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Cardiac mitochondrial phospholipid acyl chains regulate respi-
ratory enzymatic activity. In several diseases, the rodent cardiac
phospholipidome is extensively rearranged; however, whether
specific acyl chains impair respiratory enzyme function is
unknown. One unique remodeling event in the myocardium of
obese and diabetic rodents is an increase in docosahexaenoic
acid (DHA) levels. Here, we first confirmed that cardiac DHA
levels are elevated in diabetic humans relative to controls. We
then used dietary supplementation of a Western diet with DHA
as a tool to promote cardiac acyl chain remodeling and to study
its influence on respiratory enzyme function. DHA extensively
remodeled the acyl chains of cardiolipin (CL), monolyso-CL,
phosphatidylcholine, and phosphatidylethanolamine. More-
over, DHA lowered enzyme activities of respiratory complexes I,
IV, V, and I � III. Mechanistically, the reduction in enzymatic
activities was not driven by a dramatic reduction in the abun-
dance of supercomplexes. Instead, replacement of tetralino-
leoyl-CL with tetradocosahexaenoyl-CL in biomimetic mem-
branes prevented formation of phospholipid domains that
regulate enzyme activity. Tetradocosahexaenoyl-CL inhibited
domain organization due to favorable Gibbs free energy of phos-
pholipid mixing. Furthermore, in vitro substitution of tetralino-
leoyl-CL with tetradocosahexaenoyl-CL blocked complex IV
binding. Finally, reintroduction of linoleic acid, via fusion of
phospholipid vesicles to mitochondria isolated from DHA-fed
mice, rescued the major losses in the mitochondrial phospholip-
idome and complexes I, IV, and V activities. Altogether, our
results show that replacing linoleic acid with DHA lowers select
cardiac enzyme activities by potentially targeting domain orga-

nization and phospholipid–protein binding, which has implica-
tions for the ongoing debate about polyunsaturated fatty acids
and cardiac health.

Mitochondria have a central role in cardiac physiology by
handling differing substrates such as pyruvate and fatty acids to
produce the ATP needed to maintain homeostasis. In a range of
metabolic diseases such as obesity, type 2 diabetes, heart failure,
ischemia–reperfusion injury, and diabetic cardiomyopathies,
cardiac mitochondria are subject to considerable dysregulation
(1–5). One key impairment with cardiac mitochondria is the
extensive remodeling of phospholipid acyl chains, most notably
of the unique mitochondrion-specific phospholipid, cardioli-
pin (CL)3 (6, 7). For example, in diabetic cardiomyopathies, CL
acyl chains undergo modifications that broadly include the
depletion of the most abundant CL species (18:2)4, as well as an
increase in longer polyunsaturated acyl chains (8, 9). In fact, the
remodeling of mitochondrial phospholipid acyl chains is not
just limited to cardiomyopathies, but is also reported with var-
ious other conditions such as aging, obesity, and Barth syn-
drome (10, 11).

The mechanisms by which phospholipid acyl chain remod-
eling promotes mitochondrial dysfunction remain unclear.
Phospholipid acyl chains, particularly linoleic acid associated
with CL, bind a multitude of trans-membrane and membrane-
associated enzymes to regulate their activity. For instance, CL
binds oxidative phosphorylation complexes I and III–V and the
mobile electron carrier cytochrome c (12–17). However, it is
unknown how remodeling of CL to specific fatty acids influ-
ences enzyme function.
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One unique remodeling event in the mitochondrial phos-
pholipidome is an increase in the abundance of phospholipid
species containing the long chain n-3 polyunsaturated fatty acid
(PUFA) docosahexaenoic acid (DHA, 22:6) (6, 8, 9, 18). The
elevation of cardiac DHA in differing cardiovascular diseases is
highly paradoxical because this fatty acid is considered cardio-
protective in animal models with some supporting evidence in
humans (19, 20). A recent systematic review on the effects of
n-3 PUFA supplementation in human subjects suggested that
long-chain n-3 PUFAs can be used for ameliorating cardiovas-
cular disease risk factors (21). However, not all research sup-
ports the health benefits of DHA. For instance, a rodent study
showed that DHA did not improve cardiomyopathy induced by
a Western diet (22).

Here, we used dietary intervention as a tool to study remod-
eling of mitochondrial phospholipids on respiratory enzyme
activity. We first confirmed that cardiac DHA levels are ele-
vated in human diabetics. We then established the metabolic
profile of mice consuming Western diets in the absence or pres-
ence of DHA in addition to eicosapentaenoic acid (EPA). Next,
the effects of experimental diets on the mitochondrial phos-
pholipidome were investigated. The focus was on phosphati-
dylcholine (PC), phosphatidylethanolamine (PE), and CL
because they are the most abundant phospholipids in the mito-
chondria by mass at 40, 30, and 15–20%, respectively (23). We
then determined whether the experimental diets impaired
mitochondrial respiratory enzyme activities because CL binds
several of these enzymes (14, 16, 24 –29). Mechanistically, we
investigated whether DHA lowered enzyme activities due to
modifications in the formation of supercomplexes, assembly of
lipid domains that regulate protein activity, and phospholipid–
protein-binding interactions (30 –32). Finally, experiments
were conducted to determine whether reintroduction of lino-
leic acid into mitochondria isolated from mice consuming
DHA rescued remodeling in the phospholipidome and thereby
enzymatic function.

Results

Cardiac DHA levels are elevated in human diabetics

Data from rodent studies demonstrate that cardiac DHA lev-
els are elevated in different diseases (9, 18); however, evidence
in humans in lacking. Therefore, cardiac DHA levels from non-
diabetic and diabetic subjects were first assayed. Mitochondria
could not be isolated because there was extremely limited tissue
samples from surgery. Furthermore, fatty acid analyses had to
be conducted with total extracted fatty acids due to the small
amount of tissue obtained during surgery. Analyses with gas
chromatography revealed that diabetics, compared to non-dia-
betic controls, had no changes in the relative levels of saturated
fatty acids (Fig. 1A). The monounsaturated fatty acid 16:1 was
lowered by 2.4-fold with diabetic subjects relative to the non-
diabetics (Fig. 1B). n-6 PUFA levels were not modified (Fig. 1C).
Analyses of the major n-3 PUFAs showed that DHA levels were
increased by 1.7-fold for the diabetic subjects compared with
non-diabetic controls (Fig. 1D).

