 
highly aggregated families (ascertained because of many 
closely related women with breast cancer in the families) have 
identified several genes that each harbor many individually 
rare high effect risk variants for breast cancer, such as the 
well-known BRCA1 (Gene ID 672, OMIM 113705) gene 
[12,13], while population-based case-control association 
analyses (which include affected women with and without a 
family history of the disease) have identified a large number 
of lower penetrance, common risk variants [14,15]. Other 
complex traits where risk variants have been identified by 
linkage and association studies include hypertension [16,17] 
and cataracts [18,19], to name just a few.

Myopia, too, has had association [3-8] and linkage 
[20-29] studies that have identified risk variants and loci. 
Linkage studies are useful because segregation analysis 
[30] has shown evidence for the high probability of a rare, 
high penetrance, autosomal dominant risk variant(s) in some 
highly aggregated families. Multiple family-based studies 
have used this model to identify high risk loci in pathogenic 
myopia (mean spherical equivalent (MSE) < −6 diopters 
[D]) and non-pathogenic myopia (MSE < −1 D) [20-29] in 
multiple ethnic groups, including Ashkenazi Jews, African 
Americans, and Caucasians.

Figure 1. Example of linked disease 
markers with no association. The 
diagram illustrates the scenario 
where common variants can be 
linked along a haplotype within 
families but will not be identified 
by an association study. Here, we 
place theoretical disease variants 
Z1, Z2, and Z3 in families 1, 2, and 
3, respectively. We assume that the 
disease-causing variants Z are rare 
and are not genotyped. Markers A, 

B, C, and D are assumed to have a common minor allele frequency (MAF) and have been genotyped. All four markers are also located on 
the same haplotype close to each other, so that it is unlikely any crossing over will occur within families. Looking within each family, it is 
clear that all markers are linked to the disease marker because in each family the black haplotype cosegregates with the disease phenotype. 
However, looking across each family, A, B, C, and D are not associated with the disease phenotype, because both alleles of each marker are 
present in affected and unaffected individuals.
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This study uses genotype data from Han Chinese fami-
lies affected with myopia to identify genes that may harbor 
risk variants of a larger effect on myopia risk than are gener-
ally detectable in association studies. In an effort to increase 
the chance that this study might identify causal variants, we 
used a dense exome single nucleotide polymorphism (SNP) 
genotype array that is enriched for variants within exons. 
Asian populations have a much higher prevalence of myopia 
than other ethnicities [31]. Association studies have identified 
several risk variants in Chinese populations, including vari-
ants in the 15q14 [32], 11q24.1 [33], and 22q12 [34] regions. 
Family- based studies are less common but have been used 
to successfully map evidence for linkage of high myopia to 
Xq28 [35] and 5p13–15 [36].

METHODS

Study design: This study was a retrospective, observational 
family study of a binary trait (affected or unaffected with 
myopia) that involved the recruitment, eye examination, 
exome chip genotyping, and parametric linkage analysis of 
176 Han Chinese individuals from 34 extended families who 
had recently emigrated from China to Pennsylvania. The 
study was approved by the institutional review boards of the 
University of Pennsylvania and the National Human Genome 
Research Institute. Protocols were performed in accordance 
with the Declaration of Helsinki of 1976 and adhered to the 
ARVO statement on human subjects. All study participants 
provided informed written consent. Families were identified 
through mailings, eye clinic interviews, and referrals from 
private eye doctors. To be eligible for this study, all families 
were required to have at least three participants, at least one 
myopic parent, and at least two myopic siblings. Children 
had to be at least 5 years old to be eligible. These families 
were carefully ascertained to be consistent with an autosomal 
dominant mode of inheritance given the high prevalence 
of myopia in this population. In most of the families, only 
one parent was affected; in only seven families were both 
parents affected. However, these seven families were all 
small nuclear families with two parents and two children and 
did not contribute much information to the analyses (e.g., 
no family had a LOD score greater than 0.2). Most of the 
linkage information was obtained from the families that best 
fit a high-penetrance autosomal dominant model, as would be 
expected in a parametric linkage analysis that assumed such 
a model. Careful ascertainment of rare, highly aggregated 
families that appear to be segregating a high-penetrance 
genetic risk factor is part of a good study design for a linkage 
study. Such ascertainment is crucial to achieve high power in 
a linkage study, particularly for complex traits.

