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Abstract. Accurate two-dimensional to three-dimensional (2-D/3-D) registration of preoperative 3-D data and
intraoperative 2-D x-ray images is a key enabler for image-guided therapy. Recent advances in 2-D/3-D regis-
tration formulate the problem as a learning-based approach and exploit the modeling power of convolutional
neural networks (CNN) to significantly improve the accuracy and efficiency of 2-D/3-D registration. However,
for surgery-related applications, collecting a large clinical dataset with accurate annotations for training can
be very challenging or impractical. Therefore, deep learning-based 2-D/3-D registration methods are often
trained with synthetically generated data, and a performance gap is often observed when testing the trained
model on clinical data. We propose a pairwise domain adaptation (PDA) module to adapt the model trained
on source domain (i.e., synthetic data) to target domain (i.e., clinical data) by learning domain invariant features
with only a few paired real and synthetic data. The PDA module is designed to be flexible for different deep
learning-based 2-D/3-D registration frameworks, and it can be plugged into any pretrained CNN model such
as a simple Batch-Norm layer. The proposed PDA module has been quantitatively evaluated on two clinical
applications using different frameworks of deep networks, demonstrating its significant advantages of general-
izability and flexibility for 2-D/3-D medical image registration when a small number of paired real-synthetic data
can be obtained. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.2.021204]
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1 Introduction
Given the recent development in medical imaging technologies,
image-guided procedures are becoming increasingly popular
with reduced invasiveness and postprocedure complications.1

2-D/3-D registration, which aligns the preoperative 3-D data
and the intraoperative 2-D data into the same coordinate system,
is one of the key enabling technologies of image-guided
procedures.2 The modalities of preoperative 3-D data include
computed tomography (CT), magnetic resonance imaging,
positron emission tomography of patients, and computer-aided
design (CAD) models of medical devices, and the intraoperative
2-D data include ultrasound (US) and x-ray. By aligning the 2-D
and 3-D data, accurate 2-D/3-D fusion can provide complimen-
tary information for advanced image-guided radiation therapy,
radiosurgery, endoscopy, and interventional radiology.3 Figure 1
demonstrates two examples of 2-D/3-D registration: (1) estima-
tion of six degrees of freedom (DoF) pose of a transesophageal
echocardiography (TEE) transducer in an x-ray image by
registering its CAD model with the x-ray image, which is the
key enabling technology for fusing live US and x-ray images
for image-guided therapy; (b) registration of spine vertebra in
CT and x-ray images, which has a wide range of applications
in interventional imaging when spine is a visible object in
the imaging field.

Optimization-based methods have been extensively studied
for 2-D/3-D registration in the past decades. In these methods,
a simulated x-ray image, referred to as digitally reconstructed
radiograph (DRR), is derived from the 3-D x-ray attenuation

map by simulating the attenuation of virtual x-rays. An opti-
mizer is employed to maximize an intensity-based similarity
measure between the DRR and x-ray images.4,5 Although
optimization-based methods are accurate, their computational
efficiency is limited since they usually need many iterations of
DRR generation and similarity computation. In addition, pose
initialization in a close neighborhood of the correct pose is
often required due to the small capture range. Recent develop-
ment in deep learning-based 2-D/3-D registration methods have
shown promising improvement in both computational efficiency
and capture range compared to conventional optimization-based
methods.2,6–8 While deep learning offers large modeling capac-
ity, sufficient training of such a deep model requires a large
number of labeled data, which may be expensive or even
impractical to collect from clinical procedures, especially for
2-D x-ray images that tend to lack information in depth.
Therefore, the aforementioned data-driven approaches are
often trained with synthetically generated data before they
are tested on real clinical data. Specifically, synthetic data are
generated by rendering DRR images from preoperative 3-D
data (e.g., CAD models and CT) with random poses to simulate
real x-ray images. Even though variations such as background
and contrast medium are randomly added to make the appear-
ance of the synthetic data more realistic, domain differences
between real and synthetic data still exist. Compared with
synthetically generated data, TEE probe in real x-ray images
[Fig. 2(a)] are blurred with artifacts in the center of the probe,
whereas spine vertebra in the real x-ray images [Fig. 2(b)] have

*Address all correspondence to: Jiannan Zheng, E-mail: jiannanz@ece.ubc.ca 2329-4302/2018/$25.00 © 2018 SPIE

Journal of Medical Imaging 021204-1 Apr–Jun 2018 • Vol. 5(2)