Subsequent studies were conducted with mice. It was first
established how murine experimental diets influenced fat/lean

mass, glucose clearance, and fasting insulin levels. The effects of
EPA and DHA were tested at two different time points, includ-
ing consumption of the fatty acids for 14 weeks or for 4 weeks
(Fig. 2A). Mice fed the Western diet and the EPA- or DHA-
enriched Western diets had increased total body weights by
1.3–1.4-fold relative to the lean control (Fig. 2B). The increase
in total body weight was accounted for by an increase in fat
mass with the Western and EPA- or DHA-enriched Western
diets by 1.9 –2.1-fold relative to the control (Fig. 2C). Mice fed
the Western � EPA diet (14 and 4 weeks) and the Western �
DHA diet (4 weeks) had elevated lean mass compared with lean
animals (Fig. 2D). Mice fed the Western diets in the absence or
presence of EPA or DHA generally had diminished glucose
clearance (Fig. 2E), as quantified by the area under the curve
(AUC) for glucose clearance (Fig. 2F). The only exception was
the Western diet � EPA (4 weeks) (Fig. 2F). Mice fed the West-
ern diets in the absence and presence of EPA (4 weeks) or DHA
(14 and 4 weeks) had increased fasting insulin levels in compar-
ison with lean mice (Fig. 2G). The Western � DHA diet (14 and
4 weeks) increased fasting glucose levels compared with the
control and/or the Western diet (for 14 weeks) (Fig. 2H).
HOMA-IR scores were consistently increased with all of the
Western diets, except the WD � EPA (14 weeks), relative to
lean mice (Fig. 2I). There were no statistically significant differ-
ences between EPA and DHA (14 and 4 weeks) for HOMA-IR
scores. Altogether, the data suggested that supplementation
with EPA or DHA did not improve glucose clearance, although
long-term intake with EPA did not increase the HOMA-IR
score relative to lean mice, consistent with previous work (33).

Murine cardiac mitochondrial CL and monolyso-CL acyl chains
are dramatically remodeled in response to Western diets in the
absence and presence of EPA and DHA

We next established how the Western diets, particularly in
the presence of EPA and DHA, targeted CL and monolyso-CL
(MLCL) acyl chains. An example of the raw LC/MS data are
presented in Fig. S1A–D. LC/MS analyses are presented as heat
maps in Fig. 3. CL species were classified as either major (Fig.
3A), intermediate (Fig. 3B), or minor (Fig. 3C) in terms of abun-
dance. MLCL levels are shown in Fig. 3D.

The most abundant CL species, (18:2)4, was robustly reduced
with all of the Western diets by 4.3–20.0-fold (Fig. 3A and Fig.
S2, A–F). The Western diet, in the absence of EPA (4 and 14
weeks) or DHA (4 and 14 weeks), also increased a range of other
major CL species relative to the control and the Western diet
(Fig. 3A). CL species containing 22:6 were elevated in response
to EPA intervention and robustly with DHA intervention (4 and
14 weeks). The increase in differing CL species came at the
expense of lowering a range of CL species, notably containing
18:2 and 20:4 acyl chains (Fig. 3A). Several intermediate and
minor CL species were also increased or decreased with the
Western diet, in the absence or presence of EPA or DHA, when
compared with the control by 2.0 –14.0-fold (Fig. 3, B and C).
There were also some differences between EPA and DHA (Fig.
S2, A–F).
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Murine cardiac mitochondrial PC and PE acyl chains are
remodeled in response to a Western diet in the absence and
presence of EPA and DHA

LC/MS analyses were also conducted with PC and PE phos-
pholipids. Generally, the Western diet in the absence and pres-
ence of EPA (14 and 4 weeks) and DHA (14 and 4 weeks) low-
ered the abundance of PCs containing 16:0, 18:1, 18:2, and 20:3
acyl chains by 1–2-fold compared with the lean controls (Fig.
4A). For some species such as (18:2)2PC, the effects were more
robust with DHA (14 and 4 weeks) compared with EPA (14 and
4 weeks) (Fig. 4A). DHA also notably increased the levels of
(18:2)(20:4)PC compared with control, Western diet, and
Western diet � EPA fed mice. Similar trends were observed
with PEs, where the Western diet in the absence or presence of
EPA (14 and 4 weeks) and DHA (14 and 4 weeks) lowered spe-
cies containing 16:0, 18:1, and 18:2 acyl chains (Fig. 4B). DHA
had stronger effects than EPA on some PEs (Fig. 4B).

Cardiac mitochondrial respiratory enzyme activities are
decreased with the EPA- and DHA-enriched Western diets

Subsequent experiments addressed whether the aforemen-
tioned changes in the mitochondrial phospholipidome were
associated with impaired respiratory enzyme activities. We
focused on long-term intake of EPA and DHA (14 weeks). Strik-
ingly, mice that consumed the Western diet did not have a

reduction in enzyme activities and combined enzyme activities
when compared with the lean control (Fig. 5, A–G). The West-
ern � EPA and Western � DHA diets (14 weeks), respectively,
reduced complex I activity by 1.8- and 1.9-fold relative to the
control diet (Fig. 5A). The EPA- and DHA-containing diets had
no effect on complex II (Fig. 5B) and complex III (Fig. 5C) activ-
ities. Complex IV activity was lowered with the EPA- or DHA-
enriched Western diets relative to the control and/or Western
diet by 1.8 –2.7-fold (Fig. 5D). The Western � DHA diet (14
weeks) also modestly reduced complex V activity by 0.6-fold
relative to the control (Fig. 5E). The Western � DHA diet
decreased the combined activities of complex I � III by 2.0-fold
compared with the control (Fig. 5F). There was no effect of
EPA- and DHA-enriched Western diets on complex II � III
activities (Fig. 5G).

EPA and DHA do not robustly suppress formation of the major
supercomplexes

The next study addressed whether decreased enzyme-specific
activities with EPA or DHA (14 weeks) were mechanistically
driven by a reduction in mitochondrial supercomplex forma-
tion or in the expression levels of the complexes (34). Long-
term intake of EPA or DHA had no major effect on the majority
of the supercomplexes, which are depicted as supercomplexes

