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Abstract
Microsatellite alterations within genomic DNA frameshift 
as a result of defective DNA mismatch repair (MMR). 
About 15% of sporadic colorectal cancers (CRCs) 
manifest hypermethylation of the DNA MMR gene 
MLH1, resulting in mono- and di-nucleotide frameshifts 
to classify it as microsatellite instability-high (MSI-H) 
and hypermutated, and due to frameshifts at coding 
microsatellites generating neo-antigens, produce 
a robust protective immune response that can be 
enhanced with immune checkpoint blockade. More 
commonly, approximately 50% of sporadic non-
MSI-H CRCs demonstrate frameshifts at di- and 
tetra-nucleotide microsatellites to classify it as MSI-
low/elevated microsatellite alterations at selected 
tetranucleotide repeats (EMAST) as a result of functional 
somatic inactivation of the DNA MMR protein MSH3 
via  a nuclear-to-cytosolic displacement. The trigger 
for MSH3 displacement appears to be inflammation 
and/or oxidative stress, and unlike MSI-H CRC patients, 
patients with MSI-L/EMAST CRCs show poor prognosis. 
These inflammatory-associated microsatellite alterations 
are a consequence of the local tumor microenvironment, 
and in theory, if the microenvironment is manipulated 
to lower inflammation, the microsatellite alterations 
and MSH3 dysfunction should be corrected. Here 
we describe the mechanisms and significance of 
inflammatory-associated microsatellite alterations, and 
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propose three areas to deeply explore the consequences 
and prevention of inflammation’s effect upon the DNA 
MMR system.
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Core tip: Inflammation can trigger microsatellite stable 
colorectal cancers (CRCs) to acquire a nuclear-to-
cytoplasm displacement of the DNA mismatch repair 
protein MSH3, rendering the CRC with di- and tetra-
nucleotide microsatellite instability (MSI-low/elevated 
microsatellite alterations at selected tetranucleotide 
repeats) and modifying the biological behavior of the 
CRC towards metastasis and poor patient survival. We 
herein discuss the mechanisms and significance of 
these induced inflammatory-associated microsatellite 
alterations, and suggest three content areas to further 
examine interventions that may modify the observed 
behavior of these CRCs.
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INTRODUCTION
The Cancer Genome Atlas (TCGA) for colorectal 
cancers (CRCs) clarified that there are two types of 
sporadic CRCs - hypermutated and non-hypermutated. 
Most hypermutated CRCs have a defect in their mismatch 
repair (MMR) system due to the loss of MLH1 function 
by promoter silencing of the MLH1 locus, resulting 
in high levels of insertion/deletion (I/D) mutations 
at microsatellite loci (microsatellite instability high: 
MSI-H)[1]. Most MSI-H CRCs exhibit proximal location, 
mucinous, undifferentiated histology, abundant CD8+/
Th1 T cell infiltrations, and less aggressive clinical 
behavior, and are susceptible for immune checkpoints 
blockade[2,3]. Among non-hypermutated CRCs, I/D 
mutations in microsatellite loci with larger repeat units 
(di- and tetra-nucleotide repeats) are frequent and 
have been shown to be caused by tumor cells’ exposure 
to inflammatory tumor-microenvironments[4,5]. In 
this review, we describe and discuss the penetrance 
and causes of inflammation-associated microsatellite 
alterations (IAMAs), and their significance to patients’ 
prognoses in CRC. We also raise “Provocative 
Questions” whose answers could contribute not only to 

understand the biology of IAMAs but also to treatment 
of CRC with IAMAs.

MSI-H, MSI-L AND EMAST IN CRC
Microsatellites or simple sequence repeats are 
composed of 1-6 nucleotide repeats, occupy 3% of the 
total human genome, and are located in both coding 
and non-coding regions[6]. MSI is defined as continuous 
length changes in simple DNA repeat sequences within 
microsatellite loci[7]. MSI in CRC was first reported 
by Aaltonen et al[8] and Thibodeau et al[9] followed by 
Ionov et al[10] in 1993. It was then shown that a subset 
of sporadic CRC tumors and tumors from hereditary 
nonpolyposis colon cancer (HNPCC) exhibit MSI and 
MMR-defects[11]. Subsequently, germline mutations 
in MSH2, MLH1, PMS2 and MSH6 were found in 
different HNPCC families[12-18] and tumors from these 
families exhibited MSI[19,20]. A causal relationship 
between MMR-defect, MSI and cancer susceptibility 
was shown by knockout mouse studies[21-24]. Genetic 
complementation studies using tissue cultured MSI-
positive CRC cells also confirmed that MSI is caused by 
MMR-deficiency in human cells[25-27]. It was also shown 
that MSI exhibited in 10%-15% of sporadic CRC cases 
was due to transcriptional down-regulation of MLH1 
expression through promoter hyper-methylation[28]. 

MSI in CRCs was defined at an international work-
shop meeting sponsored by the National Cancer 
Institute in 1998[2]. A panel of five microsatellite markers 
- two markers with mononucleotide repeats and three 
markers with dinucleotide repeats - were validated to 
be classified as follows: High-frequency MSI (MSI-H: 2 
or more of 5 markers show instability), low-frequency 
MSI (MSI-L: 1 of 5 markers shows instability), and 
microsatellite stable (MSS: none of 5 shows instability) 
CRCs. It was also confirmed that MSI-H in CRC is 
caused by defective MMR, mainly MSH2 and MLH1, 
and manifests as sporadic and hereditary forms of 
CRCs. Both sporadic and inherited MSI-H CRCs have 
unique clinical and pathological futures compared to 
MSI-L/MSS sporadic CRCs[2]. At this NIH meeting, the 
presence of CRCs with MSI-L was appreciated and 
discussed. However, the etiology of MSI-L and the 
distinction between MSI-L and MSS CRC remained 
unclear. Another type of microsatellite alteration, called 
elevated microsatellite alterations in selected tetra-
nucleotide repeats (EMAST), where insertion/deletion 
mutations in the loci with tri- and/or tetra-nucleotide 
but not with mono- and/or dinucleotide repeats was 
recognized as a component of CRC but its etiology and 
clinic-pathological significance was not determined[2]. 

