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Abstract

Inflammation is an important mediator of secondary neurological injury after traumatic brain 

injury (TBI). Endocannabinoids, endogenously produced arachidonate based lipids, have recently 

emerged as powerful anti-inflammatory compounds, yet the molecular and cellular mechanisms 

underlying these effects are poorly defined. Endocannabinoids are physiological ligands for two 

known cannabinoid receptors, CB1R and CB2R. In the present study, we hypothesized that 

selective activation of CB2R attenuates neuroinflammation and reduces neurovascular injury after 

TBI. Using a murine controlled cortical impact (CCI) model of TBI, we observed a dramatic 

upregulation of CB2R within infiltrating myeloid cells beginning at 72 hours. Administration of 

the selective CB2R agonist, GP1a (1–5 mg/kg), attenuated pro-inflammatory M1 macrophage 

polarization, increased anti-inflammatory M2 polarization, reduced edema development, enhanced 

*Address correspondence to: Kumar Vaibhav, Ph.D., Department of Neurosurgery, Medical College of Georgia, Augusta, GA 30912, 
Ph: (706) 721-6331, Fax: (706) 721-7619, kvaibhav@augusta.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Author Contributions
MB, ZTK, BB, KMD and KV conceptualized, designed, and performed experiments, analyzed data, and wrote the manuscript. MB, 
AW and MBK performed CBF analysis. ZTK and AW performed qPCR experiments. BB performed flow cytometric experiments. 
DH, MK and MNH assisted with experimental design and data interpretation. AS and BA acquired and assisted with the chimera 
preparation and analysis of MRI data.

HHS Public Access
Author manuscript
Brain Behav Immun. Author manuscript; available in PMC 2019 February 01.

Published in final edited form as:
Brain Behav Immun. 2018 February ; 68: 224–237. doi:10.1016/j.bbi.2017.10.021.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cerebral blood flow, and improved neurobehavioral outcomes after TBI. In contrast, the CB2R 

antagonist, AM630, worsened outcomes. Taken together, our findings support the development of 

selective CB2R agonists as a therapeutic strategy to improve TBI outcomes while avoiding the 

psychoactive effects of CB1R activation.
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1. Introduction

Traumatic brain injury (TBI) is a major cause of injury-related deaths and long-term 

disability. Cerebral edema, a life-threatening complication that presents in the hours and 

days after TBI, contributes to elevated intracranial pressure (ICP) (Catala-Temprano et al., 

2007; Levin et al., 1991; Saul and Ducker, 1982), cerebral hypoperfusion (Catala-Temprano 

et al., 2007), inadequate tissue oxygenation (Narotam et al., 2009), brain herniation 

(Katayama et al., 1990; Lenzlinger et al., 2001; Sarabia et al., 1988), and a poor clinical 

patient prognosis (Eisenberg et al., 1990; Levin et al., 1991; Narayan et al., 2002). Neither 

neurosurgical nor medical approaches adequately reduce edema formation or improve 

cerebral perfusion (Bloch and Manley, 2007; Sahuquillo and Arikan, 2006). Given the high 

incidence rate of TBI, novel approaches are needed to ameliorate both the acute and long-

term pathological outcomes following TBI.

The initial impact produces immediate mechanical damage and loss of tissue due to 

necrosis. This is followed by a coordinated set of immune responses that contribute towards 

both tissue repair and secondary neurological injury. Along these lines, we and others found 

a temporal and functional association between acute neuronal necrosis and the development 

of innate immune activation after both pre-clinical and clinical TBI (Braun et al., 2017; 

Czigner et al., 2007; Kawamata and Katayama, 2006; Laird et al., 2014). Macrophages are 

professional phagocytes that aid in clearance of cellular debris and tissue repair, yet the 

sustained release of pro-inflammatory mediators from infiltrating macrophages may 

exacerbate neuronal death, increase neurovascular injury, and contribute to long-term loss of 

white matter (Bartnik-Olson et al., 2014; Shi et al., 2015; Su and Bell, 2016). Although the 

molecular mechanisms underlying these opposing roles remain poorly defined, macrophages 

polarize along a continuum from a classical pro-inflammatory (M1) state to an alternative 

anti-inflammatory (M2) state. Notably, expression of both M1- and M2-like phenotypic 

markers are observed early after TBI, with the transient expression of M2 phenotypic 

markers yielding to a predominantly M1 phenotype that has been associated with the release 

of pro-inflammatory cytokines, edema development, the development of long-term adaptive 

immune responses, and neurodgeneration (Braun et al., 2017; Kim et al., 2016; Kumar et al., 

2016). Thus, the development of therapeutic approaches to reduce pro-inflammatory M1 

polarization may improve TBI outcomes.

Endocannabinoids, such as anandamide (N-arachidonoylethanolamide, AEA) and 2-

arachidonoylglycerol (2-AG), are endogenously produced, arachidonate based lipids that 
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serve as physiological ligands for the cannabinoid receptors, CB1R and CB2R (Ashton and 

Moore, 2011; Buch, 2013; Munro et al., 1993). CB1R, which was originally detected in 

neurons, mediates the psychoactive effects of marijuana (Ashton and Moore, 2011; Buch, 

2013; Ramirez et al., 2012). Conversely, CB2R is predominantly expressed on immune and 

endothelial cells and does not generate psychoactive activity (Anday and Mercier, 2005; 

Ramirez et al., 2012; Rom et al., 2013). Of note, inhibition of either CB1R or CB2R 

reversed the neuroprotective effects of minocycline (Lopez-Rodriguez et al., 2015) whereas 

inhibition of fatty acid amide hydrolase (FAAH), which boosts anandamide levels, increased 

anti-inflammatory microglia/macrophage activation and reduced neurodegeneration after 

TBI (Tchantchou et al., 2014). Thus, mechanistically defining the anti-inflammatory and 

neuroprotective roles of cannabinoid receptors may advance the therapeutic development to 

improve TBI outcomes.