All participants received a comprehensive eye examina-
tion that included medical and ocular health history, visual 
acuity, slit-lamp biomicroscopy, dilated fundus exams, and 
manifest refraction. For subjects younger than 41 years of 
age, cycloplegic refraction was measured using 0.5% cyclo-
pentolate or 1% tropicamide. For subjects older than 41 years, 
refraction was measured via manifest refraction. The refrac-
tion measurement used in this study was MSE, measured 
in diopters. This score is obtained by adding the spherical 
component of the refraction to one-half the cylindrical 
component and taking the average of both eyes.

Genotyping and quality control: The 176 patient samples 
were genotyped by the Center for Inherited Disease Research 
(CIDR) at Johns Hopkins University (Baltimore, MD) using 
an Illumina ExomePlus array. This exome-based array has a 
GWAS backbone of common variants that runs throughout 
the genome. This backbone is critical for linkage analysis, as 
the analysis can use these more common GWAS variants to 
tag long linked haplotypes. The array also contains a good 
number of exonic rare variants, which provides the potential 
not only to find rare causal variants but also to perform gene-
based analyses incorporating these rare variants.

CIDR coded any genotypes with a genotype quality 
score of 0.15 or less as missing. We further filtered to a call 
rate of 95% for a mean call rate of 99% per marker. Additional 
quality control was performed using PLINK [37]. Outliers 
in heterozygosity rates across samples were excluded, and 
autosomal SNPs with a sex difference in allelic frequency 
>0.2 or a sex difference in heterozygosity >0.3 were dropped. 
All monomorphic variants were removed.

We added an additional 39 individuals who did not have 
genotype data to connect disjointed pedigrees and ensure 
proper familial relationships. These individuals were known 
to exist based on family history but were unable or unwilling 
to participate in the study. They were coded as having an 
unknown phenotype and unknown genotypes at all markers. 
We used PLINK and PREST-PLUS [38] to confirm familial 
relationships by checking identity-by-descent (IBD) values. 
Sib-pair was used to check for Mendelian inconsistencies. 
Any marker with a single Mendelian error was dropped in 
the offending family; any marker with more than one Mende-
lian inconsistency was dropped for the entire data set. The 
remaining SNPs were mapped on the Rutgers Genetic Map 
version 3 [39] using GRCh37 physical positions, and data 
set–level allele frequencies were calculated for each marker 
using Sib-pair.

Myopia classification: Individuals with an MSE of -1.00 D or 
less were coded as affected, while individuals with an MSE 
of 0.00 D or greater were coded as unaffected. Individuals 
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with an MSE that fell within the range of 0.00 D and −1.00 
D and individuals with no measurements were coded as 
unknown. We treated children more stringently than adults 
because normal developmental changes in refractive error 
during childhood cause potential misclassification. All chil-
dren with an MSE of -1.00 D or less were coded as affected, 
identical to adults. Children were coded as unaffected if they 
had an MSE of +2.00 D or greater (ages 6–10 years) or +1.50 
D or greater (ages 11–20 years). This conservative approach 
balances the power loss that results from the lack of a good 
segregation-analysis model of age-dependent penetrance 
and the concomitant confusion about appropriate genotype 
probabilities for young unaffected subjects, with the power 
loss resulting from the classification of normal children as 
unknown.

The final data set consisted of 215 individuals (176 geno-
typed individuals) from 34 extended families with 52,253 
SNPs across 22 autosomes. The data set was 53.5% female 
and contained 145 affected, 10 unaffected, and 60 unknown 
individuals. The average MSE was −4.09 D with a standard 
deviation of 2.92.

Parametric linkage analysis: All parametric linkage analyses 
were performed assuming an autosomal dominant model with 
a disease allele frequency of 1%. Penetrance was assumed 
to be 90% for carriers and 10% for non-carriers. This is a 
well-tested inheritance model that has been verified with 
segregation analysis [30] and has been used successfully to 
identify linked risk loci in families in a similar manner as was 
used to ascertain the Han Chinese families here, including 
Ashkenazi Jewish [22], Amish [29], and Caucasian highly 
aggregated families [27]. Standard single-variant two-point 
linkage analysis using the Elston-Stewart algorithm was 
performed with TwoPointLods. Multipoint analysis was 
performed using SimWalk2 [40-42]. As inter-marker LD 
between markers in a dense map can cause inflation in type 
I error rates, we pruned the genotype data before we ran the 
multipoint analysis. The SNPs were collapsed into 1 cM bins, 
and the SNP with the highest MAF was selected to represent 
the bins in the multipoint analysis. Haploview [43] was used 
to remove any additional SNPs with an r2 greater than 0.2 
after pruning leaving 3,422 SNPs for multipoint analysis.