Although a consensus on the definition of MSI-L 
CRC was reached at the NCI meeting, two subsequent 
studies showed that approximately 80% of non-
MSI-H CRC exhibited mutation at < 1 microsatellite 
locus when a large number of the loci with di-nucleotide 
repeats were tested for frame-shift mutations, indicating 

2

Koi M et al . Inflammation-associated microsatellites alterations in CRC

January �5, 20�8|Volume �0|Issue �|WJGO|www.wjgnet.com



T     AAAA AAA       CACA CACACA       AAAGAAAG AAAGAAAG

C    T TT T T TT     GTGT GTGTGT       T TTCT T TC TT TC TTTC

that most of CRC is MSI-L, and that the NCI reference 
panel was inadequate for detection of MSI-L CRC[29,30]. 
These studies also showed that there were no genetic or 
clinic-pathological characteristics of tumors to separate 
MSI-L from MSS CRC. However, both studies observed 
that the incidence of MSI was non-randomly distributed 
among non-MSI-H CRC, suggesting that some tumors 
were more susceptible than others to slippage mutations 
at microsatellite loci, especially loci with dinucleotide 
repeats[29,30]. The reason for the observed variation in 
instability and its pathological significance in patients’ 
prognoses remained unclear. 

I/D mutations in loci with selected tetra-nucleotide 
repeats (EMAST), such as (AAAG)n or (ATAG)n, have 
been reported in non-CRCs including non-small 
cell lung, bladder, ovary, head and neck, skin and 
kidney cancers[31]. Haugen et al[32] first described 
the frequency of EMAST in CRC, its relationship to 
MSI-L and its possible cause. They used the five NCI-
endorsed MSI markers plus 2 additional markers 
with dinucleotide repeats to identify MSI-H, MSI-L 
and MSS CRC. They also used 7 EMAST markers 
and defined EMAST-positive if one or more of the 7 
markers showed ID mutations[32]. They found that 
EMAST is common in sporadic cases of non-MSI-H 
CRC (approximately 50%) and is associated with 
decreased nucleus MSH3 expression in tumor cells. 
Using MSH3-proficient and -deficient colon cancer cell 
lines, they also showed evidence that EMAST and low 
levels of instability at dinucleotide loci repeats - but not 
with mononucleotide repeats - in non-MSI-H CRC cells 
are caused by loss of MSH3[32]. Frequent incidence of 
EMAST in CRCs was confirmed by 2 other studies[33,34]. 

The genetic cause of EMAST due to the loss of MSH3 
was also proven by other studies using tissue cultured 
human cells[35,36]. 

BIOCHEMICAL BASIS OF 
MICROSATELLITE ALTERATIONS
Accumulated evidence supports that MSI-H, MSI-L and 
EMAST are caused by defects in some components 
of MMR[37]. When DNA polymerase copies template 
DNA containing microsatellite loci, it mistakenly adds 
or deletes a repeat unit in the newly synthesized DNA 
strand (Figure 1A). The DNA polymerase slippage 
errors create loops between the two strands, which 
are recognized and repaired by MMR. In vitro experi-
ments using cell extracts and/or purified proteins 
demonstrate that there are 5 MMR proteins involved 
in MMR reactions in human cells (Figure 1)[38]. MSH2 
plays a major role in recognition of mismatched DNA. 
MLH1 and PMS2 are the main proteins responsible for 
down-stream MMR reactions. If MSH2, MLH1 or PMS2 
lose their function, slippage errors at microsatellite 
loci with mono-, di- and tetra-nucleotide repeats 
are not fixed at all, resulting in MSI-H (Figure 1B). 
There are 2 pathways for mismatch recognition: (1) 
MSH2 and MSH6 form a dimer called MutSa that 
preferentially recognizes mismatched nucleotides 
and loops containing 1-2 nucleotides; (2) MSH2 and 
MSH3 form a dimer called MutSb that recognizes loops 
containing 2 or more nucleotides generated at di- and 
tetra-nucleotide repeats, including the EMAST loci 
(Figure 1A)[39]. Defects in MSH6 result in increased 

