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ABSTRACT
Background. With the continuous discovery ofmicroRNA’s (miRNA) associationwith
a wide range of biological and cellular processes, expression profile-based functional
characterization of such post-transcriptional regulation is crucial for revealing its
significance behind particular phenotypes. Profound advancement in bioinformatics
has been made to enable in depth investigation of miRNA’s role in regulating cellular
and molecular events, resulting in a huge quantity of software packages covering
different aspects of miRNA functional analysis. Therefore, an all-in-one software
solution is in demand for a comprehensive yet highly efficient workflow. Here we
present RBiomirGS, an R package for a miRNA gene set (GS) analysis.
Methods. The package utilizes multiple databases for target mRNAmapping, estimates
miRNA effect on the target mRNAs through miRNA expression profile and conducts
a logistic regression-based GS enrichment. Additionally, human ortholog Entrez ID
conversion functionality is included for target mRNAs.
Results. By incorporating all the core steps into one package, RBiomirGS eliminates
the need for switching between different software packages. The modular structure of
RBiomirGS enables various access points to the analysis, with which users can choose
the most relevant functionalities for their workflow.
Conclusions.With RBiomirGS, users are able to assess the functional significance of the
miRNA expression profile under the corresponding experimental condition byminimal
input and intervention. Accordingly, RBiomirGS encompasses an all-in-one solution
formiRNAGS analysis. RBiomirGS is available onGitHub (http://github.com/jzhangc/
RBiomirGS). More information including instruction and examples can be found on
website (http://kenstoreylab.com/?page_id=2865).

Subjects Biochemistry, Bioinformatics, Computational Biology, Molecular Biology, Data Mining
and Machine Learning
Keywords Logistic regression, Pathway analysis, Transcriptome, Gene set enrichment, Molecular
biology, Post-transcriptional regulation

INTRODUCTION
MicroRNA (or miRNA) is a ∼22 nucleotide long small RNA species and is mostly
recognized as a negative gene expression regulator on a post-transcriptional level (He
& Hannon, 2004). miRNAs have been proposed as biomarkers and/or therapeutic targets
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for medical disorders such as drug-induced liver injury and cancer (Mitchell et al., 2008;
Wang et al., 2009). Additionally, the primary structure of many miRNAs exhibits high
level of conservation across species (Zhang & Storey, 2013), enabling smooth transfer of
knowledge between different model systems.

Gene expression gene set (GS) analysis associates expression profiles with the functional
outcome under specific experimental conditions and phenotypes. miRNA and coding gene
expression GS analyses share the same general goal: to identify the significantly affected
biological events from a given expression profile. The commonly used GS databases
include gene ontology (GO) term (Ashburner et al., 2000) and KEGG (Kanehisa & Goto,
2000). Several GS techniques have been developed to directly incorporate differential
expression (DE) results, such as gene set enrichment analysis (GSEA) (Subramanian et
al., 2005). Even though it has been reported that these methods hold a more thorough
and complete GS evaluation for coding genes (Mootha et al., 2003; Subramanian et al.,
2005), the popular methods for miRNA research still rely on pre-selecting differentially
expressed targets. Briefly, the commonly used miRNA GS analysis procedure starts with
obtaining the list of the differentially expressed miRNAs, followed by searching for their
target mRNAs, and then comparing the mRNA list with the GS databases (Long et al., 2013;
Chen et al., 2013). However, it has been demonstrated that such method and its variations
tend to exhibit bias of various origins (Khatri, Sirota & Butte, 2012; Bleazard et al., 2015).
Moreover, the information on directionality from these methods is either indirect or
lacking. One strategy to tackle the issue is to directly integrate miRNA DE results and
transfer the information to the target mRNAs as a quantifiable metric.

There are a variety of computational analysis tools covering various aspects of miRNA
studies, ranging from miRNA prediction, miRNA:mRNA interaction prediction and
functional annotation (Gomes et al., 2013; Akhtar et al., 2016). As a result, multiple
standalone tools are typically required to complete a miRNA GS workflow, e.g., mRNA
target mapping, GS database preparation, GS enrichment, and results visualization.
Practically, researchers usually face the challenge of constructing a pipeline for each project
with multiple software packages and web services, which present incoherent connections
between steps. Therefore, it is beneficial to establish a bioinformatic solution that searches
multiple databases for mRNA target mapping and enables seamless navigation between
analysis steps with minimal user intervention. Moreover, it is also critical to provide users
with multiple entry points to the pipeline so that it is possible to customize and integrate
only the functionalities necessary to their specific workflow. Here we present the R package
RBiomirGS, a comprehensive miRNA GS analysis framework capable of performing the
following tasks: (i) thorough target mRNA mapping, (ii) calculation of miRNA regulatory
effect for target mRNAs, (iii) GS enrichment, and (iv) data visualization.

METHODS
As shown in Fig. 1: users provide the miRNA identity list and associated DE results, as well
as GS database file. The RNA mapping module takes the miRNA list and searches multiple
databases for miRNA:mRNA interactions, resulting in either a validated or predicted target
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Figure 1 RBiomirGS workflow, showing input and output configuration, as well as all the functional-
ity modules.