Figure 1. Type 2 diabetic subjects have elevated cardiac DHA (22:6) levels relative to controls. Relative percentages of saturated fatty acids (SFAs) (A),
monounsaturated fatty acids (MUFAs) (B), n-6 polyunsaturated fatty acids (PUFAs) (C), and n-3 PUFAs for control (CON) and type 2 diabetics (T2D) (D) are shown.
Values represent total fatty acids that were extracted from human tissue. Data are the average � S.D. from 7 to 8 subjects per group. Asterisks indicate
significance from control (*, p � 0.05).
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Figure 2. Metabolic profile of mice consuming a Western diet in the absence or presence of EPA and DHA for differing time points. A, schematic of the
diet feeding schedule for mice consuming the control (CON), Western diet (WD), and Western diet containing EPA or DHA ethyl esters. B, body weights at the
end of the 14-week feeding period. Fat (C) and lean (D) mass was determined by Echo-MRI. E, whole-body glucose tolerance test was performed by intraperi-
toneal injection of glucose after a 5-h fast. F, AUC, calculated by integration of the raw glucose tolerance test curves shown in E. G, fasting insulin; H, fasting
glucose levels. I, homeostasis model assessment for insulin resistance (HOMA-IR) index scores. Data are the average � S.D. from 8 to 20 independent
experiments. Asterisks indicate significance from control (CON) (*, p � 0.05; **, p � 0.01; ***, p � 0.001; ****, p � 0.0001). Horizontal bars with asterisks indicate
significance between treatments. For simplicity, statistical significance is not indicated between time points (14 and 4 weeks).
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1–5 (Fig. S3, A–F) (35). The notable exception was that mice
consuming the Western � DHA diet had a reduction in the
amount of supercomplex 4 when compared with the control
and Western diets by 2.5- and 2.7-fold, respectively (Fig. S3E).
Blue native-PAGE analysis also revealed that there were no
changes in the expression of complexes I–V in the Western and
EPA- or DHA-enriched Western diets compared with the lean
control (data not shown).

Replacement of (18:2)4CL with (22:6)4CL prevents the
formation of lipid domains by influencing the Gibbs free
energy of lipid–lipid mixing

Given that DHA did not robustly impair the abundance of
the majority of supercomplexes, we investigated another

potential mechanism by which respiratory enzyme activity
could be lowered with DHA. We used a biophysical approach to
determine whether DHA could target the formation of CL
domains, which control phospholipid–protein binding that is
critical for optimal enzyme function (36). Biomimetic mito-
chondrial membranes modeling the composition of the cardiac
inner mitochondrial membrane were used because they allow
for a controlled model system. (22:6)4CL was specifically inves-
tigated given that it is a symmetric phospholipid and was ele-
vated in response to DHA in the diet (Fig. 3A and Fig. S2F).
Cytochrome c was added to the biomimetic membranes
because it known to induce domain formation in giant unila-
mellar vesicles (37).

Figure 3. Cardiac mitochondrial cardiolipin acyl chains are remodeled in response to a Western diet in the absence and presence of EPA and DHA. Heat
maps of major (A), intermediate (B), and minor (C) CL acyl chains for mice consuming a control (CON), Western diet (WD), WD � EPA, and WD � DHA are shown.
D, monolyso-CL species in cardiac mitochondria are also shown. Data are the average from five independent experiments. Asterisks indicate significance from
control (*, p � 0.05). Daggers indicate significance relative to the WD (†, p � 0.05), and hash tags indicate significance between EPA and DHA at 14 or 4 weeks
(#, p � 0.05). For simplicity, statistical significance is not indicated between time points (14 and 4 weeks).
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Imaging revealed that (18:2)4CL promoted the formation of
phase-separated domains (as visualized by NAO), which were
diminished upon replacement of (18:2)4CL with (22:6)4CL (Fig.
6A). A range of phase-separated domain areas was measured
with the NAO fluorescent probe and are presented as a fre-
quency distribution. A Gaussian fit was applied to the fre-
quency distributions with larger areas reflecting greater cover-
age of the NAO fluorophore on the perimeter of the giant
unilamellar vesicles (Fig. 6B). Visual inspection of the frequency
distributions of the domains were clearly different between (18:
2)4CL and (22:6)4CL (Fig. 6B). Quantification of the average
area occupied by the NAO probe showed that DHA prevented
formation of phase-separated domains (Fig. 6C).

To explain how (22:6)4CL prevented domain formation,
monolayers of the same lipid mixtures modeling the inner
mitochondrial membrane were constructed containing either
(18:2)4CL (Fig. 6D) or (22:6)4CL (Fig. 6E) in the absence or
presence of cytochrome c. This model system allowed us to
investigate phospholipid mixing properties that are central
for the formation of phase-separated lipid domains (38). The
monolayer pressure area isotherms (Fig. 6, D and E) were then
used to calculate the change in excess area per molecule in
response to cytochrome c. The excess area per molecule values
provide a quantitative change at the angstrom level on how
phospholipids are mixing or de-mixing (i.e. lipid–lipid miscibil-
ity) (39).

In biomimetic mitochondrial monolayers containing (18:
2)4CL, the change in excess area per molecule was positive,
indicating unfavorable lipid mixing (i.e. formation of phase-
separated domains) (Fig. 6F). Upon replacement of (18:2)4CL
with (22:6)4CL, this value became negative, indicating favorable

mixing between phospholipids (i.e. no formation of phase-sep-
arated domains). We further calculated the change in Gibbs
free energy of mixing upon the addition of cytochrome c. (18:
2)4CL had a positive change in Gibbs free energy of mixing,
indicating unfavorable mixing of phospholipids (Fig. 6G).
Replacement of (18:2)4CL with (22:6)4CL shifted the Gibbs free
energy of mixing to a favorable negative value. Thus, these
results established that (18:2)4CL promoted phase-separated
domains due to unfavorable lipid mixing. In contrast, the lack of
domains in the presence of (22:6)4CL was driven by favorable
Gibbs free energy of mixing between phospholipids.

Replacement of (18:2)4CL with (22:6)4CL diminishes
interactions with complex IV

CL domains are hypothesized to create a microenvironment
that regulates protein activity through direct phospholipid–
protein binding (12, 15, 25, 40) Thus, we further investigated
whether replacement of (18:2)4CL with (22:6)4CL in biomimetic
mitochondrial large unilamellar vesicles (LUVs) impaired bind-
ing interactions with immobilized complex IV using surface
plasmon resonance (SPR) (41). Complex IV was selected
because its activity was lowered with DHA, suggesting that the
known high-affinity, CL-specific binding sites (27, 42– 44) may
be unable to accommodate remodeled CL. SPR binding curves
showed dramatic differences in binding interactions between
complex IV and LUVs containing either (18:2)4CL (Fig. 7A) or
(22:6)4CL (Fig. 7B). Strikingly, there was a lack of detectable
LUV–CIV interactions in the presence of (22:6)4CL at LUV
concentrations nearly 100-fold higher than the reported appar-
ent Kd value for CL binding to the high- and low-affinity sites on
CIV (�0.1 and 4 �M, respectively) (43). Fitting of the binding

Figure 4. Cardiac mitochondrial PC and PE acyl chains are remodeled in response to a Western diet in the absence and presence of EPA and DHA. Heat
maps of PC (A) and PE (B) acyl chains in cardiac mitochondria for mice consuming a control (CON), Western diet (WD), WD � EPA, and WD � DHA are shown.
Data are the average from five independent experiments. Asterisks indicate significance from control (*, p � 0.05). Daggers indicate significance from WD (†, p �
0.05), and hash tags indicate significance between EPA and DHA at 14 or 4 weeks (#, p � 0.05). For simplicity, statistical significance is not indicated between
time points (14 and 4 weeks).
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curves for LUVs containing (18:2)4CL relied on a one-site bind-
ing equation. The fitting revealed an equilibrium binding con-
stant (Kd) of 1.8 � 0.6 �M (Table 1), consistent with lipid-pro-
tein interactions at CL-specific binding sites.

