Skip to main content
. Author manuscript; available in PMC: 2019 Jan 1.
Published in final edited form as: J Comput Aided Mol Des. 2017 Dec 4;32(1):1–20. doi: 10.1007/s10822-017-0088-4

Table 5.

Top 10 submissions in terms of Kendall’s tau, in order of increasing tau, for the two free energy sets in both stages of the challenge. Kendall’s tau error bars are illustrated in Fig. 6 and listed in Tables S13–S16. Methods include predictions from all scoring and free energy methods. Methods in bold are common methods submitted by the same participant across FE sets.

Stage 1
FE Set 1
Kendall’s Tau Software Used Submitter Name Group/PI Name Receipt ID
0.44 Smina Bentley Wingert Carlos Camacho 5nim5
0.39 Quasi exact method FE method Bentley Wingert Carlos Camacho nrdge
0.39 Smina Bentley Wingert Carlos Camacho f48cf
0.35 ligand-based 3D QSAR method Flavio Ballante Garland R. Marshall kz0dz
0.35 Smina Bentley Wingert Carlos Camacho ukdfw
0.31 Knowledge-based scoring method ITScore_v2_TF Xiaoqin Zou Xiaoqin Zou r885q
0.29 MMPB/SA Xiaoqin Zou Xiaoqin Zou axxmu
0.29 MMPB/SA Xiaoqin Zou Xiaoqin Zou 3qyiy
0.29 Knowledge-based scoring method ITScore_TF Xiaoqin Zou Xiaoqin Zou c20xb
0.29 SeeSAR scoring function Anonymous Anonymous h2w3q
FE Set 2
Kendall’s Tau Software Used Submitter Name Group/PI Name Receipt ID
0.52 Knowledge-based scoring method ITScore_v1 Xiaoqin Zou Xiaoqin Zou fvfe7
0.50 Smina Matthew Baumgartner David Evans gzd7a
0.49 Knowledge-based scoring method ITScore_v2 Xiaoqin Zou Xiaoqin Zou 33a8g
0.49 idock-RF-v3 scoring function with visual inspection Ho Leung Ng Ho Leung Ng 6pcik
0.49 Knowledge-based scoring method ITScore_v1_TF Xiaoqin Zou Xiaoqin Zou q76s3
0.45 Knowledge-based scoring method ITScore_v2_TF Xiaoqin Zou Xiaoqin Zou 4ivv5
0.44 Ichem-GRIM score + HYDE score Didier Rognan Didier Rognan 4ynsp
0.44 Glide Ashutosh Kumar Kam Y.J. Zhang ttgw7
0.41 RF-Score-VS machine learning score, Smina Anonymous Anonymous f30wc
0.41 Knowledge-based scoring method ITScore_v2 Xiaoqin Zou Xiaoqin Zou mzwwt
Stage 2
FE Set 1
Kendall’s Tau Software Used S submitter Name Group/PI Name Receipt ID
0.41 Trained Random Forest Model, Rl-Score Anonymous Anonymous 4rbjk
0.35 Trained Random Forest Model, Rl-Score Anonymous Anonymous bw4pj
0.33 Trained Random Forest Model, Rl-Score Anonymous Anonymous jtsy2
0.33 Trained Random Forest Model, Rl-Score Anonymous Anonymous n55eq
0.31 Trained Random Forest Model, Rl-Score Anonymous Anonymous 0aggj
0.31 Smina, CNN Model Scoring David Koes David Koes 0zno2
0.31 Knowledge-based scoring method ITScore_v2 Xiaoqin Zou Xiaoqin Zou pr2fp
0.31 Smina, CNN Model Scoring David Koes David Koes tgmx1
0.31 QMMM energy, Schrodinger QSITE Anonymous Anonymous eta0e
0.29 KRh-SCORPIO scoring function modeled using available affinity data Jonathan Bohmann Pharmaceuticals and Bioengineering Dept. 35yg0
FE Set 2
Kendall’s Tau Software Used Submitter Name Group/PI Name Receipt ID
0.62 Explicit solvent FE (Jarzynski pulling) Oleksandr Yakovenko Steve Jones xk67c
0.55 QSAR method Matthew Baumgartner David Evans hj31e
0.55 Schrodinger FEP Anonymous Anonymous 81n55
0.53 Glide-XP Anonymous Anonymous ljdjm
0.53 Total Energy Anonymous Anonymous 67a3e
0.52 Xscore Anonymous Anonymous qokw3
0.52 Glide Ashutosh Kumar Kam Y.J. Zhang tbxzq
0.50 Schrodinger FEP Christina Athanasiou Zoe Cournia x2j7p
0.50 QSAR method Matthew Baumgartner David Evans naex2
0.50 Knowledge-based scoring method ITScore_v1 Xiaoqin Zou Xiaoqin Zou sb1dg