In this study, we tested the hypothesis that administration of the selective CB2R agonist, 

GP1a [N-(piperidin-1-yl)-1-(2,4-dichlorophenyl)-1,4-dihydro-6-methylindeno[1,2-

c]pyrazole-3-carboxamide], induces M2 macrophage polarization and improves TBI 

outcomes. We also explored whether administration of the selective CB2R antagonist, 

AM630 [6-Iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-

methoxyphenyl)methanone] would exacerbate neurovascular injury after TBI.

2. Materials and Methods

2.1. Controlled cortical impact

This study was conducted in accordance with the Guide for the Care and Use of Laboratory 

Animals (NIH Publication No. 85-23) and was approved by the Committee on Animal Use 

for Research and Education at Augusta University. C57BL/6 mice were used for bone 

marrow chimera and adoptive transfer studies, while CD1 mice were used for all other 

experiments. Briefly, male C57BL/6 mice or CD-1 mice (12–16 weeks old; Charles River 

Laboratories) were housed under a 12-h light/12-h dark cycle at 23 ± 1°C. Food and water 

were provided ad libitum. Mice were anesthetized with 2% isoflurane and subjected to either 

sham injury or controlled cortical impact, as detailed by our laboratory (Braun et al., 2017; 

Kimbler et al., 2012; Laird et al., 2010). Mice were placed in a stereotaxic frame and a 

circular craniotomy was made in the right parietal bone midway between the lambda and the 

bregma by carefully outlining a 2.0 mm radius bone flap centered at stereotaxic coordinates-

AP= −2 mm from bregma; ML= +2.0 mm from mid line, leaving the dura intact. Mice were 

impacted at 3 m/s with 85 ms dwell time and 3 mm depression using a 3 mm diameter 

convex tip (PinPoint PCI3000 Precision Cortical Impactor, Hatteras Instruments, Cary, NC). 

Bone wax was used to seal the craniotomy, the incision was surgically stapled, and mice 

were placed in a clean warm cage until recovered. Sham-operated mice underwent the 

identical surgical procedures, but were not impacted. Body temperature was maintained at 

37°C using a small animal temperature controller throughout all procedures (Kopf 

Instruments, Tujunga, CA, USA). For treatments, placebo (PBS), CB2R selective agonist 

GP1a (Tocris Bioscience, Bristol, UK) (1–5 mg/kg b.wt.) or the CB2R antagonist AM630 

(Tocris Bioscience, Bristol, UK) (5 mg/kg b.wt.) were intraperitoneally administered at 10 

min post-TBI.

Braun et al. Page 3

Brain Behav Immun. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2 Behavioral tests and Neurological scoring

2.2.1 Habituation—For all tasks, mice were habituated for thirty minutes in the behavior 

room prior to training/testing. All tasks were performed under identical lighting conditions 

at the same time each day. All behavioral chambers were cleaned with 70% ethanol cleaning 

solution before and after use.

2.2.2 Assessment of motor coordination—Motor coordination was assessed using an 

accelerating rotarod task. Mice were trained three days prior to injury and re-assessed at day 

3 after TBI. Mice were placed on the rotarod moving at a constant speed of 4 rpm for thirty 

seconds followed by an acceleration to 30 rpm over the course of 4 minutes. The length of 

time each animal maintained balance while walking on top of the drum was recorded. Trials 

were ended when the animal either fell off the rod or clung to the rod for one complete 

rotation (Cernak et al., 2014). Motor coordination was further determined by measuring the 

time required to traverse a stationary 1 meter narrow beam (6 mm width) (Luong et al., 

2011). Each mouse was tested three-times and the average was recorded. All behavioral 

analyses were done by investigators blinded to the experimental groups.

2.2.3 Open Field Test—Mice were placed in a 40 cm × 40 cm × 40 cm box for 10 

minutes and activity was digitally recorded. Latency to enter the center zone and time spent 

in the center zone was recorded and analyzed using Ethovision XT video tracking software 

(Noldus Information Technology, Asheville, NC). Results were presented as mean ± SEM.

2.3 Tissue collection

At 72h post-TBI, mice were euthanized with 5% isoflurane. Blood was collected by cardiac 

puncture and placed into ice-cold heparinized tubes. Mice were next perfused transcardially 

with 30 mL of ice-cold phosphate buffered saline and brains were carefully removed. A 3-

mm coronal brain section centered on the contusion was prepared using an acrylic brain 

matrix. Ipsilateral (injured) cerebral cortex from each brain was collected for different 

analyses, as detailed below. For histological and immunohistochemical analysis, brains were 

perfused with ice-cold phosphate buffered saline followed by 4% paraformaldehyde.