(18:2)4CL rescues the major remodeling in the cardiolipin
lipidome induced by long-term intake of DHA

The last set of experiments tested the possibility that the
replacement of the predominant CL fatty acid, linoleic acid
(18:2) with DHA (22:6), was driving the reduction in enzyme
activity. Therefore, we fused cardiac mitochondria isolated
from mice consuming the Western � DHA (14 weeks) diet with
small unilamellar vesicles composed of (18:2)4CL. We ensured
that (18:2)4CL fusion did not influence the fatty acids associated
with PC or PE. LC/MS heat maps show no alterations in any of
the acyl chains associated with PC (Fig. S4A) and PE (Fig. S4B)
upon fusion with (18:2)4CL.

CL and MLCL were analyzed in response to the fusion.
LC/MS analyses are presented as heat maps in Fig. 8 for CL
species that were classified as either major (Fig. 8A), interme-
diate (Fig. 8B), or minor (Fig. 8C) in terms of abundance. MLCL
was also analyzed (Fig. 8D). Several intermediate and minor CL
species were altered in the (18:2)4CL mitochondrial fusion
when compared with control and Western � DHA diets by
1.7–10.0-fold (Fig. 8, B and C). Notably, the most abundant CL
species, (18:2)4, was increased back to control levels with the
fusion of (18:2)4CL by 12.6-fold relative to the Western � DHA
(14 weeks) diet (Fig. 8A). In addition, fusion with (18:2)4CL
increased (18:1)(18:2)3 by 4.3-fold relative to the Western �
DHA (14 weeks) diet (Fig. 8A). The fusion with (18:2)4CL also
decreased several other CL species by 3.1– 4.7-fold relative to
the Western � DHA (14 weeks) diet (Fig. 8A). Relative to the
control, fusion with (18:2)4CL still displayed decreased levels of
some CL species such as (18:1)(18:2)3 (Fig. 8A).

Cardiac mitochondrial complex I, IV, and V activities are
rescued upon introduction of (18:2)4CL into the mitochondria
of mice consuming DHA

We determined whether improvement in the CL lipidome of
DHA-fed mice upon fusion of (18:2)4CL rescued the impaired
oxidative phosphorylation enzyme activities. The fusion of (18:
2)4CL to control samples had no effect on enzyme activity (data
not shown). The fusion of (18:2)4CL to mitochondria isolated
from Western � DHA (14 weeks) rescued complex I activity
(Fig. 9A). The fusion of (18:2)4CL with the Western � DHA (14
weeks) diet did not influence complex II activity (Fig. 9B) and
complex III activity was reduced relative to the control diet by
2.5-fold (Fig. 9C). (18:2)4CL fusion rescued complex IV and
complex V activities by 2.4- and 2.5-fold relative to the Western �
DHA diet (Fig. 9, D and E). Complex II and II � III activities

were not influenced by the introduction of (18:2)4CL (Fig. 9, F
and G).

Discussion

The rationale for the study was based on previous data show-
ing rearrangement of cardiac mitochondrial phospholipid acyl
chains, particularly CL, in several diseases like cardiomyopa-
thies and diabetes, as well as aging (8 –11, 18). In such scenarios,
decreased mitochondrial supercomplex formation, decreased
mitochondrial respiratory function, increased oxidative stress,
and elevated cardiac DHA acyl chains levels are generally
observed (18, 45–54).

Herein, we first confirmed mouse studies by demonstrating
that DHA levels were elevated in human type II diabetics. A
limitation of this study was that we were not able to assay
whether DHA was specifically associated with the polar lipid
pool, particularly CL. This was due to a very limited tissue sam-
ple size obtained during surgery. Given that the concentration
of free fatty acids is significantly low in the heart (55), it is likely
that DHA levels represent polar and neutral lipids. We also
acknowledge that the size of the samples, which were very dif-
ficult to obtain, was small. Thus, future studies will need to
further confirm whether DHA levels, particularly in CL, are
elevated in human subjects while controlling for various con-
founding variables.

Following the human study, we performed experiments in a
murine model to determine the potential underlying mecha-
nisms by which DHA acyl chains influence mitochondrial enzy-
matic activity. A striking finding from the mouse study was that
the Western diet in the absence of EPA or DHA dramatically
remodeled the lipidome of the three major phospholipids of the
mitochondria, but it had no effect on enzyme activity, even
upon a strong reduction in (18:2)4CL levels. These results are in
agreement with our previous work that showed a high fat diet
had no influence on mouse cardiac enzyme activity upon mod-
erate remodeling of phospholipids (56). In contrast, remodeling
of the phospholipidome upon dietary supplementation with
EPA and DHA led to diminished enzymatic activity of select
complexes. These results were consistent with a study showing
that fish oil can lower liver mitochondrial complex IV and V
activities (57).

DHA potentially lowers cardiac mitochondrial enzyme
activities by influencing domain organization and protein–
lipid binding

The data suggest two potential mechanisms, which are not
mutually exclusive, by which DHA lowered respiratory enzyme
function. One possibility was that DHA prevented CL domain
formation. Studies with biomimetic membranes specifically
showed that (22:6)4CL had a stronger effect than (18:2)4CL on

Figure 5. EPA and DHA administration to a Western diet lowers select murine cardiac mitochondrial enzyme activities. A, complex I activity, measured
by NADH oxidation for mice consuming a control (CON), Western diet (WD), WD � EPA, and WD � DHA. B, complex II activity, assessed by dichlorophenolin-
dophenol reduction. C, complex III activity, assayed by cytochrome c reduction. D, complex IV activity, measured by cytochrome c oxidation. E, complex V
activity, measured by the oxidation of NADH. F, complex I � III activity measured by NADH oxidation coupled to cytochrome c reduction. G, complex II � III
activity assayed by succinate oxidation coupled to cytochrome c reduction. Activities were determined relative to total protein content and then normalized
to citrate synthase (CS) activity. Data are the average � S.D. from 5 to 6 independent experiments. Asterisks indicate significance from control (*, p � 0.05; **,
p � 0.01). Horizontal bars with asterisks indicate significance between treatments.
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domain formation, which was driven by the ability of DHA acyl
chains to promote phospholipid mixing. The other possibility
was that DHA prevented binding of linoleic acyl chains to spe-
cific complexes.