Linkage analysis was also performed using the 
collapsed haplotype pattern (CHP) method, implemented 
via the SEQLinkage [44] software, using all variants with 
a minor allele frequency of less than 15% in the founders of 
these families. This method builds short haplotypes within 
families using genotypes at individual uncommon variants 
(which usually do not occur more than once in any mating). 
These family-specific haplotypes are used as multiallelic 

pseudomarkers that correspond to specific genetic regions, 
such as genes or segments of genes, as determined with 
RefSeq. This approach does not require pruning of the rare 
variants (which may have larger effect sizes than common 
variants) and allows for different rare variants in the same 
gene to be easily captured and combined into a joint test 
of linkage for each gene. This can result in more power for 
linkage analysis than can be obtained from a multipoint 
analysis using only a sparse pruned map of common SNPs 
that are not in LD with each other. Two-point linkage analysis 
on the pseudomarkers was then performed via MERLIN [45]. 
All variants were annotated using ANNOVAR [46,47], and 
further functional annotation was provided by SIFT [48-52], 
ClinVar [53], and PolyPhen2 [54].

In addition to the linkage analyses, we performed two 
types of association analyses. We used the family-based 
association test FBAT 2.0.4 [55,56] to examine all variants 
and rv-TDT [57] to examine rare (MAF = 0.05) variants after 
we selected trios from each pedigree.

RESULTS

The CHP variant two-point linkage results identified one 
significant linkage peak at 10q26.13, centered on the TACC2 
(Gene ID 10579, OMIM 605302) gene (HLOD = 3.73; Figure 
2). This study used the Lander and Kruglyak values of 
HLOD≥3.3 and HLOD≥1.9 as the respective significant and 
suggestive thresholds [58]. Seventeen other genes also showed 
suggestive evidence of linkage to myopia, six of which were 
also located on 10q, ranging from 10q24.2 to 10q26.2. The 
second highest overall HLOD (2.77) was located at 10q26.2 
and centered on DOCK1 (Gene ID 1793, OMIM 601403). Two 
suggestive linkage signals were also observed on 1p, 9q, and 
15q while three suggestive signals were observed on 12q. A 
full list of all significant and suggestive linkage results can 
be found in Table 1.

Multipoint analysis resulted in genome-wide sugges-
tive linkage evidence at 21 SNPs (Table 2). All were located 
between either 9q33.1 and 9q34.11 (12 SNPs) or 10q26.11 and 
10q26.13 (nine SNPs; Figure 3). The most strongly linked 
SNP in the 9q region (HLOD = 3.13) was localized to an inter-
genic region between TLR4 (Gene ID 7099, OMIM 603030) 
and BRINP1 (Gene ID 1620, OMIM 602865) at 9q33.1. The 
most strongly linked SNP in the 10q region (HLOD = 2.35) 
was located in an intron of the CACUL1 (Gene ID 143384) 
gene at 10q26.11.

The single-variant two-point analysis did not yield 
any significant results, although it identified 62 SNPs with 
suggestive evidence of linkage to myopia (Figure 4). Thirty-
four of the suggestive SNPs localized to the 10q24.2 to 
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Figure 2. Genome-wide collapsed haplotype pattern variant two-point HLOD scores. Plot showing the genome-wide collapsed haplotype 
pattern (CHP) variant two-point heterogeneity logarithm of the odds (HLOD) scores produced by SEQLinkage and MERLIN. The lines at 
1.9 and 3.3 represent the suggestive and significant thresholds, respectively, recommended by Lander and Kruglyak. 

Table 1. Variants that exhibit genome-wide significant and suggestive evidence of 
linkage to myopia from the collapsed haplotype pattern linkage analysis.