2.4 Immunostaining and Quantification

Five µm thick coronal sections were obtained from paraffin embedded tissue blocks and 

deparaffinized with xylene and alcohol gradients. Following an antigen retrieval step, 

deparaffinized sections were incubated with rabbit anti-CB2R antibody (1:200; 

Bioss#bs-2377R) overnight at 4°C followed by incubation with a fluorescently labeled 

secondary antibody (1:500; Jackson Laboratories, Burlingame, CA) for 1 hour. Tissue 

sections were mounted with Vectamount permanent mounting media (Vector Laboratories, 

CA). Fluorescent images were captured by Zeiss LSM 780 upright microscope integrated 

with Zen2.1 software and mean fluorescence intensity was calculated from five discrete area 

of ipsilateral cortex in each group using ImageJ software. The primary anti-CB2R antibody 

was commercially validated for staining. To further demonstrate the specificity of the 

primary and secondary antibodies in IHC, coronal sections were deparaffinized, retrieved for 

antigen and were blocked with 1xPBS containing 5% donkey serum for 30 min. After 

blocking, sections were incubated with either rabbit isotype control IgG (1:200; Bioss # 
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bs-0295P) or blocking buffer (no primary antibody) overnight. After incubation, sections 

were washed three times with 1xPBS containing 0.5% tween20 and incubated with 

secondary anti-rabbit IgG conjugated with Alexafluor594 (1:500; Jackson Laboratories, 

Burlingame, CA). After washing away unbound IgG, slides were mounted with anti-fade 

mounting media containing DAPI and were imaged for fluorescence by confocal microscopy 

(Carl Zeiss LSM 780). Images are shown as supplementary Fig 1 and 2.

2.5 Quantitative RT-PCR (qRT-PCR)

Total RNA was isolated using a SV RNA Isolation kit (Promega, Madison, WI) and reverse-

transcribed into complementary deoxyribonucleic acid (cDNA) using iScript reagents on a 

programmable thermal cycler (C1000 Touch™ Thermal Cycler, Bio-Rad). 100 ng of cDNA 

was amplified in each real-time PCR using a BioRad iCycler and iTaq Universal SYBR 

Green reagents. Primers details are shown in Table 1. Product specificity was confirmed by 

melting curve analysis. Gene expression levels were quantified and data were normalized to 

18S, a housekeeping gene that was unaffected by TBI (Laird et al., 2010). Data are 

expressed as mean fold change versus vehicle placebo treatment.

2.6 Preparative and analytical flow cytometry

Freshly isolated brain tissue was sieved through a cell strainer, followed by centrifugation 

(1,500 rpm, 5 min) to prepare single-cell suspensions. Blood was collected via cardiac 

puncture, as described above (section 2.3). Cells were incubated with antibodies against cell 

surface markers CD11b, CD68, CD206, CD45 and CB2R (All antibodies purchased from 

eBioSciences, San Diego, CA). Following a PBS wash, cells were fixed and permeabilized 

using a Fixation/Permeabilization Concentrate (Affymatrix eBioscience), and then incubated 

with antibodies for intracellular labeling of TNFα and IL-10 (BD BioSciences, Bedford, 

MA, USA). After a final wash, cells were analyzed using a 4-color flow cytometer (FACS 

Calibur, BD Biosciences, San Diego, CA, USA), and CellQuest software (BD Biosciences, 

San Jose, CA, USA), as described previously (Baban et al., 2005; Baban et al., 2013). 

Isotype-matched controls were analyzed to set the appropriate gates for each sample. For 

each marker, samples were analyzed in duplicate. To minimize false-positive events, the 

number of double-positive events detected with the isotype controls was subtracted from the 

number of double-positive cells stained with corresponding antibodies (not isotype control), 

respectively. Cells expressing a specific marker were reported as a percentage of the number 

of gated events.

2.7 Bone marrow chimera

C57BL/6 recipient mice were whole body irradiated with a sub-lethal dose of 6 Gy (Cs137). 

After 24h, recipient mice were intravenously injected with 5×106 bone marrow cells 

collected from transgenic mice expressing monomeric red fluorescent protein (RFP) 

(mCherry) under the direction of the human ubiqutin C promoter [B6(Cg)-Tyrc-2J Tg(UBC-

mCherry)1Phbs/J; Jackson Laboratories, Stock#017614], as we detailed previously (Braun 

et al., 2017). Beginning at two weeks post-transplantation, 10 µL of blood was collected 

from the orbital sinus and RFP expression was measured in peripheral blood using flow 

cytometry. Blood from C57BL/6 mice without irradiation or RFP+ cell transplantation were 

used as a control. We found efficient (>75%) engraftment of bone marrow by d28. On d30, 
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mice were subjected to sham/TBI and the presence of infiltrated RFP+ myeloid cells were 

analyzed in brain tissue by flow cytometry.

2.8 Adoptive transfer of macrophages

Total bone marrow cells from naïve C57BL/6 mice were enriched and CD11b+, CD68+, 

F4/80+ macrophages were consecutively sorted three times by magnetic bead isolation 

(Miltenyi Biotech) to achieve >95% purity. Purified macrophages were labeled with CFSE 

(Molecular Probes, Eugene, OR), a green fluorescent cell staining dye, as described 

previously (Sharma et al., 2010). A total of 6×105 cells/mouse were injected via the tail vein 

immediately after sham/TBI injury. To provide spatial analysis of macrophage trafficking 

into the brain, deeply anesthetized mice were perfused with PBS, followed by fixation with 

4% paraformaldehyde in 0.1 M PBS (pH 7.4). Brains were post-fixed overnight in 

paraformaldehyde followed by cryoprotection with 30% sucrose (pH 7.4) until brains 

permeated. Serial coronal sections (12 µM) were prepared using a cryostat microtome and 

directly mounted onto glass slides. Anti-fade mounting media was added and glass cover 

slips were placed atop the slide. CFSE immunofluorescence was imaged using a LSM780 

Meta confocal laser microscope and vendor supplied software (Carl Zeiss).