There are several binding sites within complex I and IV that
could be influenced by DHA. There are nine binding sites for
CL in bovine complex I and depletion of CL from complex I

renders the enzyme inactive (24, 25). Similarly, CL is required
for complex IV activity with four known CL-binding sites, two
of which are considered high affinity. The high-affinity CL-
binding sites are associated with the regulation of electron
transport, and the loss of CL at these sites lowers enzymatic
activity (26, 27). The two low-affinity sites are also important in
the structural integrity of the complex in its dimer form (28, 58).

Figure 6. Replacement of (18:2)4CL with (22:6)4CL prevents formation of lipid domains due to a favorable Gibbs free energy of mixing. A, sample
confocal images of biomimetic giant unilamellar vesicles containing either (18:2)4CL or (22:6)4CL. Cytochrome c (Cyt C) was added to promote phase separa-
tion, and images were visualized with the CL-specific probe NAO. Biomimetic membranes modeled the composition of the inner mitochondrial membrane. B,
frequency distribution of the differing areas occupied by the NAO probe on the perimeter of the vesicles. A Gaussian fit was applied to the data. C, average area
occupied by the NAO fluorophore measured with ImageJ software (National Institutes of Health). Each dot represents a single GUV. Monolayers were also
constructed to assay lipid–lipid miscibility. Sample pressure–area isotherms of biomimetic monolayers are presented containing either (18:2)4CL (D) or
(22:6)4CL (E). Lipid–lipid miscibility was quantified at a physiologically relevant surface pressure of 30 millinewtons (mN)/m in terms of the change in excess area
per molecule (F) and Gibbs free energy (G) of mixing upon cytochrome c addition. Negative values for excess area per molecule and Gibbs free energy indicate
favorable lipid–lipid mixing. Positive values indicate unfavorable mixing. Data are average � S.D. from 3 to 6 independent experiments. Asterisks indicate
statistical significance relative to (18:2)4CL: *, p � 0.05; **, p � 0.01, *** p � 0.001.

Figure 7. Replacement of (18:2)4CL with (22:6)4CL in biomimetic mitochondrial vesicles prevents binding to complex IV. Representative SPR sensor-
grams of biomimetic LUVs containing (18:2)4CL (A) or (22:6)4CL (B) binding to complex IV are shown. LUVs modeled the composition of the inner mitochondrial
membrane. Solubilized complex IV was immobilized to gold-plated carboxyl sensor chips using EDC/NHS chemistry (Nicoya Lifesciences). Binding of varying
concentrations of LUVs were measured as a function of time. Small increases in the signals of (22:6)4CL are attributed to non-specific binding interactions
between the LUVs and sensor chip at high concentrations. Data in A were globally fit to a one-site binding model (solid black line, TraceDrawer) to determine
kon, koff, and equilibrium dissociation constants. Binding constants (Table 1) were determined in three separate experiments using three different chips to
account for chip-to-chip variability.
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Thus, DHA acyl chains may lower enzyme function due to
diminished binding of linoleic acid to either of the two com-
plexes. Indeed, studies to determine the strength of the
phospholipid–protein interactions with complex IV revealed
that biomimetic membranes containing (22:6)4CL did not bind
to complex IV, whereas those containing (18:2)4CL exhibited
significant interactions with complex IV (presumably both the
low and high affinity CL-binding sites). Disruption of (22:6)4CL
binding to complex IV could result in reduced conformational
flexibility or electron transport, effectively reducing enzyme
activity. Subsequent studies will need to test binding of other
DHA-containing CL species with complex IV and other com-
plexes. It was beyond the scope of this study to test CL-binding
kinetics with all of the complexes.

Complex V activity was also lowered with DHA, which could
be due to a specific disruption in CL domain formation. Com-
plex V forms dimers, and CL is specifically needed to assemble
the enzymes into larger oligomeric structures, which affects
energy efficiency (16, 29, 59). It is possible that DHA, due to
unique conformational flexibility, imparted disorder on the
bilayer that leads to an impairment in the formation of higher
order complex V oligomers that rely on the microdomain
environment.

The effects of DHA on domain organization could also
explain the reduction in complex I � III activity. Perhaps DHA
lowered the ability of coenzyme q, the mobile electron carrier
from complex I to complex III, to diffuse appropriately as the
domains were disrupted. This would then explain why modifi-
cations to complex I and III activity alone did not recapitulate
the results with complex I to III electron transfer. It is also
conceivable that DHA impaired other aspects of membrane
biophysical organization such as bending rigidity that could
impede electron flow (60).

There are likely additional mechanisms by which DHA could
lower respiratory enzyme function. These would include the
possibility that an increase in acyl chain unsaturation with die-
tary DHA could manipulate CL turnover and thereby protein
activity (61). In addition, DHA may have indirect effects on
enzymatic responses by influencing the expression and activity
of phospholipase A2�, which cleaves select fatty acids from CL
to regulate mitochondrial bioenergetics (62).

Despite the clear impact that mitochondrial membrane
phospholipidome remodeling was having on respiratory com-
plex activity, it is noteworthy that coupled ADP-stimulated res-
piration was not altered with EPA and DHA (data not shown).
This effect mirrored our previous study where EPA/DHA sup-
plementation in high fat-fed mice did not significantly alter
maximal respiration in the heart (63). This fact illustrates the

complexity of mitochondrial bioenergetics and suggests that
although discrete respiratory complexes may be altered indi-
vidually, or even in aggregate (i.e. supercomplexes), there are
additional factors that impinge on respiratory function as a
whole when mitochondria are intact and fully coupled. Alto-
gether, the data provide a roadmap for future studies that will
require purification of differing respiratory enzymes to study
how DHA acyl chains disrupt enzyme activity in the context of
CL-protein binding and formation of CL domains.