Journal of Medical Imaging 5(2), 021204 (Apr–Jun 2018)

http://dx.doi.org/10.1117/1.JMI.5.2.021204
http://dx.doi.org/10.1117/1.JMI.5.2.021204
http://dx.doi.org/10.1117/1.JMI.5.2.021204
http://dx.doi.org/10.1117/1.JMI.5.2.021204
http://dx.doi.org/10.1117/1.JMI.5.2.021204
http://dx.doi.org/10.1117/1.JMI.5.2.021204
mailto:jiannanz@ece.ubc.ca
mailto:jiannanz@ece.ubc.ca
mailto:jiannanz@ece.ubc.ca


distinct sharpness and noises. In addition, artifacts and other devi-
ces could be presented in real clinical x-ray images. These domain
differences lead to the domain shifting problem that downgrades
the performance of the trained deep models on real clinical data.

In our preliminary work,6 we exploit the ability to generate
a corresponding synthetic data for each labeled real data with the

exact same pose parameters and define a pairwise loss measuring
the distance between features from paired real and synthetic data
to represent the performance gap between the domains. In this
paper, we further propose a pairwise domain adaptation (PDA)
module to bridge the performance gap. The proposed PDA mod-
ule is (1) powerful with additional network capacity to model
complex domain variances, (2) flexible for different deep learn-
ing-based 2-D/3-D registration frameworks, (3) easy to be plugged
into any pretrained convolutional neural networks (CNN) model,
and (4) trainable with hierarchical pairwise losses using only a few
real-synthetic pairs. The proposed PDA module is evaluated on
two different deep learning frameworks with two different clinical
problems: CNN-based residual regression for TEE transducer
registration and deep reinforcement learning (DRL)-based
policy learning for spine vertebra registration. The experiment
results demonstrate PDA module’s advantage in generalization
and superior performance for real clinical data. The proposed
PDA module has the potential to benefit any medical imaging
problems where paired real-synthetic data can be obtained.

The remainder of the paper is organized as follows. Section 2
provides a literature review of deep learning-based 2-D/3-D
registration and deep domain adaptation methods. Section 3
presents the proposed PDA module with the two deep learn-
ing-based 2-D/3-D registration problems. Section 4 presents
the experimental results, and Sec. 5 concludes the paper.

2 Related Works

2.1 Deep Learning-Based 2-D/3-D Medical Imaging
Registration

Recently, deep learning-based methods have shown promising
results in 2-D/3-D registration. A CNN-based regression
approach was proposed to model the nonconvex mappings
between registration parameters and image residual features.2

They further improve the capture range and computational
efficiency by modeling the complex mapping problem with
a hierarchical CNN regression architecture.6 The reported

Fig. 1 Examples of 2-D/3-D medical image registration applications,
with 2-D x-ray images on the left and 2-D/3-D overlay results on the
right. (a) TEE transducer registration: the 3-D CAD model of TEE is
overlaid in yellow, and the blue and red cones are the TEE projection
target using the ground truth pose and the estimated pose of the TEE
transducer. TEE projection target is defined as the four corners of
the TEE imaging cone at 60 mm depth. (b) Spine vertebra registration:
the CT volume of the spine is overlaid in yellow on 2-D x-ray spine
images.

Fig. 2 Comparison of real clinical data and synthetically generated data. (a) Real TEE transducer x-ray
(left) versus synthetically generated DRRs (right). (b) Real spine vertebra x-ray (left) versus synthetically
generated DRRs (right).
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framework shows the state-of-the-art performance in both accu-
racy and speed for 2-D/3-D registration of rigid objects. A
Markov decision process (MDP) formulation for image registra-
tion was introduced for 3-D/3-D registration,7 where an artificial
agent is trained to perform registration by taking a series of
actions in the MDP environment. The agent-based approach
was furthermore extended to 2-D/3-D registration.8 It is widely
recognized that successful training of deep learning models
often requires a large number of labeled data, which for
many applications (e.g., image-guided surgery) are difficult
or impractical to collect. The above methods exploit a large
number of synthetically generated data for training. However,
the domain difference between synthetic and real data often
causes a performance gap when applying the trained model
on real data. In Ref. 6, we first introduced the PDA to improve
the registration accuracy. Pairwise domain distance is employed
to fine-tune the last convolutional layer of the pretrained CNN
model. Compared with Ref. 6, the proposed PDA module in this
paper is a flexible plug-and-play module that can be applied to
general network structures. It also provides additional network
complexity to better model domain variances. In the experiment
section, we evaluate the proposed PDA module with two differ-
ent 2-D/3-D registration frameworks6,7 and demonstrate that
the proposed PDA module can significantly improve the perfor-
mance of CNN models pretrained with synthetic data.