CHR HLOD ALPHA LOD POS GENE
10q26.13 3.73 1.00 3.73 146.7658 TACC2
10q26.2 2.77 1.00 2.77 156.932 DOCK1
15q13.3 2.64 0.87 2.42 27.82131 RYR3
9q31.3 2.58 1.00 2.58 117.7108 SVEP1
9q33.2 2.53 1.00 2.53 131.6962 CDK5RAP2
1p13.1 2.49 1.00 2.49 40.94913 IGSF21
10q25.3 2.41 1.00 2.41 133.0324 VWA2
10q24.31 2.34 1.00 2.34 119.6265 CWF19L1
10q26.11 2.15 1.00 2.15 141.0359 EIF3A
10q24.2 2.08 1.00 2.08 119.2729 ABCC2
15q15.2 2.04 1.00 2.04 42.58454 STARD9
12q24.13 2.03 1.00 2.03 129.8192 CCDC42B
1p31.3 1.98 1.00 1.98 94.08912 INADL
11q22.3 1.97 1.00 1.97 113.0644 EXPH5
12q23.2 1.94 1.00 1.94 117.4295 IGF1
12q24.13 1.94 1.00 1.94 129.8897 IQCD
6q15 1.92 1.00 1.92 99.52311 GABRR1

Table displaying the genome-wide significant and suggestive linkage signals from the collapsed haplotype pattern (CHP) variant two-
point linkage analysis sorted by heterogeneity LOD (HLOD). CHP variants are multi-allelic pseudo-markers corresponding to a gene 
and created from SNPs with a MAF <0.15. The genome-wide significance threshold is 3.3 and the genome-wide suggestive thresh-
old is 1.9, as recommended by Lander and Kruglyak. CHR=chromosomal region, HLOD=heterogeneity LOD score of the marker, 
ALPHA=estimated proportion of informative families showing evidence of linkage for each HLOD, LOD=cumulative LOD across all 
families, POS=position in cM of the gene, GENE=Gene location of the CHP marker.
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10q26.2 region (Figure 5). Of those 34 SNPs, 25 were located 
in an intron of HTRA1 (Gene ID 5654, OMIM 602194; 
10q26.13), a well-known susceptibility gene for age-related 
macular degeneration (AMD) [59-65]. The HLOD scores of 
these SNPs ranged from 2.52 to 1.9. All of the HTRA1 SNPs 
were common (the MAF was about 0.37), and they appeared 
to be on the same linked haplotype in the intron. However, 
there are rarer SNPs interspersed along the HTRA1 intron. 
Although the majority of the families individually showed 
evidence of linkage to the common SNPs, three families 
who showed linkage to the common SNPs also had stronger 
linkage to the rarer SNPs in this region. The top LOD score 
of these families was in HTRA1 in SNPs with an MAF of 
0.03, 0.05, and 0.12.

The 9q31.1 to 9q33.2 region contained the second highest 
number of suggestive SNPs with nine (Figure 6). The highest 
overall HLOD score (2.56) was located in an exon of the 

CDK5RAP2 (Gene ID 55755, OMIM 608201) gene. It is a 
fairly common SNP with an MAF of 0.18. It is nonsynony-
mous but not predicted to be damaging. Most interestingly, 
the linkage peak was driven primarily by a single family who 
had an LOD score of 1.33 (the highest overall LOD score 
in the family). A full list of all suggestive SNPs identified 
by the single-variant two-point analysis can be found in the 
Appendix 1.

We did not find any significant associations using the 
FBAT when we examined individual variants or collapsing 
rare variants. We found a nominally statistically significant 
(p=0.000533) signal at rs1980493 within the BTNL2 (Gene ID 
56244, OMIM 606000) gene at 6p21.32 using rv-TDT. This 
gene has been found to be associated with sarcoidosis in Japa-
nese patients [66]. Sarcoidosis causes granulomas to form in 
different tissues, including eye tissue where the condition can 
cause blurred vision.

Table 2. SNPs with genome-wide suggestive evidence of linkage from multipoint analysis.