Paradox on DHA

In conditions such as obesity and type 2 diabetes, which are
linked to cardiovascular diseases, pathological remodeling of
CL with EPA and/or DHA increases oxidative damage that con-
tributes to mitochondrial dysfunction (64). For instance, a
study showed that DHA levels in C2C12 cells were elevated
upon up-regulation of ALCAT1 (a lyso-CL acyltransferase),
which remodels CL to species containing highly oxidizable acyl
chains and increased oxidative stress (64). A deficiency in
ALCAT1 in a murine model protected against diet-induced
obesity and insulin resistance (64). Shotgun lipidomic studies
by Han et al. (9, 18) also showed a significant decrease in CL
abundance and a profound remodeling of the remaining CL
species to include DHA acyl chains in rat diabetic myocardium.

In contrast, many studies demonstrate that consumption of
EPA/DHA can have beneficial effects in obesity and type 2 dia-
betes through pleiotropic mechanisms. The mechanisms for
improvements with EPA and DHA consist of enhancing insulin
signaling, maintaining glucose metabolism, reversing dyslipi-
demia, and resolving inflammatory signals via targeting of tran-
scription factors and gene expression (65–68). For instance, in a
similar study by our group, supplementation of EPA and DHA
in high-fat diet led to increased levels of 4-hydroxyhexenal
adducts in the myocardium, products of EPA/DHA-specific lipid
peroxidation (63). In parallel with the increase in hydroxyhexenal
adducts, antioxidant gene expression increased while mitochon-
drial reactive oxygen species production decreased in the heart,
suggesting that high-fat diet supplementation with EPA/DHA
caused a beneficial “hormetic” response in the heart. Similar
effects were also seen to some extent in a recent small clinical trial
of fish oil in patients prior to cardiac surgery. Anderson et al. (69)
showed that patients consuming 4 g/day of EPA/DHA ethyl esters
(LovazaTM) had increased myocardial peroxisome proliferator-ac-
tivated receptor-� activation, up-regulated fatty acid metabolic
gene expression, greater expression/activity of antioxidant as well
as anti-inflammatory enzymes, and increased palmitoyl–carni-
tine-supported respiration.

Role of linoleic acid in the myocardium

Introduction of linoleic acid in CL vesicles rescued the dec-
rement in the phospholipidomic profile and enzyme activities
of complexes I, IV, and V in response to DHA. These results
demonstrate mechanistically that it is not the loss of linoleic
acid alone that drives the impairment in enzyme function
because the Western diet alone did not impair enzyme activi-
ties. Instead, it was the replacement of linoleic acid with DHA
that promoted the reduction in activities. The notable excep-

Table 1
Binding constants for biomimetic mitochondrial membranes contain-
ing (18:2)4CL with complex IV
Large unilamellar vesicles were constructed containing either (18:2)4CL or (22:
6)4CL. Vesicles were then used for binding studies with immobilized complex IV
using surface plasmon resonance. Data are average � S.D. from three independent
experiments. ND indicates not detectable.

Constant (18:2)4CL (22:6)4CL

kon 500 � 10 M�1 s�1 ND
koff 7.6 � 0.2 (�10�4) s�1 ND
Kd 1.8 � 0.6 �M ND
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tion was complex III activity, which was not restored upon
introduction of linoleic acid. Perhaps DHA was bound to com-
plex III in a manner that precluded displacement by linoleic
acid associated with CL. Several of the known complex III CL-
specific bindings sites are buried deep within protein cavities,
presumably making displacement of the DHA-containing CL
difficult due to structural constraints (15).

The (18:2)4CL rescue data advance the field by highlighting
the importance of n-6 PUFAs in mitochondrial membranes.

There is considerable debate about the effects of n-6 PUFAs,
notably linoleic acid, on cardiovascular health. Initially, linoleic
acid was hypothesized to have benefits for cardiovascular out-
comes because it lowers serum cholesterol (70, 71). However,
recent studies challenge this notion about increasing the intake
of linoleic acid at the expense of saturated fatty acids (72). For
instance, several meta-analyses show that increasing the dietary
consumption of n-6 PUFAs, at the expense of saturated fatty
acids, does not lower the risk of death from cardiovascular dis-

Figure 8. Incorporation of (18:2)4CL improves the cardiolipin lipidome of mitochondria isolated from DHA-fed mice. Heat maps of major (A), interme-
diate (B), and minor (C) CL acyl chains for mice consuming a control (CON), Western diet (WD), and WD � DHA. D, monolyso-CL species in cardiac mitochondria
are also shown. Data are the average � S.E. from three independent experiments. Asterisks indicate significance from control (*, p � 0.05). Daggers indicate
significance relative to WD � DHA � (18:2)4CL (†, p � 0.05).
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Figure 9. (18:2)4CL rescues the DHA-induced loss of complex I, IV, and V activities. A, complex I activity, measured by NADH oxidation for mice consuming
a control (CON), Western diet (WD), and WD � DHA. B, complex II activity, measured by dichlorophenolindophenol reduction. C, complex III activity, assayed by
cytochrome c reduction. D, complex IV activity, measured by cytochrome c oxidation. E, complex V activity, measured by the oxidation of NADH. F, complex I �
III activity assayed by NADH oxidation coupled to cytochrome c reduction. G, complex II � III activity, assessed by succinate oxidation coupled to cytochrome
c reduction. Activities were determined relative to total protein content and then normalized to citrate synthase (CS) activity. Data are the average � S.E. from
four independent experiments. Asterisks indicate significance from control (*, p � 0.05; **, p � 0.01). Horizontal bars with asterisks indicate significance between
treatments.
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eases (73–75). In addition to n-6 PUFAs, the role of n-3 PUFAs
in cardiovascular diseases is still controversial. Meta-analyses
on the consumption of EPA and DHA and coronary heart dis-
ease indicate that n-3 PUFAs may be associated with lowered
cardiovascular risk (76, 77). However, a recent clinical trial
showed that daily treatment with n-3 PUFAs did not decrease
the prevalence of cardiovascular mortality or morbidity in
patients with multiple cardiovascular risk factors (78). Our data
suggest that linoleic acid is key for cardiac mitochondrial enzy-
matic activity, and its replacement, at least with select doses of
DHA, could promote impairments.

It is conceivable that EPA and/or DHA could improve car-
diac enzyme activities in other model systems. In this model, we
did not find that DHA was improving fasting insulin or glucose
clearance in contrast to other studies (33, 79). Thus, perhaps
DHA could improve enzyme activities under conditions in which
whole-body metabolism is improved. Furthermore, DHA in the
triglyceride or free fatty acid form may have different effects on
the mitochondrial phospholipidome and enzymatic activity,
which was beyond the scope of this study.