� January �5, 20�8|Volume �0|Issue �|WJGO|www.wjgnet.com

A B

C

Figure 1  Human DNA mismatch repair. A: Two DNA recognition complexes MutSa, which recognizes insertion-deletion (I/D) loops of 1-2 repeated nucleotides 
for repair, and MutSb which recognizes I/D loops of 2 or greater nucleotides for repair, are the key protein complexes of MMR. The MLH1 and PMS2 complex, also 
known as MutLa, then helps execute the repair with the exonuclease Exo1, polymeraseb and DNA ligase to fully effect repair; B: Specific efficiency in one of the 
five DNA MMR proteins yields differing microsatellite instability (MSI) results. Loss of MLH1, MSH2 or PMS2 will yield frameshifts at mono-, di- and tetra-nucleotide 
microsatellite markers. Loss of MSH6, inactivating MutSa only, will yield mononucleotide mostly but some dinucleotide microsatellite frameshifts, whereas loss of 
MSH3, inactivating MutSb, will yield di- and tetranucleotide microsatellite frameshifts, but no mononucleotide microsatellite frameshifts; C: Examples of fragment 
analysis comparing normal colon tissue (upper panels) with  tissue (lower panels) demonstrating frameshifts in the tetranucleotide marker D20S82. MMR: Mismatch 
repair; MSI: Microsatellite instability; CRC: Colorectal cancer.
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mononucleotide repeats, was detected in adenoma 
polyps but not in normal colon cells from the same 
patient. This is because adenoma is monoclonal while 
the normal colon of these patients consists of mixture 
of cells with MSI at different loci, masking each 
alteration that occurred in individual colon cells with 
the exception of germline alleles. However, there is 
likely dinucleotide and tetranucleotide instability within 
normal tissues if they were compared to heterozygous 
MSH3 germline relatives, or relatives that are 
homozygous normal for MSH3 mutation. These results 
support that MSI-L/EMAST in sporadic CRC is caused 
by loss of MSH3 function.

EVIDENCE THAT MSI-L/EMAST 
IN SPORADIC CRC IS INDUCED 
BY INFLAMMATION THROUGH 
DISPLACEMENT OF MSH3 FROM 
NUCLEUS TO CYTOPLASM
While homogeneous loss of nuclear MSH3 can be 
detected in adenoma polyp with bi-allelic germline 
MSH3 mutations, heterogeneous loss of nuclear MSH3 
is frequently detected in sporadic CRC exhibiting MSI-L/
EMAST (Figure 2A). These results suggest that local 
loss of MSH3 expression in sporadic MSI-L/EMAST CRC 
may be not due to genetic loss of MSH3. TCGA data 
shows that the frequency of MSH3 somatic mutations 
in CRC is about 6.6%. This does not explain the high 
incidence of MSI-L/EMAST (approximately 50%) in 
CRC. Furthermore, most MSH3 mutations are frame-
shift mutations in exon 7 that are a resulting target 
from MLH1 inactivation in sporadic CRC (Table 2)[1].

Lee et al[34] found that EMAST CRC is enriched in in 
the tumor microenvironment of CD8+ T cells compared 
to non-EMAST CRC, suggesting that some immunological 
and inflammatory responses are active in EMAST CRC. 
They also found that EMAST is significantly high in 
ulcerated tumors. Devaraj et al[43] further showed that 
EMAST-positive rectal tumors are associated with the 
presence of chronic inflammation. These observations 
led them to hypothesize that inflammation may 
somehow affect MSH3 function that induces MSI-L/
EMAST. 

Tseng-Rogenski et al[4,36] demonstrated that 
several main inflammatory factors, including oxidative 
stress (hydrogen peroxide), interleukin 6 (IL6) and 
prostaglandin E2 (PGE2) induce displacement of 
MSH3 from the nucleus to the cytoplasm in several 

missense mutations and in instability at mononucleotide 
repeats (Figure 1A)[40]. When only MSH3 is disabled, 
increases in instability at di-, tri- and tetra-nucleotide 
repeats (EMAST) but not at mononucleotide repeats are 
observed (Figure 1)[32]. Biochemical data indicates that 
loops containing 2 nucleotides are preferentially recognized 
by MutSb over MutSa[41]. Thus, when loss of MSH3 leaves 
many loops containing 2 or more nucleotides unrepaired, 
MutSa may repair some but not all such loops, resulting 
in low levels of mutation in di-nucleotide repeat loci and 
high levels of mutation in loci with tetra-nucleotide 
repeats (EMAST) loci (Figure 1B and C). 

MSI-L AND EMAST ARE CAUSED BY 
MSH3 FUNCTIONAL LOSS IN CRC
The first evidence that loss of MSH3 may result in 
MSI-L and/or EMAST in CRC was reported by Haugen 
et al[32] in 2008. They used the colon cancer cell line 
HCT116 that is deficient in MLH1 due to a hemizygous 
inactivating mutation in exon 9, and is also deficient 
in MSH3 due to a homozygous frameshift inactivating 
mutation in exon 7. Thus, this cell line showed the 
MSI-H phenotype. Introduction of a normal human 
chromosome 3 carrying a wild-type MLH1 to HCT116 
complemented MLH1-deficiency[25]. The resulting 
HCT116 with chromosome 3 exhibited stability in loci 
with mononucleotide repeats but showed low levels of 
instability at loci with dinucleotide repeats: MSI-L, and 
high degree of instability at EMAST loci. They further 
introduced a normal human chromosome 5 carrying 
wild-type MSH3 into HCT116 + 3 cells. The resulting 
HCT116 + 3 + 5 cells exhibited complete stability at loci 
with mono-, dinucleotide repeats and EMAST loci. Finally, 
they introduced MSH3-shRNA to HCT116 + 3 + 5 cells to 
knock-down MSH3 and showed that specific knock-down 
of MSH3 resulted in an MSI-L/EMAST phenotype.