2.2 Deep Domain Adaptation

Domain adaptation methods have been invested to address the
problem of domain shifting by establishing knowledge transfer
from the source domain training data to the target domain testing
data to extract domain invariant features. In the literature, deep
domain adaptation works can be categorized into two directions:
discrepancy-based and adversarial-based.9 The strategy of
discrepancy-based method is to guide the model training toward
the target domain by minimizing a defined domain distance.
Deep domain confusion employs maximum mean discrepancy
(MMD) as the domain loss for adaptation.10 MMD measures
domain difference by calculating the norm of the difference
between the means of the two domains. The deep adaptation
network minimizes MMD with multiple kernels and expends
the MK-MMD loss on multiple layers in CNN.11 Deep correla-
tion alignment method simply matches the mean and covariance
of the data distributions of the two domains.12 In contrast,
adversarial-based methods aim to encourage domain confusion
through an adversarial objective, i.e., a binary domain classi-
fier.13,14 Since these methods generally model the domain
distance over source and target data distributions in an unsuper-
vised fashion, they still require a large number of data from both
domains. In addition, these methods tend to compare deep fea-
tures at high level layers of CNN [mostly fully connected (FC)
layers]. Since FC layers are more task-specific, employing FC
features will limit the flexibility of the adapted model.

3 Methods

3.1 Problem Statement

3.1.1 2-D/3-D registration problem definition

A common x-ray imaging system is shown in Fig. 3. Assuming
that the beam divergence is corrected by the x-ray imaging
system and the x-ray sensor has a logarithm static response,
the generation of x-ray image can be defined as follows:

EQ-TARGET;temp:intralink-;e001;326;592IðpÞ ¼
Z

μ½Lðp; rÞ�dr; (1)

where I is the intensity of the x-ray image, IðpÞ is the intensity
of the x-ray image I at point p, Lðp; rÞ is the ray from the x-ray
source to point p, parameterized by r, and μð·Þ is the attenuation
coefficient of the x-ray. Denoting the x-ray attenuation map of
the object to be imaged as J∶R3 → R, and the 3-D transforma-
tion from the object coordinate system to the x-ray imaging
coordinate system as T∶R3 → R3, the attenuation coefficient
at point x in the x-ray imaging coordinate system is

EQ-TARGET;temp:intralink-;e002;326;470μðxÞ ¼ JðT−1 ∘ xÞ: (2)

Combining Eqs. (1) and (2), we have

EQ-TARGET;temp:intralink-;e003;326;428IðpÞ ¼
Z

J½T−1 ∘ Lðp; rÞ�dr: (3)

In 2-D/3-D registration problems, L is determined by the x-ray
imaging system, J is provided by the 3-D preoperative data (e.g.,
CT intensity), and the transformation T is to be estimated from
the input x-ray image I. Note that given J, L, and T, a synthetic
x-ray image Ið·Þ (often referred to as DRR) can be computed
following Eq. (3) using the ray-casting algorithm.15

A rigid-body 3-D transformation T can be parameterized by
a vector t with three in-plane and three out-of-plane transforma-
tion parameters.2 In particular, in-plane transformation parame-
ters include two translation parameters, tx and ty, and 1 rotation
parameter, tθ; out-of-plane transformation parameters include
one out-of-plane translation parameter, tz, and two out-of-
plane rotation parameters, tα and tβ. The effects of in-plane
transformation parameters are approximately 2-D rigid-body
transformations while the effects of out-of-plane translation
and rotations are scaling and shape changes, respectively.

3.1.2 CNN regression-based 2-D/3-D registration for
TEE transducer

TEE and x-ray fluoroscopy are the two major live imaging
modalities for image-guided catheter-based interventions.
TEE can provide detailed visualization for soft tissue anatomies
while x-ray can capture medical devices. Accurate 2-D/3-D
registration of TEE transducer from x-ray images can enable
advanced image guidance, e.g., fused visualization and joint
analysis of anatomy and devices. A CNN regression-based
approach was proposed to estimate the transformation parame-
ters t.6 Figure 4(a) shows the structure of the CNN regressor.

Fig. 3 Projection geometry of 2-D/3-D registration.