Conclusions

The data demonstrate that remodeling of the murine car-
diac mitochondrial phospholipidome in the absence of DHA
had no influence on mitochondrial enzyme activities. In con-
trast, remodeling of the phospholipidome with DHA, in par-
ticular, leads to a reduction in complex I, IV, V, and I � III
activities, potentially through mechanisms involving the for-
mation of lipid domains and phospholipid–protein binding.
These results suggest that increased levels of DHA in the
myocardium in differing diseases may be targeting enzy-
matic activity. Furthermore, the impairments with DHA in
the lipidome were generally rescued with the introduction of
linoleic acid accompanied by an improvement in the activi-
ties of select complexes. This has implications for future
studies on the balance between linoleic acid and n-3 PUFAs
in the heart.

Experimental procedures

Human subjects

The Institutional Review Board of East Carolina Univer-
sity approved all aspects of human tissue and data collection
for this study. The cohorts evaluated were type 2 diabetic
and non-diabetic patients at Vidant Hospital undergoing
elective coronary artery bypass graft surgery. The demo-
graphic and clinical data pertaining to the patients are shown
in Table S1. The subjects were grouped either as non-dia-
betic or diabetic according to two major variables: 1) clinical
diagnosis of diabetes; and 2) glycated hemoglobin (HbA1c)
values of �6.1 extending up to �1 year prior to surgery. It is
the standard of care at Vidant Hospital to give all diabetic
patients intravenous insulin when admitted for surgery, and
all other pre-operative diabetic medications are noted in
Table S1. Patients with enlarged atria, history of arrhythmia,
or left ventricular ejection fractions � 30% were excluded
from this study.

Human atrial appendage biopsy, tissue processing, and fatty
acid analyses

After median sternotomy, and prior to institution of cardio-
pulmonary bypass, a purse-string suture was placed in the right
atrial appendage to allow for placement of the venous cannula.
A sample of the appendage directly superior to the purse string
was dissected and immediately rinsed in ice-cold saline to
remove excess blood, trimmed of the epicardial layer and peri-
cardial fat, and frozen in liquid N2. Total fatty acids from the
atrial appendage were extracted with organic solvents (HPLC
grade, Sigma) and analyzed with gas chromatography as
described previously (80). Stringent precautions were taken to
prevent oxidation (80).

Animals and diets

All experiments were conducted in accordance with guide-
lines established by the Guide for the Care and Use of Labora-
tory Animals (National Institutes of Health Publication No.
85-23, revised 1996) and with prior approval by the Animal
Care and Use Committee at East Carolina University and the
University of North Carolina at Chapel Hill. Male C57BL/6
mice (Charles River, Wilmington, MA), 5 weeks old, were fed a
low fat control diet, a Western diet (42% of kcal from milk fat),
or a Western diet with 2% kcal from either EPA or DHA ethyl
esters for 14 weeks (Envigo Inc., Indianapolis, IN). Short-term
intervention with EPA and DHA was also tested, which entailed
feeding mice the Western diet for 10 weeks followed by 4 weeks
of the Western diet with either EPA or DHA. EPA and DHA
ethyl esters (Cayman Chemicals, Ann Arbor, MI) were greater
than 93% purity and were routinely tested for oxidation prior to
and during the course of the study. The composition of the
experimental diets is presented in Table S2. Mice were housed
on a 12:12 h light/dark cycle with free access to water. Mice
were sacrificed via isoflurane inhalation followed by cervical
dislocation.

Metabolic profiling

Mice were fasted for 5 h prior to the administration of an
intraperitoneal glucose injection (2.5 g/kg fat-free mass) of a
50% dextrose saline solution (Hospira Inc., Lake Forest, IL) (81).
Blood glucose was monitored from the tail vein using an Alpha-
Trak 2 animal glucometer (Abbott) at 0, 15, 30, 60, and 90 min
post-injection (82). Values were normalized to fasting blood
glucose levels, and glucose tolerance was assessed by calculat-
ing the corresponding area under the curve (AUC). Blood sam-
ples, collected after the 5-h fast using microcapillary tubes,
were used to quantify insulin levels with an ultra-sensitive
mouse insulin ELISA kit (Crystal Chem Inc., Downers Grove,
IL). Fat and lean masses were determined with whole-body
EchoMRI (Active Field Resources, LLC, Houston, TX).

Isolation of mitochondria

Mitochondrial isolations were performed on ice, and all
instruments and buffers were chilled to 4 °C before isolation
using our established protocols (56). Cardiac tissue was
removed and rinsed in mitochondrial isolation medium (MIM)
containing 300 mM sucrose, 10 mM Na-HEPES (pH 7.2), and 1
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mM EGTA (Sigma). The tissue was minced for 5 min and
diluted in MIM � BSA (1 mg/ml BSA) (pH 7.4). Tissue was then
subjected to homogenization with a Teflon Potter homoge-
nizer. The homogenate was centrifuged at 800 � g for 10 min,
and the supernatant was centrifuged at 12,000 � g for 15 min.
The mitochondrial pellet was resuspended in MIM and stored
at �80 °C. Protein content was determined using a BCA pro-
tein quantification assay (Thermo Fisher Scientific, Waltham,
MA).

Electrospray ionization mass spectrometry

Phospholipid molecular species were determined in lipid
extracts (0.2 mg) of mitochondrial protein by liquid chroma-
tography with electrospray ionization mass spectrometry (LC/
MS) and analyzed as described previously (83).

Small unilamellar vesicle formation and fusion with
mitochondria

SUVs were generated using 0.025 mg of (18:2)4CL (Avanti
Polar Lipids, Alabaster, AL) (84). Multilamellar vesicles (MLVs)
were first constructed as shown previously (85). SUVs were
then formed by the sonication of the MLVs using a Branson
digital sonifier. SUVs were added to 1 mg of total mitochondrial
protein and allowed to gently shake for an hour at 4 °C. Excess
SUVs were then removed from the fused mitochondria, and the
mitochondrial pellet was resuspended and stored at �80 °C.

Blue-native PAGE for quantifying supercomplex formation

Blue native-PAGE was performed as described previously
(56). Briefly, pelleted mitochondria were resuspended in
native-PAGE Sample Buffer (Life Technologies, Inc.) and solu-
bilized using an 8:1 digitonin (Sigma) to protein ratio. After
solubilization and centrifugation, the supernatants were col-
lected and protein content was determined via a BCA protein
quantification assay (Thermo Fisher Scientific). Samples were
combined with 5% G-250 sample additive (Life Technologies,
Inc.) and loaded onto the 3–12% BisTris gel (Life Technologies,
Inc.). The gel was run on ice at 150 V for 3 h. Gels were fixed
using 40% methanol and 10% acetic acid (Sigma) and destained
in 8% acetic acid. Gels were imaged and quantified using the
ChemiDoc Imaging System (Bio-Rad). Data were normalized to
the total amount of protein in each sample.