Full-size DOI: 10.7717/peerj.4262/fig-1

mRNA list. Fold change (FC) and p value from themiRNADE list are then used to calculate
a miRNA expression score for each miRNA measured, from which a miRNA impact score
for target mRNAs is generated. With the mRNA score and GS database file, GS enrichment
is then conducted using logistic regression. The package was built using R version 3.4.0 (R
Core Team, 2017).

Target mRNA mapping module
RBiomirGS features a target mRNAmapping module that utilizes multiple miRNA:mRNA
interaction databases, whose information is hosted on a SQL server at University of
Colorado Cancer Centre (http://multimir.ucdenver.edu/). Information for both predicted
and validated miRNA:mRNA interactions can be retrieved from the server. Although
a disease research-focused R interface was developed by the host institution for data
query (Ru et al., 2014), we assembled our own module for a more general purpose
miRNA:mRNA interaction search with additional code optimizations such as parallel
computing. The current module takes advantage of multiple databases for a more complete
mapping result. For the experimentally validated miRNA:mRNA interactions, miRecords,
mirTarBase and TarBase were used (Xiao et al., 2009; Chou et al., 2016; Sethupathy,
Corda & Hatzigeorgiou, 2006); whereas DIANA-microT-CDS, ElMMo, MicroCosm
(http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/info.html), miRanda
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(http://microrna.org), miRDB, PicTar, PITA, and TargetScan were searched for predicted
interactions (Paraskevopoulou et al., 2013; Gaidatzis et al., 2007; Betel et al., 2008; Wang,
2008; Krek et al., 2005; Kertesz et al., 2007; Lewis, Burge & Bartel, 2005; Grimson et al., 2007;
Friedman et al., 2009; Garcia et al., 2011). It is worth noting that DIANA-microT-CDS,
PicTar, PITA and TargetScan are skipped for rat miRNAs. Currently, the mapping module
supports human, rat and mouse miRNAs.

The core function of the target mRNA mapping module is rbiomirGS_mrnascan. The
input file for this function is a list of miRNA names following the standard miRNA naming
convention (http://www.mirbase.org/help/nomenclature.shtml). The function submits
SQL queries to the server using the input miRNA list. The returned results are then output
as both R list objects and as csv files to the working directory. By setting the species code
(hsa, rno or mmu for human, rat or mouse, respectively), the function will search the
databases accordingly. The argument queryType governs whether to search for validated
or predicted interactions. For the output file, the universal column elements for both
validated and predicted queries include Database, Mature miRNA miRBase accession
number, Mature miRNA ID (name), Target gene symbol, Target gene Entrez ID, and
Target gene Ensembl ID. The output results file will also contain column elements that are
unique to the two query types.

miRNA score and mRNA score
The core idea behind the current GS analysis strategy is to quantitatively estimate the
miRNA regulatory effect on the target mRNAs, through which the miRNA impact on
specific functional gene sets can be evaluated. Based on the initial study by Garcia-Garcia
et al. (2016), a miRNA score is first calculated featuring the directionality presented in log
FC (or log2FC), and log transformed p value (or −log10(p)). The equation is as follows:

Smirna=−log10p · sign(log2FC) (1)

As shown in Eq. (1), the Smirna is a linear combination of the sign of log2FC and
−log10(p). Integrating p value and the sign of log2FC ensures that both significance and
directionality of the change are taken into consideration. Smirna can be calculated either
with or without prior filtering of miRNAs. Although either approaches are valid, using the
whole miRNA list both reduces the influences from thresholding method and enables a
GS analysis resembling the core principle of a competitive GS enrichment approach (De
Leeuw et al., 2016), thereby ensuring high compatibility and statistical power.

Uponobtaining Smirna, themRNAscore (Smrna) can be calculated. The current calculation
is a modification of the approach proposed by Garcia-Garcia et al. (2016). Such score is a
quantitative representation of the potential regulatory effect on the target mRNAs from
miRNAs. The equation is as follows:

Smrna=−

n∑
i=1

w(i)S(i)mirna (2)

Equation (2) shows that the Smrna of a mRNA is a sign reversed summation of the Smirna

of all the upstreammiRNAs. The term n is the number of upstreammiRNAs for the mRNA
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of interest; and w is the miRNA:mRNA affinity score, with values set as 1 by default, i.e., no
difference between interactions. However, users can set such score using a numeric vector
if available.