Journal of Medical Imaging 021204-3 Apr–Jun 2018 • Vol. 5(2)

Zheng et al.: Pairwise domain adaptation module for CNN-based 2-D/3-D registration



Given an x-ray image of the TEE transducer with ground truth
pose parameter t and initial estimation of pose parameters t0,
a DRR is rendered at pose t0, and the CNN regressor is trained
to model estimate the pose parameter residual t − t0 by com-
paring the x-ray and DRR images. Region-of-interest (ROI)
extraction is performed via probabilistic boosting tree (PBT)
detectors.5 More specifically, a series of cascaded PBT classi-
fiers are trained to classify the initial in-plane ðtx; ty; tθÞ and
out-of-plane translation (tz) using Haar-like and rotated Haar-
like features. Based on these four parameters, the ROI of the
TEE transducer in the input x-ray image can be extracted.
Following ROI extraction, normalization is performed to the
x-ray and DRR patches. Intensity values of the patches are nor-
malized from ½0; 255� to ½0; 1�. Background pixels (intensity
value in ½0; 0.2� and ½0.8; 1�) are ignored during normalization.
This normalization process is to ensure that the input data to
CNN model has consistent brightness and contrast. The x-ray
and DRR patches are further resized to 140 × 80 pixels.
Image residual feature is calculated via subtraction and fed
into CNN regressor. The CNN regressor aims to model the
mappings between registration parameters δt and the image
residual feature. The CNN regressor has 10 convolutional layers
with 3 × 3 kernels and incremental feature map numbers
½32; 32; 48; 48; 64; 64; 96; 96; 128; 128�. Pooling layers with
2 × 2 kernels are added after every two convolutional layers.
Following the convolutional layers and pooling layers, there is
one FC layer with 1024 neurons, and the last FC layer then out-
puts the registration parameters. More details of the framework

can be found in the preliminary version of this paper.6 To gen-
erate synthetic training data, two images are rendered: a DRR
image It0 with a random starting pose t0, and a synthetic x-ray
image It0þδti with ground truth parameter δti. The image residual
feature can be calculated as

EQ-TARGET;temp:intralink-;e004;326;317Xi ¼ It0þδti − It0 : (4)

Then, the CNN regressor can be trained with the following
loss function:

EQ-TARGET;temp:intralink-;e005;326;263L ¼ 1

N

XN
i¼1

kδTi − fðXi;WÞk

¼ 1

N

XN
i¼1

kδTi − fðIt0þδti − It0 ;WÞk; (5)

where N is the number of training samples, W is the CNN
weights to be learned, fðXi;WÞ is the output of the CNN regres-
sor with input image residual feature Xi, and k · k denotes
Euclidean distance.

3.1.3 DRL-based 2-D/3-D registration for spine vertebra

In image-guided spine surgery, registration of 3-D preoperative
CT data and 2-D intraoperative x-ray image can provide
valuable assistance such as vertebra localization and device
path planning. To address this problem, an MDP agent-based

Fig. 4 Problem framework of (a) CNN regression-based 2-D/3-D registration for TEE transducer and
(b) DRL-based 2-D/3-D registration for spine vertebra.
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framework was proposed to train the artificial agent, which can
iteratively choose the optimal action to recover 6DoF parameters
t of the target vertebra.7 Specifically, the process of 2-D/3-D
registration is formulated as an MDP, where at every time
point i with a pose ti, an artificial intelligent agent modeled
by a deep neural network observes the x-ray image and DRR
rendered with the pose ti, and produces an action ai to modify
the pose. At a time point i, the state si is defined by the current
transformation Ti. Rewards rðsi; aiÞ of actions ai can be calcu-
lated by

EQ-TARGET;temp:intralink-;e006;63;642rðsi; aiÞ ¼ DðTg; TiÞ −DðTg; ai ∘ TiÞ; (6)

where Tg is the ground truth transformation, DðTg; TiÞ defines
the distance of ground truth transformation and current transfor-
mation, and ai ∘ Ti is the new transformation after taking action
ai. In this work, the action set A has 12 candidate transforma-
tions with �1 for each of the 6DoF parameters. More detailed
formulations can be found in Ref. 7. As shown in Fig. 4(b),
the CNN architecture has two branches for input x-ray image
and DRR image separately. A minmax normalization is applied
on the x-ray and DRR images to normalized their intensities to
½0; 1�. The input x-ray and DRR images are resized to 128 × 128
pixels. Each branch has four convolutional layers with 3 × 3 ker-
nels and increasing feature map size ½64; 64; 128; 128�. After
each convolutional layer, a pooling layer with 2 × 2 kernels
is added. The convolutional features are then concatenated
and fed into four FC layers with decreasing number of neurons
½1024; 512; 256; 12�. The output of the last FC layer corresponds
to the rewards of the 12 candidate actions. Similar to Eq. (5),
the training loss L is defined by

EQ-TARGET;temp:intralink-;e007;63;413L ¼ 1

N

XN
i¼1

krðsi; aiÞ − fðIt0þδti ; It0 ;WÞk. (7)

As shown in Fig. 4, the above two methods are different in
the following aspects:

1. The tasks of CNN models are different. In TEE regis-
tration, the CNN model outputs the 6DoF transforma-
tion parameters; in spine registration, the CNN model
outputs 12 rewards for 12 candidate transformations.