Construction of biomimetic mitochondrial giant unilamellar
vesicles (GUVs) to quantify domain organization

Biomimetic mitochondrial GUVs were constructed by co-
dissolving lipids, 39.9 mol % 18:0 –22:6 PC, 30.0 mol % 16:0 –
20:4 PE, 20 mol % (18:2)4CL or (22:6)4CL, 5 mol % 18:1–18:1
phosphatidylinositol (PI), 3 mol % 18:1–18:1 phosphatidylser-
ine (PS), and 2 mol % cholesterol (Chol), with the CL-specific
fluorescent probe nonyl acridine orange (NAO) (0.1 mol %), in
chloroform (0.5 mg/ml). (22:6)4CL was a custom synthesis from
Avanti Polar Lipids. The levels of PC, PE, CL, PI, PS, and Chol
approximated ratios found in the inner mitochondrial mem-
brane. 5.0 �g of total lipid was spread onto the conductive side
of an indium tin oxide-coated glass slide. The lipid-coated slide
was subjected to dark vacuum overnight to remove excess sol-

vent. Once the lipid film was dried, a GUV electroformation
chamber was assembled as described (86).

GUVs were constructed by electroformation at room tem-
perature as described previously (39). To promote microdo-
main formation, cytochrome c was added at a 29:1 lipid to pro-
tein ratio. Following sample preparation, vesicles were drawn
into a rectangular micro-capillary tube, mounted onto a micro-
scope slide, and imaged at 23 °C.

Confocal microscopy and image analysis

Imaging was conducted with an Olympus FV1000 confocal
microscope using a �60 1.35NA oil immersion objective
(Olympus, Waltham, MA). The NAO probe was excited with
an argon laser at 488 nm. All acquired images were of GUV
equatorial cross-sections. Analysis of lipid domains was con-
ducted with ImageJ software (National Institutes of Health) as
shown previously (39).

Quantification of the Gibbs free energy of lipid mixing

To quantify the Gibbs free energy of lipid–lipid mixing, bio-
mimetic mitochondrial monolayers were generated by co-dis-
solving lipids (40 mol % 18:0 –22:6 PC, 30.0 mol % 16:0 –20:4
PE, 20 mol % (18:2)4CL or (22:6)4CL, 5 mol % 18:1–18:1PI, 3
mol % 18:1–18:1PS, and 2 mol % Chol) in chloroform (2.5
mg/ml). Lipid monolayers were constructed by spotting �9.0
nmol on a subphase of 10 mM sodium phosphate buffer (pH
7.4). Biomimetic mitochondrial monolayers were analyzed in
the absence and presence of cytochrome c. Excess chloroform
was allowed to evaporate for 10 min prior to cytochrome addi-
tion and monolayer compression. Pressure-area isotherms
were generated and analyzed as described previously (39). The
excess area per molecule and Gibbs free energy were calculated
to quantify lipid–lipid mixing and are presented as the change
upon the addition of cytochrome c (39). All lipid mixtures were
acquired multiple times to ensure reproducibility.

Synthesis of LUVs

LUVs were constructed at room temperature, as described
previously (39), using the same lipid mixture described above
for GUV and monolayer studies containing either (18:2)4CL or
(22:6)4CL.

SPR

SPR data were recorded on an OpenSPR system (Nicoya Life-
sciences). For all experiments, PBS (10 mM Na2HPO4, 2.7 mM

KCl, and 137 mM NaCl, pH 7.4) was used as the running buffer.
Solubilized complex IV in 25 mM Tris-HCl buffer (pH 7.8), 5
mM EDTA, and 39 mM n-dodecyl �-D-maltoside (Sigma) was
diluted to 100 �g/ml in activation buffer and immobilized on a
gold-plated carboxyl-functionalized nanosensor chip accord-
ing to the manufacturer’s instructions using carbodiimide
cross-link chemistry (Nicoya Lifesciences). After immobiliza-
tion and blocking (10 min), LUVs in differing concentrations
were injected (200 �l) and allowed to interact with the sensor
for 10 min at a pump speed of 20 �l/min. Complete dissociation
of LUVs from the immobilized complex IV was observed after
15 min. Interactions between complex IV and the LUVs
were determined in triplicate using three different chips to
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eliminate the possibility of chip-to-chip variability. Sensor-
grams obtained for the (18:2)4CL were globally fit to a one-site
binding model using TraceDrawer (Nicoya Lifesciences) to
determine the association constant (kon, M�1 s�1), dissociation
constant (koff, s�1), and the equilibrium binding constant (Kd,
�M). Rate constants were obtained from global fits using 4 –5
concentrations of LUVs and are presented as average � S.D.
from three separate experiments.

Mitochondrial kinetic assays

Kinetic assays were conducted using a UV-visible 1800 spec-
trophotometer at 37 °C as demonstrated previously (56). Com-
plex I activity was measured by monitoring the oxidation of 0.8
mM NADH (Sigma) at 340 nm. Complex II activity was mea-
sured by the reduction of 80 �M dichlorophenolindophenol
(Sigma) at 600 nm. Complex III activity was assayed by moni-
toring the reduction of 40 �M cytochrome c (Sigma) at 550 nm.
Complex IV activity was measured by monitoring the oxidation
of 10 �M reduced cytochrome c (Sigma) at 550 nm. Complex V
activity was measured by the oxidation of 1 mM NADH (Sigma)
at 340 nm. The activity of complexes I � III and II � III was
measured by monitoring the reduction of 40 �M cytochrome c
at 550 nm. Citrate synthase activity was assayed using 0.1 mM

5,5-dithiobis-(2-nitrobenzoic acid) (Sigma). Each reaction was
performed in duplicate, and all activities were normalized to
citrate synthase activity.

Statistical analyses

Data are presented as average � S.D. All data are from mul-
tiple independent experiments, as indicated in the figure leg-
ends. Each independent experiment consisted of one mouse per
diet group. The human data were analyzed with an unpaired
one-tail t test because previous studies have established an
increase in DHA levels in the myocardium (18); therefore, the
null hypothesis for this study was set to test whether diabetics
would increase DHA levels. The mouse data were normally dis-
tributed based on a Kolmogorov-Smirnov test. Thus, these results
were analyzed with parametric statistics using GraphPad Prism 7
software. Statistical significance was established using a one-way
analysis of variance followed by a post hoc Bonferroni test. p�0.05
was considered significant.
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