2.9 Magnetic resonance imaging (MRI)

MRI imaging was performed in the Augusta University Core Imaging Facility for Small 

Animals. Briefly, edema was quantified using high-resolution T2-weighed (T2W) images 

acquired using a horizontal Bruker 7.0T 20 cm bore BioSpec MRI spectrometer, as reported 

by our group (Kimbler et al., 2012; Laird et al., 2014). Each whole brain scan was made up 

of 16 slices. Anatomically matched sections were used for quantification and representative 

images were shown.

2.10 Laser speckle contrast imaging (LSCI)

LSCI was used to image cerebral perfusion and to record cerebral blood flow (CBF) before 

TBI (baseline) and after 24h post-TBI. Briefly, a midline incision was made to expose the 

skull. The skull then was cleaned with sterile phosphate-buffered saline (PBS) and non-toxic 

silicone oil was applied to improve imaging quality. Body temperature was maintained at 37 

± 0.5°C. Cerebral perfusion was calculated in regions of interest (ROIs) located between 

bregma and lambda in each hemisphere specifying the contusional and pericontusional 

cortex (ROI 2) vs contralateral cortex (ROI 1) using a Perimed PSI system with a 70 mW 

built-in laser diode for illumination and 1388 × 1038 pixels CCD camera installed 10 cm 

above the skull (speed 19 Hz, and exposure time 6 ms). Acquired high-resolution images 

were analyzed for changes in CBF (cerebral perfusion) using vendor supplied PIMSoft 

software and presented as mean perfusion values (Khan et al., 2015).

2.11 Statistical analysis

Multi-group comparisons were made using a one-way analysis of variance (ANOVA) 

followed by Newman-Keuls post-hoc test. Two group comparisons were analyzed by t-test. 

Results are expressed as mean ± SEM. A p<0.05 was considered to be statistically 

significant.
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3. Results

3.1 Increased myeloid CB2R after TBI recruits and polarizes macrophages

qRT-PCR analysis revealed no significant differences in CB1R mRNA expression within the 

peri-contusional cortex, as compared to sham-operated mice (Fig 1A). In contrast, CB2R 

mRNA was increased ~15-fold (p<0.001; Fig 1B), suggesting a selective up-regulation of 

CB receptor subtypes after TBI. These data were supported by histological assessment, 

which showed widespread upregulation of CB2R+ cells in traumatized brain (p<0.001; Fig 

1C,D). To determine if CB2R+ myeloid cells are responsible for these changes, we used an 

irradiation chimera approach whereby RFP-expressing bone marrow was transplanted into 

irradiated wild-type mice. Consistent with gene expression studies, a dramatic increase in 

the number of RFP+CB2R+ cells were observed in the peri-contusional cortex at 72h post-

TBI (p<0.001; Fig 1E,F). Flow cytometric analysis determined that 52.7% of RFP+ CD11b+ 

CD45HI macrophages in the peri-contusional cortex expressed CB2R, whereas only 17.5% 

of cells were CB2R+ in sham-operated brains (p<0.001; Fig 1E,F). Moreover, adoptive 

transfer of CFSE labeled macrophages (Fig 2A) identified the infiltration of CB2R+ 

macrophages within the peri-contusional cortex after TBI, as assessed by 

immunohistochemistry (p<0.001; Fig 2B,C). In line with these findings, brain infiltration of 

peripheral macrophages (CD45High) was minimized by administration of the CB2R agonist, 

GP1a (1 mg/kg, p<0.05; 3 mg/kg, p<0.01) after TBI (Fig 3). However, administration of the 

CB2R antagonist, AM630 treatment did not reflect any alteration in infiltrating macrophages 

population as compared to placebo treated TBI mice (Fig 3A, C). Interestingly, neither 

placebo nor agonist/antagonist treatment showed significant alterations in residential 

microglia (CD45Low) [Fig 3B]. Sham mice with GP1a/AM630 treatment showed no 

significant changes in macrophages and microglia when compared to placebo treated sham 

(Supplementary Fig 3).

To functionally define the role of CB2R after TBI, mice were administered GP1a, a highly 

selective CB2R agonist, or AM630, a selective CB2R antagonist. GP1a dose-dependently 

attenuated M1 polarization and concomitantly increased M2 polarization after TBI 

(p<0.001; Fig 4A–D). In contrast, administration of AM630 had no effect on macrophage 

polarization, as compared to placebo-treated mice. In line with these observations, the post-

traumatic mRNA expression of M1-associated cytokines, inducible nitric oxide synthase 

(iNOS), tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β) and interleukin-6 

(IL-6) were suppressed by GP1a administration in contusional and pericontusional brain 

tissue (Fig 5). AM630 did not significantly affect expression levels of any of the M1-

associated cytokines, as compared to placebo-treated mice (Fig 5). Conversely, GP1a 

significantly increased the expression of the M2-associated markers, arginase-1 (Arg-I) and 

interleukin-10 (IL-10), as compared to placebo-treated mice after TBI (Fig 5). In addition, 

GP1a, but not AM360, suppressed the induction of the leukocyte chemo-attractants, CCL2 

and CXCL10, in the brain (Fig 5), suggesting a role for CB2R in the regulation of both 

macrophage recruitment and polarization after TBI.
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3.2 CB2R activation reduces neurovascular injury after TBI

Post-treatment with GP1a (1–5 mg/kg) dose-dependently reduced cerebral edema, with a 

maximum effect noted with following administration of 3 mg/kg (p<0.001; Fig. 6A,B). In 

contrast, AM630 exhibited no effect on edema formation after TBI as compared to placebo-

treated TBI. Edema development is frequently associated with reduced cerebral blood flow; 

thus, we next explored the effect of GP1a on cerebral perfusion using laser contrast speckle 

imaging. GP1a (1–5 mg/kg) significantly improved mean perfusion in the ipsilateral 

hemisphere at 24h post-TBI, as compared to placebo treated mice (Fig 7A,B). Similarly, 3 

mg/kg GP1a maximally improved CBF, as compared to placebo treated mice after TBI 

(p<0.001). Administration of 5 mg/kg AM630 failed to improve cerebral perfusion, in line 

with the edema data. Sham mice with GP1a/AM630 treatment showed no changes in CBF as 

compared to placebo-treated sham (Supplementary Fig 4).