2. The CNN architectures are different. In TEE registra-
tion, the CNN model takes a single residual image as
the input; in spine registration, there are two branches
to process x-ray and DRR images separately.

3. The learning methods are different. In TEE registra-
tion, the CNN model is trained with supervised learn-
ing; in spine registration, the CNN model is trained
with reinforcement learning.

In the following sections, we will present the proposed PDA
model that can significantly improve the 2-D/3-D registration
performance for both applications with a few real data (around
100), despite the differences in CNN architecture, input-output
model, and learning methods.

3.2 Pairwise Domain Loss

To handle domain shifting problem between synthetic and
real data, typical deep domain adaptation methods focus on

unsupervised distribution modeling and require a large number
of target domain data in order to model the distribution reason-
ably well. Another intuitive solution is to fine-tune the CNN
model pretrained with the synthetic data using labeled real
data. However, with very limited number of labeled real data
(tens to hundreds), performance improvement of naive fine-
tuning could still be limited without exploiting other priors.
In this paper, our aim is to design a domain adaptation method
that is suitable for 2-D/3-D registration with very limited real
data, by exploiting the fact that paired real and synthetic data
can be generated. Specifically, for a real x-ray image with
a known ground truth pose for the object to be registered,
we can render a DRR image with the same 6DoF pose. As
shown in Fig. 2, the image appearance difference (e.g., object
appearance, artifacts, noises, and background) is the only differ-
ence between the generated real-synthetic image pairs that
causes the performance gap. If we consider a CNN model to
be a trained feature extractor Φð·Þ followed by a regressor/
classifier Rð·Þ, our aim is to train a domain invariant feature
extractor ΦAð·Þ, which has consistent performance over paired
real data Ir and synthetic data Is, and has similar behavior as
the pretrained feature extractor Φð·Þ over synthetic data Is

EQ-TARGET;temp:intralink-;e008;326;510ΦAðIrÞ ≈ ΦAðIsÞ ≈ ΦðIsÞ: (8)

In addition, for a well-trained regressor Rð·Þ, the results from
real data Ir and synthetic data Is should be close to ground truth

EQ-TARGET;temp:intralink-;e009;326;457R½ΦAðIrÞ� ≈ R½ΦðIsÞ� ≈ GT: (9)

Thus, to train the domain invariant feature extractor ΦAð·Þ
with real-synthetic pairs set P, a pairwise domain loss LD
can be defined by

EQ-TARGET;temp:intralink-;e010;326;393LD ¼ 1

jPj
X

ðIr;IsÞ∈P
kΦAðIrÞ − ΦðIsÞk. (10)

Minimizing LD forces ΦAð·Þ to extract domain invariant fea-
tures. To ensure that the adapted feature extractor ΦAð·Þ retains
a consistent performance for the original task, we add the pre-
training loss L over synthetic data as a regularization term

EQ-TARGET;temp:intralink-;e011;326;301Lall ¼
1

jPj
X

ðIr;IsÞ∈P
kΦAðIrÞ − ΦðIsÞk þ λL; (11)

where λ is a parameter to balance the level of domain adaptation
and the performance on the original CNN task. Unlike many
deep domain adaptation methods that adapt higher level task-
specific FC layers, we focus on convolutional features that
(1) can better model appearance difference between domains
in image registration problems (Fig. 2) and (2) can be applied
across different tasks (e.g., estimation of different pose param-
eters) using the same training data.

3.3 Pairwise Domain Adaptation Module

We propose a PDA module that can be plugged into CNN mod-
els and adds extra network capacity for the purpose of domain
adaptation without modifying the weights of the pretrained
model. In this way, the pretrained Φð·Þ and Rð·Þ will remain
unchanged and focus on the original CNN tasks, whereas the
PDA module will focus on extracting domain invariant features
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for domain adaptation. The design of the PDA module is dem-
onstrated in Fig. 5(a). The PDA module ΦAð·Þ consists of k con-
volutional layers to transform features extracted from pretrained
Φð·Þ into domain invariant features that generalize better on real
clinical data.