CHR HLOD rsID POS MAF FUNCTION GENE
9q33.1 3.14 rs1158810 121,809,519 0.4631 intergenic TLR4,BRINP1
9q33.1 3.07 rs1009470 122,289,187 0.4688 intergenic BRINP1,MIR147A
9q33.1 2.97 rs16909449 122,861,297 0.4799 intergenic BRINP1,MIR147A
9q33.2 2.78 rs17611 123,769,200 0.4927 exonic C5
9q33.1 2.71 rs1927321 121,066,417 0.4765 intergenic TLR4,BRINP1
9q33.2 2.67 rs7871736 124,650,611 0.4052 intronic TTLL11
9q33.3 2.48 rs4838334 128,843,105 0.4248 intergenic PBX3,LOC101929116
10q26.11 2.35 rs7099523 120,493,700 0.4998 intronic CACUL1
10q26.12 2.33 rs746832 122,348,065 0.4615 ncRNA_intronic MIR5694
10q26.11 2.31 rs185020036 120,095,773 0.0061 exonic FAM204A
9q33.2 2.30 rs1536929 125,391,369 0.4291 exonic OR1B1
9q33.3 2.24 rs10987504 129,613,454 0.466 intergenic ZBTB43),ZBTB34
10q26.11 2.24 rs1419138 119,731,281 0.4295 intergenic EMX2,RAB11FIP2
10q26.12 2.22 rs2289337 122,649,482 0.1519 exonic WDR11
10q26.11 2.14 rs1925283 119,533,345 0.4789 intergenic EMX2),RAB11FIP2
10q26.12 2.10 rs4752384 121,871,353 0.3317 intergenic MIR4682,PPAPDC1A
10q26.13 2.07 rs11598592 123,043,389 0.4611 intergenic MIR5694),FGFR2
9q33.3 2.05 rs4130590 130,107,964 0.4424 intronic GARNL3
9q33.1 2.02 rs10817896 119,232,655 0.4729 intronic ASTN2
10q26.13 2.00 rs2672592 124,230,750 0.4857 intronic HTRA1
9q34.11 1.93 rs2275260 131,285,955 0.4639 exonic GLE1
10q26.13 1.89 rs2981579 123,337,335 0.4623 intronic FGFR2

Table displaying the genome-wide significant and suggestive signals from the multipoint linkage analysis sorted by HLOD. The ge-
nome-wide significance threshold is 3.3 and the genome-wide suggestive threshold is 1.9, as recommended by Lander and Kruglyak. 
CHR=chromosomal region, HLOD=heterogeneity LOD score, POS=position in basepairs of each SNP, MAF=minor allele frequency as 
calculated from the data set, FUNCTION=functional annotation of the SNP, GENE=genic location of the SNP or closest genes in the case 
of intergenic SNPs. Annotations performed by ANNOVAR.
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DISCUSSION

CHP two-point analysis identified genome-wide significant 
linkage at 10q26.13. Single-variant two-point analysis and 
multipoint analysis also identified highly suggestive linkage 
at that region. These additional suggestive signals in 10q26.13 
are important, as they suggest that the significant signal is 
less likely to be a false positive. This signal appears to be 
novel with no prior reports of linkage to myopia in other 
populations. Terminal deletions of 10q26 have been shown to 

cause myopia but also result in much more severe phenotypes, 
such as developmental disabilities, webbed neck, and muscu-
loskeletal anomalies [67]. In addition, significant linkage 
has been published and replicated between myopia and a 
region much farther upstream at 10q21.11 (MYP15 Gene ID 
100294716, OMIM 612717) [68,69], although the causal gene 
at the MYP15 locus remains unknown. All of this evidence 
taken together gives strong support for the location of a gene 
that is important in myopization in the 10q26 region.

Figure 3. Genome-wide multipoint HLOD scores. Plot of the genome-wide multipoint heterogeneity logarithm of the odds (HLOD) scores 
produced by SimWalk2. The lines at 1.9 and 3.3 represent the suggestive and significant thresholds, respectively, recommended by Lander 
and Kruglyak. 

Figure 4. Genome-wide single-variant two-point HLOD scores. Plot showing the single-variant two-point heterogeneity logarithm of the 
odds (HLOD) scores produced by TwoPointLods. The lines at 1.9 and 3.3 represent the suggestive and significant thresholds, respectively, 
recommended by Lander and Kruglyak. 
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The significant signal in the CHP variant analysis 
localized at 10q26.13 at the transforming acidic coiled-coil 
containing protein 2 (TACC2) gene. TACC2 interacts with the 
centrosome and microtubules and has been implicated in the 
proliferation of breast cancer [70]. This gene has not been 
previously implicated in myopia or any other eye diseases, 
although one alternatively spliced variant of TACC2 was 
found to be expressed only in the retina and the brain in rats 

[71]. However, just because TACC2 has the highest HLOD 
score does not mean this is the causal gene. It is well-known 
that the maximum HLOD score is often not observed at the 
exact location of the causal gene. For this reason, it is stan-
dard practice to use the one LOD drop support interval when 
interpreting significant linkage results. The 95% support 
interval of the TACC2 CHP HLOD score extends to approxi-
mately 20 cM on each side of the significant gene [72-75], 

Figure 5. Chromosome 10 two-point single-variant LOD scores. Plot of the single-variant two-point heterogeneity logarithm of the odds 
(HLOD) scores produced by TwoPointLods for chromosome 10, which contains single nucleotide polymorphisms (SNPs) that exhibit 
suggestive evidence of linkage to myopia. The lines at 1.9 and 3.3 represent the respective suggestive and significant thresholds, respectively, 
recommended by Lander and Kruglyak. The SNPs in the age-related macular degeneration (AMD) risk locus HTRA1 are marked in blue.