3.3 CB2R activation improves neurobehavioral outcomes after TBI

GP1a significantly improved motor coordination, as assessed by the stationary beam walk 

(Fig 8A) and rotarod test (Fig 8B) at 72h post-TBI. As was observed with edema and 

perfusion, administration of 3 mg/kg GP1a achieved maximal protection in the narrow beam 

test (p<0.01) and on the accelerated rotarod (p<0.05), as compared to placebo treated mice 

after TBI (p<0.01). As marijuana is anecdotally used as an anxiolytic, we also examined the 

anxiety level of mice after TBI. Placebo treated mice showed higher latency (p<0.01) to first 

entry into center zone and spent less time in center zone (p<0.001) as compared to sham (Fig 

9A–C), suggestive of anxious behavior. Administration of GP1a reduced the latency to enter 

into center zone, as compared to placebo treated mice (p<0.01) whereas AM630 

administration had no effect on latency (not significantly different from placebo, p<0.05 vs. 

GP1a treated mice) [Fig. 9B]. Mice treated with 3 mg/kg GP1a also spent significantly more 

time in center zone, as compared with placebo (p<0.001) and AM630 (p<0.01) treated mice, 

indicative of reduced anxiety after TBI (p<0.01) [Fig. 9C]. Neither GP1a nor AM630 

influenced motor coordination or anxious behavior when administered to sham-operated 

mice, as compared to placebo treated sham (Supplementary Fig 5–6).

4. Discussion

In this report, we demonstrated that CB2R was prominently expressed on infiltrating 

macrophages within the peri-contusional cortex and activation of CB2R with GP1a, the most 

specific CB2R ligand currently available, increased anti-inflammatory, M2 macrophage 

polarization. We further showed that CB2R activation reduced edema volume, improved 

cerebral perfusion, and enhanced neurological outcomes after TBI. Thus, selective targeting 

of CB2R may be an efficacious therapeutic target to promote long-term outcomes after 

neurotrauma.

Anecdotal evidence and early stage clinical investigations suggest a medicinal role for 

phytocannabinoids, such as marijuana (Cannabis sativa), in the treatment of glaucoma, 

cachexia, nausea, emesis, and neuropathic pain (Croxford and Yamamura, 2005; Di Marzo 

and Petrocellis, 2006; Zhang and Ho, 2015); however, the potential for recreational abuse 

and addiction may ultimately limit the clinical utility of marijuana (Allen et al., 2016). 
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Marijuana is comprised of equimolar amounts of Δ9-tetrahydrocannabinol (Δ9-THC), the 

principal psychoactive constituent a classical partial agonist at CB1R/CB2R, and 

cannabidiol (CBD), a nonpsychoactive cannabinoid that accounts for 40% of the Cannabis 

plant extract (Campos et al., 2012; Pertwee, 2008; Syed et al., 2014), suggesting a potential 

interplay between two cannabinoid receptors CB1R and CB2R. Interestingly, CBD is 

neuroprotective after cerebral hypoxia-ischemia in immature pigs, at least in part, via 

activation of CB2R (Castillo et al., 2010; Pazos et al., 2013); however, CBD reduced human 

BBB permeability changes and produced anti-depressant and anxiolytic effect independently 

from CB2R (de Mello Schier et al., 2014; Hind et al., 2016). Thus, the development of 

specific CB2R agonists, which lack activity at CB1R, may enhance neurological outcomes 

after brain injury without the associated psychoactive side effects.

Repeated administration of O-1966, a selective CB2R agonist, attenuated blood-brain barrier 

disruption and limited neuronal degeneration during the acute phase after TBI (de Mello 

Schier et al., 2014). In addition, O-1966, reduced edema, attenuated macrophage/microglial 

activation, and was associated with recovery of acute motor and exploratory deficits (Elliott 

et al., 2011). Another CB2R agonist JWH-133 expedited post-stroke recovery by driving 

neuroblast cells to the injured site, suggesting a possible role for CB2R in neurogenesis and 

functional recovery (Bravo-Ferrer et al., 2017). However, the selectivity for CB2R in 

mediating these effects remains unclear. For example, O-1966 reduced cocaine-induced 

conditioned place preference; however, these effects were maintained in global CB2R 

knockout mice, suggesting O-1966 may exhibit off-target effects from CB2R (Ignatowska-

Jankowska et al., 2013)). Coupled with pharmacological studies showing lower selectivity 

(~200 fold) of O-1966 (Ki for CB2R 20.9 – 25.1 nM; for CB1R 4071–6039 nM) and 

JWH133 (Ki for CB2R 3.4 nM; Ki for CB1R 677 nM) for CB2R over CB1R (Steffens and 

Pacher, 2012), attention have moved toward the development of more selective CB2R 

agonists. As described previously, inhibition of CB1 receptor activation is protective during 

cerebral ischemia/reperfusion injury while inhibition of CB2R receptor activation is 

detrimental (Zhang et al., 2008) therefore, the greatest degree of neuroprotection may be 

obtained by treatment with a CB2R agonist having low affinity for CB1R activation. In this 

report, we have utilized GP1a, which exhibits ~1000 fold higher preference for CB2R over 

CB1R (Ki values are 0.037 and 363 nM for CB2R and CB1R, respectively.