In the PDA module, we replace the pretraining loss L in
Eq. (11) with a synthetic feature distance S, which is the
Euclidean distance between original synthetic feature and trans-
formed synthetic feature [Fig. 5(b)]

EQ-TARGET;temp:intralink-;e012;63;375S ¼ 1

jBj
X
Is∈B

kΦAðIsÞ − ΦðIsÞk; (12)

where B denotes the synthetic dataset and jBj denotes the size of
B. Together the loss function becomes

EQ-TARGET;temp:intralink-;e013;63;306

Lall ¼ LD þ λS

¼ 1

jPj
X

ðIr;IsÞ∈P
kΦAðIrÞ − ΦðIsÞk

þ λ
1

jBj
X
Is∈B

kΦAðIsÞ − ΦðIsÞk. (13)

This loss term encourages the PDA module to find a balance
between two goals: (1) the real feature is transferred to be as
close as possible to the corresponding synthetic feature and
(2) the synthetic feature largely remains unchanged. Since
Lall is independent from the task-specific FC layers, the PDA
module can be applied across different tasks using the same
training data.

The kernel size and feature map numbers of the convolu-
tional layers in the PDA module are set to be identical with
the last convolutional layer in the pretrained CNN model to
keep feature map dimension consistent after adaptation. In
this paper, we set kernel size to be 3 × 3 and feature map
size to be 128. In order to train the PDA module, we initialize

the convolution kernels as identity matrices. More specifically,
for a convolutional layer in PDA module with weights
W ∈ R3×3×128×128, we set

EQ-TARGET;temp:intralink-;e014;326;441Wð1; 1; k; kÞ ¼ 1; k ¼ 1; 2; : : : ; 128 (14)

and set the rest of the weights to be 0. The purpose of identity
initialization is to ensure that at the beginning of the training, the
PDA module preserves the meaningful input synthetic features.
In this way, the training mainly focuses on reducing the domain
distance LD and is easier to converge.

In Fig. 5(c), we further enhance the PDA module by intro-
ducing a multilayer loss where pairwise feature distance Dl and
synthetic feature distance Sl are calculated for each layer l in
the PDA module

EQ-TARGET;temp:intralink-;e015;326;311Dl ¼
1

jPj
X

ðIr;IsÞ∈P
kΦl

AðIrÞ − ΦlðIsÞk; (15)

EQ-TARGET;temp:intralink-;e016;326;263Sl ¼
1

jBj
X
Is∈B

kΦl
AðIsÞ − ΦðIsÞk; (16)

where Φl
Að·Þ and Φlð·Þ denote the adapted and original feature

extractors at layer l. The PDA module loss can be defined as

EQ-TARGET;temp:intralink-;e017;326;200Lall ¼ LD þ λS ¼
Xk
l¼1

ðDl þ λlSlÞ; (17)

where k is the number of convolutional layers in the PDA mod-
ule, and λl ¼ 1 in all experiments. By introducing multilayer
loss, domain distance of the lower layers in the PDA module
can be more flexibly modeled. In addition, the weights are
updated with gradients calculated in each layer that can reduce
the effect of vanishing gradients and leads to a better supervision
for the training of the PDA module, similar to resNet.8 In the
experiments, we denote the PDA module with multilayer loss

Fig. 5 (a) Illustration of PDAmodule plugged into a pretrained CNNmodel. (b) Illustration of PDAmodule
with basic loss. (c) Illustration of PDA module with multilayer loss (PDAþ module).
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as PDAþ module. The proposed PDA module has the following
merits:

1. The direct measurement of domain distance on paired
data allows training of the PDA module using a small
number of real data, by focusing on the key image
appearance differences between domains excluding
other factors such as poses. In contrast, previous
domain adaptation methods typically employ statisti-
cal domain distance measurement, which requires
a large number of data from both domains.

2. The pairwise loss allows the domain adaptation to be
performed on convolutional layers, which are more
correlated to image appearance (i.e., synthetic versus
real data). In contrast, previous domain adaptation
methods typically only adapt FC layers because the
statistical distance measurement is not reliable on
high dimensional feature maps.

3. The proposed PDA module is a flexible plug-and-play
module that can be applied to general network struc-
tures. Since the PDA module is added and trained after
the main network is trained, it does not affect the
network design and training of the main network.

4 Experiments and Discussion

4.1 Experimental Setup

We evaluated the proposed PDA and PDAþ modules on two
clinical datasets for TEE and spine registration. To pretrain
the CNN models, we followed the training procedure in the pre-
vious papers6,8 where one million synthetic data were generated
with random poses and backgrounds. Stochastic gradient
descent16 was employed to update weights with task loss L
for 100,000 iterations with the batch size of 50. The details
of the two datasets are as follows:

1. The TEE dataset consists of 1663 x-ray images. A 3-D
CAD model of TEE transducer was used to generate
DRR images and synthetic training data. To demonstrate
the performance of the PDA module, in this paper, we
only focus on the global level CNN regressors for out-
of-plane parameters ðtα; tβÞ, which are most difficult to
estimate from a single 2-D x-ray image. Therefore, the
starting pose was set to ðtα ¼ 0; tβ ¼ 0Þ, and the cap-
ture range was δtα ∈ ½−45; 45� and δtβ ∈ ½−90; 90�.
The performance was evaluated via root mean square
error (RMSE) of tα and tβ.