The second evidence that loss of MSH3 results in 
MSI in loci with di- and tetra-but not mono-nucleotide 
repeats is from a discovery of two families with bi-
allelic MSH3 germ-line mutations, reported by Adam 
et al[42]. Patients with bi-allelic inactivation mutations 
of the MSH3 locus suffered from a colorectal adenoma 
polyposis syndrome and early occurrence of multiple 
adenoma polyps and tumors in other organs. As 
expected, the expression of MSH3 was null in normal 
colon and adenoma polyps from these patients 
(Table 1). MSI assays showed that instability at di-
nucleotide repeat loci and EMAST loci, but not loci with 
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Table 1  Expression of MSH3 protein within the epithelium of normal colonic mucosa and adenoma of patients with mono- or bi-
allelic germline mutation in MSH3

Tissue (epithelium) Monoallelic MSH3 germline mutation Bi-allelic MSH3 germline mutation

Normal colonic mucosa MSH� expressed MSH� absent
Colon adenoma Not obtained MSH� absent

Extracted from Adam et al[42]. 
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cancer cell lines. Importantly, other MMR proteins 
including MLH1, MSH2 and MSH6 do not move from the 
nucleus to the cytoplasm in response to these stimuli. 
Repeated treatment of several microsatellite stable 
colon cancer cell lines with IL6 induced microsatellite 
instability at EMAST loci. However, other inflammatory 
cytokines including TNFa, IFNa, IFNb, and IL1b did not 
have such an effect. Tseng-Rogenski et al[4] also showed 
that phosphorylation of STAT3 may be required for 
displacement of MSH3 when induced by IL6. These 
studies convincingly show that not all, but some, 
inflammatory factors induce EMAST through loss of 
MSH3 from the nucleus (Figure 2B). 

Evidence that an inflammatory micro-environment 
induces MSI-L (low levels of MSI at the loci with 
dinucleotide repeats) has been shown in regenerated 
colon tissues from ulcerated colitis (UC) patients. The 

first study, reported by Brentnall et al[44], showed for 
the first time the presence of MSI-L but not MSI-H 
in colon tissues from UC patients. The second study, 
by Ozaki et al[45], isolated crypts from UC-derived 
CRC, UC-derived hyperplasia and UC-regenerated 
colons through laser micro-capture and tested for the 
presence of microsatellite instability in DNA. Ozaki et 
al[45] detected MSI-L but not MSI-H in some crypts but 
not in others, regardless of whether they were from 
cancer or non-cancer tissues. They also showed that 
MSI was not detected from stroma cells from these UC 
patients. Each crypt showed a different MSI-profile, 
indicating that MSI-L occurs independently at the 
crypt level. Our recent study showed that regenerated 
colon cells and CRCs from UC patients have a high 
frequency of MSH3 displacement from the nucleus 
to the cytoplasm, and demonstrate MSI-L/EMAST[46]. 
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Table 2  Comparison of type of mismatch repair gene mutations between sporadic hypermethylated MLH1 colorectal cancers and 
POLE mutation colorectal cancers from TCGA

MLH1 promoter hypermethylation 22/�5 (6�%) of hypermutated CRCs 8/22 (�6%) with MSH� frameshift mutation
�/22 (4.5%) with MSH� missense/nonsense mutation

0/22 (0%) with MSH2 mutation
5/22 (2�%) with MSH6 frameshift mutation

4/22 (�8%) with MSH6 missense/nonsense mutation
POLE mutation ��/�5 (�7%) of hypermutated CRCs �/�� (2�%) with MSH� frameshift mutation

2/�� (�5%) with MSH� missense/nonsense mutation
5/�� (�8%) with MSH2 missense/nonsense mutation

0/�� (0%) with MSH6 frameshift mutation
7/�� (54%) with MSH6 missense/nonsense mutation

Both types of CRCs are hypermutated, containing hundreds of somatic mutations in genomic DNA. Note that the MLH1 hypermethylated CRCs 
demonstrate higher frequency and consistent frameshift mutations in MSH3 and MSH6 as compared to POLE mutated CRCs, which contain some 
frameshifts but higher frequency of missense/nonsense mutations in MSH3, MSH2 and MSH6. Extracted from: Cancer Genome Atlas Network. 
Comprehensive molecular characterization of human colon and rectal cancer. Nature 20�2; 487: ���-��7. CRCs: Colorectal cancers.

Figure 2  MSH3 expression in sporadic colorectal cancer. A: Immunohistochemistry for MSH3 in sporadic CRC. Arrows show heterogeneous expression of 
MSH3 in cells and within nuclei in the epithelium; B: Model of MSH3 displacement from the nucleus to the cytosol with inflammatory stimuli to allow accumulation of 
tetranucleotide frameshift mutations. Progenitor cells could be affected earlier such that subsequent daughter cells amplify the accumulated frameshift mutations. MSI: 
Microsatellite instability; CRC: Colorectal cancer; EMAST: Elevated microsatellite alterations at selected tetranucleotide repeats.

A

B

MSH3
nucleus

H2O2, PGE2, IL6 

MSH3
cytoplasm

MSI-L/EMAST

Expansion

Progenitor 

Koi M et al . Inflammation-associated microsatellites alterations in CRC



6

These results further support the role of inflammation 
in displacement of MSH3-induced MSI-L/EMAST in 
human tissues including cancers.