CB2R is widely and highly expressed in a range of leukocytes and appears to be the key 

mediator of cannabinoid regulation of inflammation and immune functions (Ashton and 

Glass, 2007). For example, blockade of the CB2R receptor with SR145528 inhibits 

splenocyte proliferation and induces apoptosis in vitro (McKallip et al., 2002a; McKallip et 

al., 2002b). CB2R also regulates B and T cell differentiation, and the balance of 

proinflammatory T helper (TH1) to anti-inflammatory TH2 cytokines (Ziring et al., 2006). 

CB2R activation also suppresses neutrophil migration and differentiation (Nilsson et al., 

2006), but induces natural killer cell migration (Kishimoto et al., 2005). In macrophages, 

CB2R stimulation suppresses proliferation and the release of pro-inflammatory factors such 

as NO, IL-12p40, and TNF-α, inhibits phagocytosis, and reduces IL-2 signaling to T-cells 

(Chuchawankul et al., 2004). Taken together, these studies on CB2R receptors in leukocytes 

are consistent with an anti-inflammatory and immuno-suppressive role. This has been 

supported in recent years by demonstrations that CB2R regulates inflammation in a diverse 
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range of animal models, including but not limited to gastro-intestinal inflammation (Massa 

and Monory, 2006), acute hind paw inflammation (Conti et al., 2002), pulmonary 

inflammation (Berdyshev et al., 1998), and inflammation-induced hyperalgesia (Valenzano 

et al., 2005).

TBI is associated with prolonged inflammation due to both central and peripheral immune 

responses (Gyoneva and Ransohoff, 2015; Karve et al., 2016). Along these lines, we and 

others observed a transient increase in peripheral macrophage infiltration as early as 24 

hours post-injury, peaking at day three, and persisting for several weeks post-TBI (Braun et 

al., 2017; Hsieh et al., 2013; Jin et al., 2012; Kumar et al., 2016). On the other hand, 

microglia, the resident macrophages within the CNS, showed a biphasic increase at day 

seven and again at one month post-TBI (Hsieh et al., 2013). In the present study, we 

observed a significant increase in infiltrating CB2R+ macrophages whereas CB2R+ were not 

altered significantly at day 3 post-TBI. Importantly, administration of GP1a selectively 

reduced macrophage infiltration with no discernable effect on microglia at day 3 post-injury. 

As the selective effect of Gp1a may be time dependent, we cannot completely exclude a role 

for CB2R in the regulation of microglial activation and/or polarization. Nonetheless, our 

data support a critical role for CB2R activation on peripheral macrophage activation/

polarization during the acute phase after TBI.

Our observation of increased myeloid CB2R expression, with no changes in CB1R 

expression after TBI, is in line with increased CB2R binding, with no change in CB1R 

density, after fluid-percussion injury in newborn piglets (Donat et al., 2014). Functionally, 

GP1a increased M2 macrophage polarization, reduced the expression of pro-inflamamtory 

mediators (TNFα, IL1β, IL6, CCl2, CXCL10 and iNOS) and enhanced the expression of 

anti-inflammatory mediators (IL10 and ArgI) in contusional and pericontusional brain tissue 

after TBI, supporting the notion that the proposed neuroprotective actions of CB2R agonists 

are mediated by reducing inflammation after TBI. Although the precise mechanisms 

whereby CB2R regulates macrophage polarization and neurological protection remains 

largely undefined, toll-like receptor 4 (TLR4) is an important mediator of inflammation after 

brain injury (Braun et al., 2017; Laird et al., 2014; Zhang et al., 2014). We reported that 

early activation of myeloid TLR4 increased M1 macrophage polarization (Braun et al., 

2017) and enhanced edema formation after experimental TBI (Laird et al., 2014). In the 

present study, GP1a reduced M1 macrophage activation, decreased the expression of pro-

inflamamtory cytokine/chemokines, and attenuated edema formation after TBI. These 

observations raise the interesting and unexplored possibility that CB2R may limit myeloid 

TLR4 signaling as a mechanism to reduce neuroinflammatory activation after TBI. Indeed, 

pharmacological activation of CB2R inhibited toll-like receptor expression, including TLR4 

expression after spinal cord injury (Adhikary et al., 2011). In agreement, CB2R activation 

attenuated D-galactosamine/lipopolysaccharide (LPS)–induced acute liver failure by 

inducing an M1 to M2 shift in macrophages and by regulating the expression of miR-145, 

which negatively regulates TLR4 signaling (Tomar et al., 2015). Furthermore, we recently 

reported that myeloid TLR4 activation mediated the chronic activation of TH1/TH17 

polarization after experimental TBI (Braun et al., 2017). Although unexplored in this report, 

cannabinoids decrease TH17 polarization in a murine model of multiple sclerosis (Kozela et 

al., 2013). Thus, modulation of myeloid CB2R may influence both short- and long-term 
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recovery after TBI, at least in part, via regulation of TLR4 signaling pathways, a possibility 

that is the subject of active investigation by our laboratory.

Robust neuro-inflammatory reactions are associated with both acute neurovascular changes 

and chronic behavioral deficits (Hou et al., 2017; Peterson et al., 2015; Pottker et al., 2017). 