2. The spine dataset consists of 420 x-ray images with 42
corresponding C-arm CT volumes. We sampled the x-
ray images with the primary C-arm angle in ½165; 195�,
and trained the agent with a capture range of 20 mm
for translation parameters error (δtx; δty; δtz) and
10 deg for rotation parameters error (δtα; δtβ; δtθ).
The performance was evaluated via the target regis-
tration error (TRE), computed as the RMSE of the
location of seven landmarks on a chosen spine
vertebra, and the error rate was measured using the
criteria as TRE > 10 mm, following Ref. 8. The

ground truth was provided by the calibration of the
C-arm system.

4.2 Performance Analysis

We first conducted property analysis of the PDA module using
the TEE data. Figure 6 shows the task loss L, feature distance
LD, and synthetic feature distance S on testing data during
PDAþ training. Two randomly selected sequences with around
100 image frames were used for domain adaptation. The feature
distance on testing data reduces during training, demonstrating
that using the direct supervision provided by the pairwise
domain loss, the PDA module can be effectively trained with
a small number of data to reduce domain distance on unseen
testing data without noticeable overfitting. The synthetic feature
distance S starts from 0 due to the identity initialization of PDA
module and stays at a small value during training, showing that
the PDA module can preserve the feature of synthetic data while
adapting the feature of real data toward that of the corresponding
synthetic data. The training curves also demonstrate that the fea-
ture distance LD and task loss L are strongly correlated (i.e.,
they are reduced in parallel), which indicates that the proposed
pairwise domain distance is an effective domain distance meas-
urement, and that minimizing it can effectively improve model
generalization on real data.

In addition, we compared the proposed transfer learning
method PDAþ with fine-tuning of the CNN model using task
loss on real data. Fine-tuning is to retrain the pretrained
CNN model with a small learning rate. In comparison, the pro-
posed transfer learning method PDAþ is to fix the pretrained
CNN model and insert the PDA module after the convolutional
layers. Other domain adaptation methods reported in the liter-
ature using statistics-based or adversarial-based domain distance
require a large number of data and cannot be applied to our
problems with limited data. Table 1 shows the performance
comparison of PDAþ module and fine-tuning method using an
increasing number of training data. As shown in Table 1, the
RMSE of PDAþ module reduces rapidly when the data number
is still relatively small and using around 100 data is sufficient to
train the PDAþ module effectively. In comparison, the RMSE of
fine-tuning method reduces slowly when the data number is less
than 400 and only becomes comparable with that of PDAþ
when the number of data is increased to 800. This shows

Fig. 6 Training feature distance LD and synthetic feature distance S,
testing feature distance and testing loss of the proposed PDAþ

approach on TEE dataset over iterations.
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that fine-tuning using real data requires a relatively large number
of data (i.e., ∼800) to achieve its optimal performance, whereas
the proposed PDAþ module can effectively transfer the model
to the target domain using a much smaller number of data
(i.e., ∼100).

4.3 Evaluation of the Proposed Methods

In this section, we tested two baseline methods and three pro-
posed methods: M1: baseline CNN trained purely on synthetic
data without domain adaptation; M2: fine-tuning of the CNN
model on real-data using the task loss;17 M3: fine-tuning of
the CNN model on real-data using the pairwise domain loss
[Eq. (11)]; M4: PDA module [Fig. 5(b)]; M5: PDAþ module
[Fig. 5(c)]. For PDA and PDAþ modules, three convolutional
layers were used. In addition, from performance analysis in
the previous section, it is shown that domain adaptation
using 100 to 150 real data can already achieve close-to-optimal
performance. Thus, for the TEE dataset, we randomly sampled
two sequences with in total ∼100 x-ray images for domain adap-
tation. For the spine dataset, we randomly selected 140 x-ray
images for domain adaptation. Since the real x-ray data are lim-
ited and unevenly distributed in both datasets, to better evaluate
the proposed methods and compare with the existing methods,
we employ the rest of the real data for testing. We update the
weights for 40,000 iterations to guarantee that the training is
converged and select the model at the end of the training to
test the performance. The test was repeated three times to cross-
validate the proposed methods.