Figure 6. Chromosome 9 two-point single-variant LOD scores. Plot of the single-variant two-point heterogeneity logarithm of the odds 
(HLOD) scores produced by TwoPointLods for chromosome 9, which contains single nucleotide polymorphisms (SNPs) that exhibit sugges-
tive evidence of linkage to myopia. The lines at 1.9 and 3.3 represent the respective suggestive and significant thresholds, respectively, 
recommended by Lander and Kruglyak.

http://www.molvis.org/molvis/v24/29


Molecular Vision 2018; 24:29-42 <http://www.molvis.org/molvis/v24/29> © 2018 Molecular Vision 

37

encompassing the entire 10q26.13 region. Finally, we identi-
fied a large number of suggestive signals within 10q26.13; 
therefore, other genes in the region should be considered 
candidate genes.

The most biologically interesting candidate gene at 
10q26.13 was HtrA serine peptidase 1 (HTRA1), a well-
documented susceptibility locus for AMD in the general 
population [59-65] and in Chinese populations [65,76,77]. 
Despite the gene’s known implications with AMD, HTRA1 
has not been previously reported to have any association 
with myopia [78,79]; this appears to be the first time the gene 
has been implicated in myopia. The present study identified 
HTRA1 as suggestive for linkage in the single-variant two-
point analysis and the multipoint analysis. CHP two-point 
analysis identified HTRA1 as slightly below the genome-
wide suggestive levels (HLOD = 1.6). Twenty-five SNPs 
in intronic regions of HTRA1 were identified as suggestive 
in the single-variant two-point analysis. The variants could 
be part of a linked haplotype for myopia risk. The majority 
of the suggestive HTRA1 SNPs are common, with an MAF 
of approximately 0.37, although in three of the individual 
families we observed linkage to rarer intronic SNPs (MAF 
ranging from 0.03 to 0.12). The fact that the overall linkage 
signal in HTRA1 consisted of common SNPs explains why 
the magnitude of the HTRA1 signal in the CHP analysis was 
lower; The CHP analysis was restricted to SNPs with an 
MAF <0.15. However, we caution that although HTRA1 is 
an excellent candidate gene at this locus, this gene is only 
one of many candidate genes identified in this study, and we 
do not imply causality simply because of the gene’s known 
function in AMD.

We also observed a suggestive signal at 9q33, which was 
identified as suggestive in all three analyses. This region has 
not been previously linked to myopia, although the nearby 
9q34.11 region was identified as suggestive by nonpara-
metric linkage methods that used high-grade myopia [80]. 
The present study seemed to replicate this finding. There 
are interesting candidate genes located at 9q33, including 
TLR4, which has previously been implicated in AMD and is 
expressed in the retina [81-83].

Many of the suggestive SNPs identified by the single-
variant two-point analyses are common. Although this may 
seem to be somewhat counterintuitive for linkage studies 
that are designed to find rare, high penetrance variants, it 
actually makes sense within the context of this study. The 
exome-based array provided a good backbone of common 
variants located fairly evenly across the genome. This back-
bone was useful for tagging linked, haplotypes across the 
genome. It is possible that one of the common SNPs is causal 

or that several of the common SNPs are causal with a low to 
moderate effect on disease risk. However, it is more likely 
that there is a rare variant on the segregating haplotype that is 
causal but was not on this limited exome–based chip (possibly 
different rare variants on different segregating haplotypes in 
different families; see Figure 1). Family-based studies can 
take advantage of long, linked haplotypes that have not been 
broken apart by many generations of meioses (as opposed 
to a population-based association study). This explains why 
the common variants identified here have not been identi-
fied in any association studies (including the family-based 
association studies we performed here); in the population, 
these common variants are not in linkage disequilibrium with 
a common risk variant. Follow-up studies involving targeted 
sequencing, which would sequence all variants (common/rare 
and coding/non-coding) in the 10q26 region, will give the 
opportunity to elucidate the true causal variant(s).