Regional and global CBF changes lead to asymmetric hemispheric neural activity patterns 

and contribute toward the development of long-term anxiety, cognitive, balance, and motor 

deficits after TBI (Hou et al., 2017; Plomgaard et al., 2017; Salehi et al., 2017). Our result in 

congruence with previous study showing impaired sports-related function in American 

Football players after TBI. These players after brain injury showed strong evidence of late-

life depression and short-term physical dysfunctions (Vos et al., 2017). Further, preclinical 

study with TBI rats showed immediate cognitive and motor deficits after injury (Chen et al., 

2016). Interestingly, GP1a treated mice showed protected motor ability on stationary narrow 

beam and accelerating rotarod. In addition, elevated post-traumatic anxiety was alleviated by 

GP1a treatment. On contrary, CB2R antagonist AM630-treated mice showed elevated 

anxiety and enhance thigomotaxis after TBI. Our findings are in line with a report showing 

mice administered β-caryophyllene, a CB2R agonist, exhibited anxiolytic and anti-

depressant phenotype, effects that were reversed by co-administration of the CB2 receptor 

antagonist AM630 (Bahi et al., 2014). Taken together, our preclinical data suggest that 

targeted activation of CB2R may provide a novel therapeutic target to improve motor and 

psychiatric function after TBI.

Conclusions

Inflammatory activation may produce both detrimental and reparative functions after TBI, 

suggesting a delicate balance is required to improve long-term outcomes. In this study, we 

show that GP1a, the most selective CB2R agonist developed to date, improves neurological 

outcomes, improves motor functions and reduces anxiety after experimental TBI. These 

effects were associated with increased anti-inflammatory M2 polarization, suggesting a 

critical role of CB2R in peripheral immune cells in recovery from TBI. Our findings support 

the further development of highly selective CB2R agonists as a potential theraeptic approach 

to exploit the beneficial of endocannabinoids without the associated psychoactive side 

effects of CB1R activation.
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Highlights

➢ Inflammation is an important mediator of secondary neurological injury after 

TBI

➢ Activation of CB2R attenuates inflammation and reduces neurovascular 

injury after TBI

➢ CB2R agonist, GP1a polarized macrophages into anti-inflammatory (M2) 

phenotypes

➢ GP1a reduced edema, enhanced cerebral blood flow, and improved 

behavioral outcomes

➢ CB2R antagonist, AM630 worsened physiological and behavioral outcomes 

after TBI
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Fig. 1. Selective increase in CB2R expression after TBI
(A.) CB1R and (B.) CB2R mRNA were assessed in brain tissue by RT-qPCR and 

normalized to 18S expression. Data are expressed as fold change with respect to sham and 

revealed a selective 15-fold increase in CB2R expression. (C.) Histological analysis revealed 

increased CB2R+ immunoreactivity in the injured cortex (Scale-50µm), as compared to 

sham-operated brains. (D.) CB2R+ cells were quantified as mean fluorescent intensity and 

normalized to sham. (E.) Bone marrow chimera mice were generated whereby myeloid cells 

expressed red fluorescent protein (RFP). CB2R was expressed in 52.7% of 

RFP+CD11b+CD45HI infiltrating myeloid cells in the brain after TBI whereas 17.5% of 

RFP+ cells expressed CB2R in sham brains, as assessed by flow cytometry. (F) 

Quantification of RFP+CD11b+CD45HICB2R+ shown in panel (E.). Groups were compared 

as Student’s t-test. Data were represented as mean ± SEM (n=6; **p<0.01; ***p<0.001 vs. 

sham).
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Fig. 2. CB2R expression in infiltrated myeloid cells after TBI
(A.) Schematic of macrophage (MΦ) adoptive transfer in recipient mice. CFSE-labeled 

CD11b+, CD68+, F4/80+ macrophages were intravenously administered through the tail vein 

immediately after sham/TBI. Brains were harvested for immunofluorescent staining at 72h 

post-injury. (B.) The increased infiltration of CFSE+ macrophages temporally and spatially 

paralleled increased CB2R+ expression after TBI (Scale-50µm). (C.) CB2R+ (red) and 

CFSE-labeled macrophages (green) were quantified as mean fluorescent intensity. Data were 

represented as mean ± SEM (n=6) and analyzed using Student’s t-test (***p<0.001 vs. 

sham).
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Fig. 3. CB2R activation decreases macrophage infiltration into the brain after TBI
(A.) Representative flow cytometry dot plots showing CD68+ CD11b+ CB2R+ myeloid cells 

were sorted after sham/TBI and analyzed for microglia (CD45Low) and infiltrating 

macrophages (CD45High) populations. A TBI-induced increase in infiltrating macrophages 

was significantly reduced by treatment with GP1a (1 and 3 mg/kg), but not after treatment 

with the CB2R antagonist, AM360 (5 mg/kg). Interestingly, microglia did not show any 

significant alterations in numbers at day 3 post sham/TBI with or without treatment. Gating 

strategy has been shown in Fig 3A. Quantification of (B.) microglia and (C.) infiltrating 

macrophages are shown here. Data were represented as mean ± SEM and groups were 

compared by One-way ANOVA followed by Newman-Keuls multiple comparison. (n=6–7/

group; *p<0.05; **p<0.01).
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Fig. 4. CB2R activation increases M2 macrophage polarization after TBI
(A.) Representative flow cytometry dot plots showing CB2R+ CD11b+ myeloid cells were 

sorted after sham/TBI and analyzed for M1 (CD68+ CD206− TNFα+) and M2 (CD68+ 

CD206+ IL10+) polarization. A TBI-induced increase in M1 polarization was significantly 

reduced by treatment with 3 mg/kg GP1a, but not after treatment with the CB2R antagonist, 

AM360 (5 mg/kg). Dot plots for GP1a treatments (1 mg/kg b.wt and 5 mg/kg b.wt.) are not 

shown here. Quantification of (B.) M2 macrophages (C.) M1 macrophages, and (D.) the 

ratio of M2:M1 macrophages after treatment. Data were represented as mean ± SEM and 

groups were compared by One-way ANOVA followed by Newman-Keuls multiple 

comparison. (n=6/group; *p<0.05; **p<0.01; ***p<0.001).