PROGNOSTIC VALUE OF MSI-L/EMAST 
IN CRC
Several studies have examined the impact of MSI-L 
and/or EMAST genotypes on patient prognoses in 
CRC. There have been 4 studies evaluating the prognosis 
values of MSI-L[47-50]. Kohonen-Corish et al[47] showed 
that patients with stage C colon cancers defined as 
MSI-L by the NCI panel plus one tetra-nucleotide marker 
(MYCL1) showed poor overall survival (OS) compared to 
patients with MSI-H and/or MSS colon cancers. Similar 
results were obtained by Wright et al[48]. They showed 
that stage C CRC patients that are positive for MSI-L as 
defined by the NCI panel, plus an additional 2 markers 
with mono-nucleotide repeats, 3 with di-nucleotide 
repeats and the tetra-nucleotide MYCL1 marker, 
exhibited poor cancer-specific survival compared to 
MSS CRC patients[48]. They also observed that most 
MSI-L CRC exhibited MSI at one di- or tetra-nucleotide 
but not at mono-nucleotide repeat markers[48]. Lee et 
al[49] examined 3019 CRC cases for MSI using an NCI 
microsatellite marker panel and evaluated prognoses 
of those patients. Similar to other studies, they showed 
that most MSI-L CRC exhibited MSI at dinucleotide 
repeats, and patients with MSI-L CRCs was associated 
with poor OS by Cox regression analysis[49]. Although 
the previous 2 studies suggested that MSI-L may have 
a significant prognostic value for stage C CRC patients, 
Lee et al[49] did not examine the prognostic significance 
of MSI-L for cancer-specific survival in their large 
cohort. In contrast to the above three studies, 
Azzoni et al[50] reported that MSI-L is associated with 
improved patient survival as compared to MSS CRC. 
However, the percentage of MSI-H cases in their cohort 
was unusually high (37%: 68 of 184 cases) compared 
to other studies (10%-15%), suggesting the presence 
of some bias in the studied cohort. Lastly, a study 
reported by Garcia et al[51] did not find any association 
between MSI-L and disease-free survival (DFS) or OS 
in stage Ⅱ and Ⅲ CRC cohorts. 

There are 2 studies examining the relationship be-
tween EMAST and OS in CRC; they found no association 
between the two[33,51]. However, when both MSI-L and 
EMAST cases were combined, Garcia et al[51] found 
that MSI-L/EMAST was associated with shorter DFS 
but not OS compared with non-MSI-L/EMAST CRC. In 
their cohort, MSI-H CRC patients exhibited the highest 
survival. Thus, the MSI-L/EMAST genotype in CRC may 
be associated with recurrence and/or metastasis after 
surgery. There appears to be heterogeneity even among 
MSI-L/EMAST CRC patients[52,53]. One group of MSI-L/
EMAST CRC exhibited loss of heterozygosity (LOH) 
at chromosome 9p24.2. and the other did not exhibit 
9p24.2 LOH. When the prognoses of these two groups 
were compared, the one with 9p24.2 LOH at stage 

Ⅲ showed improved survival after surgery and OS in 
Kaplan-Meier analysis and in multi variate analysis over 
the one without 9p24.2. LOH at stage Ⅲ[53]. The results 
also showed that MSI-L/EMAST/9p24.2 LOH is an 
independent factor that predicts improved OS in stage 
Ⅱ/Ⅲ CRC. Thus, MSI-L/EMAST may be associated with 
recurrence, but additional genetic or epigenetic changes 
may modify the behavior of recurrent tumors[53]. 
Overall, the data presented so far suggest that MSI-L 
and/or EMAST could be a biomarker for DFS and/or OS 
of stage Ⅱ and/or Ⅲ CRC. However, additional studies 
using a population-based large cohort are needed to 
confirm the prognostic value of MSI-L and EMAST. 

One concern regarding EMAST is that various studies 
have not reached a full consensus on the definition of 
EMAST. As described above, current evidence supports 
the idea that MSI-L and EMAST in sporadic CRC share 
the same etiology: both are induced by the absence of 
nuclear MSH3 in response to exogenous inflammatory 
factors such as IL6, and oxidative stress[4]. Based on 
these observations, we propose that EMAST cancer 
is a non-MSI-H cancer, and MSI at EMAST markers 
is not caused by loss of other MMR proteins including 
MLH1, MSH2, PMS2[51,53]. The next question should be 
whether or not non-EMAST CRC really exits. Similar 
to MSI-L in CRC[29,30], almost all CRC could be EMAST-
positive if a large number of EMAST markers are used. 
A recent study by Cortes-Ciriano et al[54] showed that 
all non-MSI-H cancers contain various levels of frame-
shift mutations in microsatellite loci with mono-, di-, 
tri- and tetra-nucleotide repeats. Considering that all 
tumor tissues contain some degree of inflammatory 
elements, many of those mutations could be induced 
by the loss of MSH3 triggered by inflammation in the 
tumor-microenvironment. Furthermore, a study for 
UC suggested that frequent exposure to inflammation 
increased the incidence of MSI-L and EMAST[46]. Thus, 
while the purpose of the MSI assay is primarily to 
detect MMR-deficient CRC, the purpose of an EMAST 
assay could be to distinguish CRCs whose precursors 
were exposed to high levels of inflammation to CRCs 
whose precursors were exposed to lower levels of 
inflammation. Therefore, the results of the studies 
by Kohonen-Corish, Wright, Lee and Garcia could be 
re-interpreted according to the idea that high levels 
of inflammatory tumor-microenvironments not only 
induce MSI-L/EMAST in cancer cells at the primary 
site but also include some property that promotes 
recurrence and/or metastasis when they disseminate. 
Additional studies will be required to determine whether 
the numbers and kinds of EMAST markers and cut-off 
levels for determining EMAST-positive/negative used 
so far are adequate to distinguish CRCs with different 
prognoses[31]. 

PROVOCATIVE QUESTIONS
Here, we have raised three questions whose answers 
can be important for not only clinical but also basic 
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aspects of MSI-L/EMAST in CRC (Figure 3). 