The results for TEE and spine are summarized in Tables 2
and 3, respectively. First, we compared the performance with
and without the proposed pairwise domain loss. Comparing
M2 and M3 shows that by using the pairwise domain loss,
the RMSE in TEE registration was reduced by 18.63% (i.e.,
from 6.87 deg to 5.59 deg), and the error rate and mean

Table 1 Performance (RMSE) comparison of PDAþ module and fine-tune with different number of training data.

Number of sequence 1 2 4 6 8 10 12

Number of real x-ray images 64 97 194 296 412 647 806

M2. fine-tuning using task loss N/A 6.87 6.28 5.84 5.53 4.86 4.00

M5. PDAþ module 6.80 4.59 4.45 4.30 4.16 4.04 3.96

Table 2 Quantitative results of the proposed PDA module on the
problem of CNN regression-based 2-D/3-D registration for TEE
transducer.

Method RMSE (deg)

M1. baseline CNN w.o. adaptation 7.60

M2. fine-tuning using task loss 6.87

M3. fine-tuning using pairwise domain loss 5.59

M4. PDA module 4.79

M5. PDAþ module 4.59

Note: The best performance is highlighted in bold.

Table 3 Quantitative results of the proposed PDA module on the
problem of DRL-based 2-D/3-D registration for spine vertebra.

Method
Error rate

(TRE > 10mm)
Mean TRE

(mm)

M1. baseline CNN w.o. adaptation 16.07% 7.45

M2. fine-tuning using task loss 15.71% 6.80

M3. fine-tuning using pairwise
domain loss

13.92% 6.68

M4. PDA module 12.26% 5.93

M5. PDAþ module 11.20% 5.65

Note: The best performance is highlighted in bold.

Fig. 7 Example results of TEE registration with (a) original CNN
model and with (b) PDAþ module.
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TRE in spine registration were reduced by 11.39% (i.e., from
15.71% to 13.92%) and 1.76% (i.e., from 6.80 to 6.68 mm),
respectively. This demonstrates the effectiveness of the pairwise
domain loss on domain adaptation using a small number of
paired data from both domains.

The comparison between M3 and M4 shows that the PDA
module further improves the domain adaptation performance.
In particular, the RMSE for TEE registration was reduced by
14.31% (i.e., from 5.59 deg to 4.79 deg), and the error rate
and mean TRE for spine registration was reduced by 11.93%
(i.e., from 13.92% to 12.26%) and 11.23% (i.e., from 6.68 to
5.93 mm), respectively. This is due to the extra modeling
power provided by the PDA module solely for domain adapta-
tion purpose. In addition, the result of M5 shows that the PDAþ

module further improves domain adaptation performance with
a multilayer loss in Eq. (17), which shows that the multilayer
loss can better model domain distance in the underlying layers
and leads to a better supervision for the domain adaptation train-
ing. When comparing M5 with M2, the RMSE for TEE regis-
tration was reduced by 33.19% (i.e., from 6.87 deg to 4.59 deg),
and the error rate and mean TRE in spine registration
was reduced by 28.71% (i.e., from 15.71% to 11.20%) and

16.91% (i.e., from 6.80 to 5.65 mm). This demonstrates the pro-
posed PDAþ has significant improvement over the baseline
method fine-tuning using task loss. In summary, the proposed
pairwise domain loss and PDAþ module are shown to be
effective to improve generalization of the deep learning-based
2-D/3-D registration methods on real clinical data.

Samples of qualitative results of PDAþ module on TEE and
spine data are shown in Figs. 7 and 8, respectively. Figure 7
shows that the accuracy of TEE transducer pose estimation is
significantly improved after applying PDAþ module. Figure 8
shows that without the PDAþ module, the agent could register
the spine vertebra in 3-D CTwith a wrong vertebra in the x-ray
image, due to the appearance difference in synthetic training
data and the real testing x-ray image. In comparison, with
the PDAþ module, the agent successfully registers the spine
vertebra.

5 Conclusion
In this paper, we presented a PDA module to tackle the domain
shifting problem for CNN-based 2-D/3-D registration. A pair-
wise domain loss was proposed to effectively model domain
difference between synthetic generated pretraining data and
real clinical data. In addition, a PDA module was proposed to
learn domain invariant features using only a few paired real and
synthetic data. The proposed PDA module was evaluated on
two different 2-D/3-D registration problems, demonstrating its
advantages in generalization and flexibility for clinical applica-
tions. The proposed PDA module can be plugged into any pre-
trained CNNmodels and has the potential to benefit any medical
imaging problem where a small number of paired real-synthetic
data can be obtained.
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