Braun et al. Page 23

Brain Behav Immun. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Braun et al. Page 24

Brain Behav Immun. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. CB2R activation reduces pro-inflammatory cytokine expression after TBI
Gene expression of inflammatory cytokines (TNF-α, IL-1β and IL-6), anti-inflammatory 

cytokine (IL-10), leukocyte chemo-attractants (CCL2 and CXCL10), and macrophage-

associated enzymes (iNOS and Arg1) were quantified by qRT-PCR at 72h post-TBI. 

Treatment with GP1a reversed the TBI-induced expression of inflammatory mediators 

within the peri-contusional cortex whereas AM630 was largely ineffective, as compared to 

sham. Groups were represented as mean ± SEM (n=6/group) and analyzed using a One-way 

ANOVA followed by Newman-Keuls multiple comparison (*p<0.05; **p<0.01; 

***p<0.001).
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Fig. 6. GP1a reduced edema volume after TBI
(A.) Representative MRI images showing GP1a treatment reduced edema volume at 24h 

post-TBI. (B.) Data were quantified using ImageJ software and are expressed as mean ± 

SEM (n=6–8/group). Groups were compared using a One-way ANOVA followed by 

Newman-Keuls post-hoc test (###p<0.001 vs. sham; **p<0.01; ***p<0.001 vs. placebo 

treated TBI; ^p<0.05; ^^^p<0.001 vs. 5 mg/kg AM630 treated mice after TBI).
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Fig. 7. GP1a improves CBF after TBI
A) CBF was imaged at baseline and at 24h post-TBI using LSCI. Representative images are 

provided following GP1a (1–5 mg/kg) or AM630 (5 mg/kg) treatment (B.) Cerebral 

perfusion was quantified as mean perfusion value and data were presented as mean ± SEM 

(n=6–7). Groups were compared as One-way ANOVA followed by Newman-Keuls multiple 

comparison (*p<0.05; **p<0.01; ***p<0.001 vs. placebo treated TBI; # p<0.05 vs. Sham).
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Fig. 8. GP1a improves motor function after TBI
Mice were tested on (A) stationary narrow beam and B) accelerating rota-rod for motor 

coordination. Placebo-treated TBI mice showed significant motor impairments on both tasks 

whereas all doses of GP1a improved outcomes. Data were represented as mean ± SEM 

(n=12). Groups were compared as One-way ANOVA followed by Newman-Keuls post hoc 

test (###p<0.001 vs. sham; **p<0.01; ***p<0.001 vs. placebo treated TBI; ^p<0.05; 

^^p<0.01; ^^^p<0.001 vs. 5 mg/kg AM630 treated mice after TBI).
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Fig. 9. GP1a exhibits anxiolytic effects after TBI
(A.) Representative heat maps from the open field task showed that GP1a (1–5 mg/kg) 

increased overall movement throughout the trial. (B.) Quantification of open field data 

showed GP1a (1–5 mg/kg), but not AM630, reduced the latency to enter center zone, a 

measure of reduced anxiety, and (C.) increased the time spent in the center zone. Data were 

expressed as mean ± SEM (n=12/group). Groups were compared by One-way ANOVA 

followed by Newman-Keuls post hoc test (*p<0.05 and ***p<0.001).
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Table 1

Primers used for quantification of mRNA expression in brain by RT-qPCR.

Name Sequence (5'-3') Accession Number/Reference

Mm 18S rRNA - FP GTAACCCGTTGAACCCCATT
NR_003278.3 (Schmittgen and Zakrajsek, 2000)

Mm 18S rRNA - RP CCATCCAATCGGTAGTAGCG

Mm Arg I - FP CTCCAAGCCAAAGTCCTTAGAG
NM_007482.3

Mm Arg I - RP AGGAGCTGTCATTAGGGACATC

Mm IL10 - FP TAACTGCACCCACTTCCCAG
NM_010548.2

Mm IL10 - RP AGGCTTGGCAACCCAAGTAA

Mm TNFα - FP CCCTCACACTCAGATCATCTTCT
NM_013693.3

Mm TNFα - RP GTCACGACGTGGGCTACAG

Mm IL6 - FP TAGTCCTTCCTACCCCAATTTCC
NM_031168.2

Mm IL6 - RP TTGGTCCTTAGCCACTCCTTC

Mm IL1β - FP TGCCACCTTTTGACAGTGATG
NM_008361.4

Mm IL1β - RP AAGGTCCACGGGAAAGACAC

Mm iNOS - FP GTTCTCAGCCCAACAATACAAGA
NM_010927.4

Mm iNOS - RP GTGGACGGGTCGATGTCAC

Mm CXCL10 - FP AAGTGCTGCCGTCATTTTCT
NM_021274.2

Mm CXCL10 - RP GTGGCAATGATCTCAACACG

Mm CCL2 - FP CCACAACCACCTCAAGCACT
NM_011333.3

Mm CCL2 - RP TAAGGCATCACAGTCCGAGTC

Mm CB1R - FP AAGTCGATCTTAGACGGCCTT
NM_007726.3

Mm CB1R - RP TCCTAATTTGGATGCCATGTCTC

Mm CB2R - FP CTACAAAGCTCTAGTCACCCGT
NM_001305278.1

Mm CB2R - RP CCATGAGCGGCAGGTAAGAAA

#
Mm – Mus musculus; FP - Forward Primer; RP- Reverse Primer
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