Question 1: Does treatment of CRC with non-steroidal 
anti-inflammatory drugs reduce not only recurrence/
metastasis but also the incidence of MSI-L/EMAST?
The idea that inflammation is associated with recurr-
ence and/or metastasis is indirectly supported by 
observations that an intake of the anti-inflammatory 
drug, aspirin, may not only prevent adenomas[55] and 
CRC formations[56], but also prevent recurrence and 
metastasis of CRC following surgery[57]. Other non-
steroidal anti-inflammatory drugs (NSAID) including 
celecoxib and rofecoxib, specific inhibitors of cyclooxy-
genase 2 (COX-2), have been shown to reduce the 
incidence of adenomas[58-60]. But it was also found that 
COX-2 inhibitors suppressed colorectal tumor growth 
and metastasis in mouse models[61,62]. Furthermore, 
Chan et al[63] reported that the regular intake of aspirin 
after curative surgery reduced cancer-specific mortality 
in a sub-group of CRC cells expressing a high level 
of COX-2 protein. In addition, CRCs expressing HLA 
class Ⅰ compared to those not expressing HLA class Ⅰ are 
susceptible for aspirin treatment after diagnosis[64]. Also, 
CRCs with PIK3CA mutations responded better to 
aspirin treatment after diagnosis than did CRCs with 
wild-type PIK3CA[65]. However, a recent study by Gray 
et al[66] showed that the efficacy of aspirin on cancer-
specific survival, and OS was associated with levels 
of COX-2 expression but not with mutational status of 
PIK3CA in CRCs. Ng et al[67] showed that aspirin and 
COX-2 inhibitors improved recurrence-free survival, DFS 
and OS of stage Ⅲ CRC patients who either received 
fluorouracil (FU) plus leucovorin (LV) or FU plus LV with 
irinotecan. These studies support the idea that NSAIDs 
can be used as part of adjuvant therapy for stage Ⅰ-Ⅲ 
CRC, however, the efficacy of NSAIDs on the recurrence/
metastasis of CRC are still under investigation through 
several randomized controlled trials[57]. 

Ma et al[68] showed that PGE2 and its receptor, 
the prostaglandin E receptor 2 (EP2), are necessary 
for colon cancer formation in inflammatory tissue 
environments. Compared to wild-type mice treated 
with azoxymethan (AOM) followed by dextran sodium 
sulfate (DSS), AOM/DSS-treated EP2-knockout and 
prostaglandin E synthase (Ptges)-knockout mice 
bore a significantly reduced number of colon tumors. 

They identified neutrophil, probably myeloid-derived 
suppressor cells (MDSC), and cancer-associated 
fibroblast (CAF) as the main cell components recruited in 
tumor-microenvironments, expressing EP2, responding 
to PEG2, and contributing to tumor formation. These 
cells form a positive-feedback loop of COX-2-PGE2-
EP2-NF-kB-COX-2 cycles, and produce TNF-a and 
IL6[68]. The presence of MDSC and CAF in the tumor-
microenvironment are also significantly associated 
with stage progression and a poor prognosis for CRC, 
while activation of Th1 helper and cytotoxic memory T 
cells play a key role in anti-tumor activities preventing 
recurrence and/or metastasis in CRC[69,70]. Interestingly, 
Zelenay et al[71] showed that, depending on the level 
of COX-activity in cancer, the immunological landscape 
of tumor-microenvironments can be switched between 
anti-tumor and inflammatory pro-tumor. Therefore, 
the level of PEG2 and of COX-2 may be major factors 
in controlling immunological responses to cancer 
cells, and thereby a patient’s prognosis. Regarding 
the relationship between MSI-L/EMAST and PEG2, we 
have observed that the exposure of colon cancer cells 
in tissue cultures to PGE2 triggers movement of MSH3 
from the nucleus to the cytoplasm, which may induce 
MSI-L/EMAST. Therefore, it is reasonable to speculate 
that MSI-L/EMAST in CRC may be associated with high 
levels of COX-2 expression in cancer cells and/or in 
tumor-microenvironments. This could be the reason 
why patients with MSI-L/EMAST CRCs exhibit a shorter 
RFS[51,53]. Thus, reduction of PGE2 by NSAIDs may 
reduce the incidence and recurrence/metastasis of 
MSI-EMAST. If this is the case, MSI-L/EMAST could be 
a biomarker for susceptibility to the NSAIDs treatment.

Question 2: Do microbiota play a role in MSI-L/
EMAST formation, adenoma/carcinoma transition and 
recurrence/metastasis?
Lee et al[34] discovered that EMAST is less frequent 
in colorectal adenomas and well-differentiated 
adenocarcinomas than in moderately differentiated and 
poorly differentiated adenocarcinomas, suggesting that 
EMAST is progressively acquired during the histological 
adenoma-carcinoma sequence, from adenoma to 
well-differentiated carcinomas to moderately and 
poorly differentiated carcinomas. Because a key gene 
alteration responsible for adenoma-carcinoma sequence 
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in CRC is p53 mutation[72], MSI-L/EMAST formation 
may be associated with p53 mutation. In fact, Ahrendt 
et al[73] reported that EMAST is associated with p53 
mutations in non-small cell lung cancer. Li et al[74] 
observed an association between LOH at TP53 and 
EMAST in CRC. Interestingly, p53 mutations are the 
most frequently found in inflammatory bowel disease 
(IBD)-associated CRC among other gene mutations 
(60%-90%)[75,76]. One half of the p53 mutations are 
C:G>T:G transitions, thought to be caused by nitric 
oxide exposure due to increased inducible nitric oxide 
synthase expression in IBD[75]. Our preliminary data 
showed that IBD-associated CRC exhibit a higher 
frequency of MSI-L/EMAST than do sporadic CRC 
(unpublished data). Taken together, these results 
suggest that the inflammatory tissue environment may 
enhance p53 mutations and MSI-L/EMAST formation 
in sporadic adenomas, leading to carcinoma transition. 
As mentioned earlier, MSI-L/EMAST in stage Ⅱ CRC 
patients is associated with shorter RFS, suggesting that 
the inflammatory tumor-environment in primary tumor 
tissues somehow promotes recurrence or metastasis. 
These observations lead to the next question: What 
establishes an inflammatory environment in colorectal 
adenoma and carcinoma? 