The two family-based association studies using these 
families found only one nominal significant result on chro-
mosome 6 (not significant after adjusting for multiple testing). 
Again, this is not particularly surprising given the differences 
in what is detected with association and linkage-based tests 
(association tests have more power to detect common vari-
ants that tend to have small effects on risk, and linkage tests 
have more power to detect variants with larger effects on risk, 
which tend to be rare variants often detected on a common 
haplotype segregating with disease in a family). The rv-TDT 
was also likely underpowered, as only 34 trios were used (one 
selected from each extended family).

Myopia is a complex disease, with multiple genetic and 
environmental factors contributing to causation. Known 
locus heterogeneity within the disease makes identification 
of causal variants more difficult. There are various ways 
to approach complex traits. The approach in this study was 
to use exome-based genotypes from carefully ascertained 
multiplex families in linkage studies to find any high effect, 
autosomal dominant variants that have been predicted by 
segregation analysis and previous linkage studies in other 
populations. Association studies are another valid approach, 
and population-based case-control studies have been used 
successfully by us and others to detect common risk variants 
of small effect on myopia risk. It is important to remember 
that association studies and linkage studies should be used to 
complement, not supersede, each other, as they test different 
things. This is important with a trait like myopia, which is 
known to be affected by multiple genetic variants. Asso-
ciation studies are better at identifying common variants 
of moderate to low effect. They are also able to incorporate 
environmental covariates into the analyses, something that is 
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difficult to do in a linkage analysis. One hopes that as linkage 
studies regain popularity new methods to incorporate covari-
ates will be developed. Linkage studies are better able to find 
rarer variants of larger effect and can use longer haplotypes to 
tag potential causal variants that were not genotyped. These 
haplotypes can allow us to zero in on a region of interest, such 
as we have done in this data set with 10q26.13. The fact that 
we were able to detect multiple suggestive linkage signals to 
this region in addition to the significant signal provides more 
confidence in the signal and less likelihood of a false positive 
(compared to the situation in which a single significant LOD 
score is observed surrounded by negative LOD scores at adja-
cent variant locations). Association and linkage analyses are 
important and necessary, and both approaches have distinct 
advantages and disadvantages when analyzing myopia.

In conclusion, we used a family-based approach to iden-
tify a novel significant linkage peak at 10q26.13 for myopia 
in Han Chinese families. Multiple suggestive signals in this 
region reinforce the likelihood of the region harboring a causal 
variant. There are excellent candidate genes in the region, 
such as HTRA1, a known AMD gene. Because these analyses 
were performed on an exome array and not DNA sequencing, 
it is possible that the true causal variants in each family that 
is linked to 10q26 were not genotyped on this chip. The 
linked common variants are likely tagging an ungenotyped 
causal (possibly rare) variant along the linked haplotype at 
10q26.13 (see Figure 1 for an example of this phenomenon). 
However, it is important that these localizations, especially 
the significant linkage at 10q26.13, be published to inform 
all fellow researchers working on myopia of the candidate 
genes found in these linked regions. For the same reason, 
we also report some of the more suggestive linkage results, 
especially the suggestive signal at 9q33 identified by all three 
linkage analyses.

We plan to perform targeted sequencing of the families 
that show linkage at 10q26.13. Targeted sequencing will 
provide genotypes for all genomic variants in the region and 
give us the ability to find any rare causal variants that were 
tagged by the common variants along the linked haplotypes 
in this study, which, in turn, will increase our understanding 
of myopia genetics.

APPENDIX 1. GENOME-WIDE SUGGESTIVE 
VARIANTS FROM SINGLE VARIANT TWO-POINT 
ANALYSIS

Table displaying the genome-wide significant and sugges-
tive linkage signals from the single variant two-point 
linkage analysis sorted by HLOD. The genome-wide 
significance threshold is 3.3 and the genome-wide suggestive 

threshold is 1.9, as recommended by Lander and Krug-
lyak. CHR=chromosomal region, HLOD=heterogeneity 
LOD score, POS=position in basepairs of the SNP, 
MAF=minor allele frequency as calculated from the data set, 
FUNCTION=functional annotation of the SNP, GENE=genic 
location of the SNP or closest genes in the case of intergenic 
SNPs. Annotations performed by ANNOVAR. To access the 
data, click or select the words “Appendix 1”
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