Microbiota in the colon and rectum create an 
inflammatory microenvironment and promote CRC 
formation[77]. Several bacterial organisms including 
Fusobacterium nucleatum (F. nucleatum), Enterotoxi-
genic Bacteroides fragilis (ETBF), and colibactin-
producing Escherichia coli (E. coli) are epidemio-
logically associated with CRC, and have been found 
to be enriched in CRC[77,78]. The enrichment of F. 
nucleatum was also found in colorectal adenoma 
relative to non-adenoma or surrounding tissues[79-81]. 
McCoy et al[79] showed that F. nucleatum abundance 
in colorectal adenoma is associated with local 
inflammatory cytokine gene expression including IL-10 
and TNF-a. Kostic et al[80] investigated the effect of F. 
nucleatum infection on the development of intestinal 
tumors in APCMin/+, IL10-/- and T-bet-/- X Rag2-/- mice. 
There was an increase in the number of tumors in 
APCMin/+ mice. Importantly, infection with F. nucleatum 
accelerated adenocarcinoma formation in the small 
intestines of APCMin/+ mice compared to sham-treated 
control mice. In contrast, infection with F. nucleatum 
did not induce any tumor formation in IL10-/- and T-bet-/- 
X Rag2-/- mice. These results suggest that the effects 
of F. nucleatum may manifest on existing adenomas, 
and may stimulate adenoma-carcinoma transition 
by creating an oxidative stress-rich, carcinogenic 
environment[80]. It would be interesting to determine 
whether F. nucleatum -induced adenocarcinomas 
in APCMin/+ mice gain p53 mutations. Kostic et al[80] 
further showed that infection of tumor tissues with F. 
nucleatum results in recruitment of MDSCs, tumor-
associated macrophages, and dendritic cells in tumor 
tissues, and modulate the tumor immune micro-
environment that promote tumor progression. In 

addition, they found the up-regulation of genes that 
are down-stream of NF-kB including PTGS2 (COX-2), 
IL6, IL1b , and TNF in both human and mouse CRC 
infected with F. nucleatum[80]. It is tempting to 
speculate that F. nucleatum-induced adenocarcinoma 
may gain MSI-L/EMAST in response to oxidative 
stress, PEG2 and/or IL6 that cause displacement of 
MSH3 from the nucleus to the cytoplasm. Recently, 
a heavy load of F. nucleatum has been associated 
with MSI-H CRC, proximal colon cancer and a poor 
prognosis[81-84]. Yu et al[85] showed that F. nucleatum 
infection in primary CRC is associated with recurrence 
after surgery followed by adjuvant chemotherapy. 
They showed that F. nucleatum induces chemo-
resistance in infected cells through autophagy[85]. One 
of the reasons why 5-FU-based adjuvant therapy 
does not have benefit for a sub-group of MSI-H 
CRC[86,87] could be partly explained by the infection of 
F. nucleatum[85]. It is also possible that the CpG Island 
Methylator Phenotype (CIMP) including promoter 
methylation of the MLH1 locus could be induced 
by chronic inflammation due to a heavy load of F. 
nucleatum infection[82]. Considering that infection of F. 
nucleatum is associated with recurrence of CRC after 
surgery, a group of such CRCs may exhibit MSI-L/
EMAST CRC[51,53]. 

Another bacterium, ETBF, is also associated with 
CRC[88-90] and can target colorectal cells to promote 
an adenoma and/or adenoma-carcinoma transition 
in APCMin/+ mice[91]. ETBF produces a metalloprotease 
toxin called BFT. BFT binds to the surface of colorectal 
epithelial cells and induces E-cadherin cleavage, 
resulting in an increase in barrier permeability and 
inducing an inflammatory micro-environment with 
Th-17/IL-17 predominance[91,92]. Th-17/IL-17 plays a 
major role in ETBF tumorigenesis because the depletion 
of CD4+ T cells and blockade of IL-17 inhibited it. 
IL-17 attracts neutrophils, MDSCs and macrophages, 
and induces carcinogenic and immunosuppressive 
factors including nitric oxide, ROS, and Arg1 in 
mouse models[92]. Colibactin-producing E. coli is also 
associated with CRC[93,94] and initiates inflammation 
and promotes adenoma formation in APCMin/+mice[94] 
and in APCMin/+, IL10-/- mice[95]. Taken together, infection 
with all three bacterial organisms, that are found to 
be associated with CRC, induces an inflammatory 
environment in adenoma tissue and promotes 
adenoma and/or a transition from adenoma to 
carcinoma in mouse models. It would be interesting to 
determine whether MSI-L/EMAST and p53 mutations 
coincide with bacterial-induced transitions to adenoma/
carcinoma. Recently, Scott et al[96] showed that the 
efficacy of 5-FU treatment maybe largely influenced by 
microbiota in the gut. 

Question 3: Is MSH3 a component of DNA damage 
signaling? 
The MutSb hetero-duplex between MSH3 and MSH2 
not only functions in MMR but may also play a role 
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in double strand break (DSB) repair via homologous 
recombination (HR)[97-100]. DNA double strand breaks 
(DSB) induce cell death if not repaired. Cells have 
evolved two pathways to re-connect the broken 
DNA ends: Non-homologous end joining (NHEJ) and 
homologous recombination (HR). If one of these 
pathways is disabled when DSB is created, cells use the 
other pathway for survival. The HR reaction starts with a 
nuclease-mediated resection of broken DNA ends to be 
coated by the single stranded (ss) DNA-binding protein, 
replication protein A (RPA). Then, Ataxia telangiectasia 
and Rad3-related (ATR) kinase is recruited to the RPA-
coated ssDNA via an ATR-interacting partner (ATRIP). 
The topoisomerase Ⅱb-binding protein 1 (TOPBP1), 
which is recruited to the DSB site, interacts with ATRIP 
and activates ATR. Activated ATR phosphorylates CHEK2 
that regulate cell cycle progression. TOPBP1 also 
interacts with polo-like kinase (PLK) that phosphorylate 
RAD51 for its loading on resected ssDNA[101]. Burdova 
et al[99] showed that recruitment of ATR/ATRIP to RPA-
coated ssDNA is mediated by MutSb which binds to 
the loop structure formed within the ssDNA. Therefore, 
MutSb is required in the early stage of HR-DSB repair 
and its loss due to an MSH2 or MSH3 defect forces 
a cell to use NHEJ for survival under the presence of 
DSBs[98,100]. Thus, when oxidative stress causes DSBs, 
it may induce elimination of MSH3 from the nucleus, 
resulting in activation of Ataxia-telangiectasia mutated 
(ATM)[102] but not ATR, and dependence of NHEJ for 
survival. 

An intriguing question is why and how nuclear 
MSH3 proteins translocate in response to oxidative 
stress or exposure to IL6 or PGE2 (Figure 2B)[4,36]. 
H2O2 and oxidative stress causes DSBs, resulting in 
activation of NF-kB[103,104]. IL6 and PGE2 are mediators 
that possibly form a loop associated with activation 
of NF-kB through STAT3[105-107]. IL6 activates STAT3, 
which directly interacts with the NF-kB family member 
RELA, contributing to constitutive NF-kB activation[105], 
and COX2/PGE2 also activates STAT3, leading to NF-kB 
activation[106]. We found that MSH3 itself is a shuttling 
protein. It contains a bona fide bipartite nuclear 
localization signal (NLS) that directs its nuclear import 
to perform DNA repair (unpublished data). It also 
contains two functional nuclear export signals (NESs) 
that allow it to exit the nucleus upon the treatment 
of a pro-inflammatory cytokine, IL-6 (unpublished 
data). Among the other main MMR proteins including 
MSH2, MSH3 is the only MMR protein that shifts into 
the cytoplasm upon oxidative stress or IL6 treatment, 
suggesting that MSH3 moves alone or does so with 
other unknown partner proteins. Recent data indicate 
that the NF-kB Essential Modulator (NEMO), when 
used as a bait, can pull down MSH3, suggesting 
physical interaction between these two proteins[108]. 
As one of the three components of the IKK complex, 
NEMO’s role in regulating the NF-kB pathway is well 
documented[104]. It is possible that simultaneous or 
sequential movement of MSH3, NEMO and ATM in 

the cell may transmit a DNA damage signal to NF-
kB, depending on the degree of DNA damage. Further 
studies are necessary for clarify these possibilities.  

MSI-L/EMAST IS COMMON IN HUMAN 
CANCERS
Since the discovery of MSI in CRC, MSI-L and EMAST 
have been examined in cancers from other organs 
and tissues. MSI-L has been found in stomach[109], 
cervical[110], pancreatic[111], ovarian[112], skin[113], nerve[114], 
breast, endometrial[115], liver[116], esophageal[117], eye[118], 
soft tissue[119], gallbladder[120], head and neck[121], 
prostate[122], lung[123] and cancers of the urinary tract[124]. 
EMAST has also been widely detected in other 
various human cancers[31]. A recent study by Cortes-
Ciriano et al[54] showed that there are MSI-H prone 
cancers including colorectal, esophageal, stomach and 
endometrial cancers, and non-MSI-H prone cancers 
that include ovarian, kidney, liver, breast, head and 
neck, cervical, lung, pancreatic, bladder, prostate, 
skin, adrenal, cortical and thyroid cancers. They also 
showed that most non-MSI-H cancers exhibit different 
degrees of MSI at not only loci with mono- but also loci 
with di-, tri- and tetra-nucleotide repeats, suggesting 
that inflammation-induced MSH3 replacement from 
the nucleus to the cytoplasm is probably common 
in human cancers[54,125,126]. Thus, the answers to the 
provocative questions raised above may also apply to 
many human cancers. 

CONCLUSION
MSI-L/EMAST is common in human cancers. MSI-L/
EMAST is caused by displacement of MSH3 from 
the nucleus to the cytoplasm in replicating cells 
triggered by inflammatory stimuli, and can be termed 
Inflammatory-Associated Microsatellite Alterations 
(IAMAs). MSI-L/EMAST is associated with recurrence 
and/or metastasis in CRC patients. MSI-L/EMAST CRC 
is a heterogeneous group and consists of sub-groups 
with different genetic changes and prognoses.
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