Logistic regression-based GS enrichment
With Smrna calculated with Eq. (2) and the GS database file, RBiomirGS uses logistic
regression to enrich gene sets. Such approach is based on the core concept that a specific
gene set is affected if its member genes are also regulated, either at the expression level or
by influence from other regulatory factors such as miRNA. Practically, the goal is to assess
if a gene can be categorized into a gene set solely based on its Smrna value. As such, the
enrichment algorithmmodels the probability of a gene with a specific Smrna value belonging
to a gene set. Mathematically, such probability is represented by the logistic regression
sigmoid function (or hypothesis function):

P = hθ (Smrna)=
1

1+e−(θ0+θ1·Smrna)
(3)

As seen in Eq. (3), P is the aforementioned probability, which represents the hypothesis
function of logistic regression with parameter vector θ . Transformation of Eq. (3) gives the
equation below:

log
(

P
1−P

)
= θ0+θ1 ·Smrna (4)

Equation (4) shows that the function is the log odds ratio of a gene belonging to the
gene set of interest, given the associated Smrna value. Coefficient θ1 stands for the change in
the log odds ratio of the gene belonging to the gene set of interest by a unit change in Smrna.

The model parameter is estimated based on the principle of maximum likelihood (Fu
& Li, 1993). Specifically, the following log likelihood function is maximized:

logL=
m∑
i=1

[
y(i) log(hθ (Smrna))+

(
1−y(i)

)
log(1−hθ (Smrna))

]
where y is the dummified membership to the gene set of interest for a gene, with 1
representing a member, 0 otherwise; m is the number of genes tested. RBiomirGS uses
multiple optimization algorithms for finding the optimal parameter value for the model,
including iteratively reweighted least square (IWLS), BFGS, and limited memory BFGS-B
(L-BFGS-B) (Byrd et al., 1994; Roger, 1987; Wolke & Schwetlick, 1987). Such approach
enables users to choose according to the volume of data and available computational
power. RBiomirGS utilizes both generalized linear model (glm) function with logit link
function natively included in R language, and a manual implementation of the logistic
regression sigmoid function and log likelihood function. Specifically, the R native glm with
logit link function uses IWLS by default; and the other two optimization methods work by
applying general optimization function to the manual logistic regression implementation.
To demonstrate the difference in performance with a specific dataset, an analysis of variance
(ANOVA) test was conducted on the data from the case study using the statistical analysis
R package RBioplot (Zhang & Storey, 2016).
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The model significance test is carried out through a Wald test:

z =
θ̂1

sθ̂1

where θ̂1 is the estimated model coefficient by maximum likelihood method; and sθ̂1
represents the standard error for the estimated model coefficient. The GS p value is then
obtained using the z score. For IWLS, t value is used instead to calculate the GS p value
with one degree of freedom. All GS p values are then adjusted using a false discovery rate
(FDR) (Benjamini & Hochberg, 1995).

The calculation of the scores and logistic regression analysis are achieved through the
function rbiomirgs_logistic. The scores, along with the GS database file, are then passed to
the logistic modelling process. Similar to the target mRNA mapping function, argument
objTitle sets the file name prefix. The miRNA DE object can be set using the mirna_DE
argument. The arguments var_mirnaName, var_mirnaFC and var_mirnaP are used to set
the column elements for miRNA names, FC and p value, respectively. The target mRNA
object can then be set using argument mrnalist. The mrna_Weight argument is used to
incorporate themiRNA:mRNA interaction weightmatrix, if available. The gs_file argument
is used to set the GS database file. The parameter optimization algorithm can be set using
argument optim_method. By default, FDR is used to adjust the GS p value via argument
p.adj. The GS enrichment results are exported as a csv file. A txt file detailing iterations to
convergence if either BFGS or L-BFGS-B is used. The function also outputs the result to
the R environment so that data visualization can be carried out.

Data visualization module
The current package includes a data visualization module utilizing the R package ggplot2
(Wickham, 2009). Specifically, the results can be plotted using bar graph and volcano
plot. For bar graphs, two types of plots are featured in the package through function
rbiomirgs_bar. Specifically, the horizontal bar graph inside the volcano plot depicts the
overall distribution of the model coefficient (log odds ratio change per unit Smrna) for all
the gene sets tested; whereas the vertical bar graph shows the gene sets with top model
coefficient values. The function ranks the absolute coefficient values and plots the top user
defined gene sets. The bar graph is model coefficient± standard error. Users can choose to
only plot the significantly enriched gene sets on the bar graphs, as shown in the case study.
The volcano plot is carried out by the rbiomirgs_volcano function. Users can set the p value
threshold and the number of top gene sets to display on the graph. Additionally, users can
freely use other plotting packages to meet their specific data visualization needs.

RESULTS
We demonstrate the usage and performance of RBiomirGS using the liver data from a study
assessing the role of miRNAs in facilitating daily torpor in hibernating South American
marsupials (Hadj-Moussa et al., 2016). The original study assessed 85 miRNAs in the liver
and skeletal muscle of aroused and torpid marsupials using a qPCR approach. Given that
the miRNome has yet to be fully characterized for the marsupials, the study used mouse
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Figure 2 Layout for input and target mRNAmapping output files. (A) input file showing required col-
umn elements: miRNA name, fold change (FC) and p value; (B) output file layout showing results for the
predicted target mRNA query; (C) output file layout showing results for the validated target mRNA query.

Full-size DOI: 10.7717/peerj.4262/fig-2

miRNA sequences for primer design. Such approach led to successful amplification of all
85 miRNAs in the marsupial. The case study used the mouse databases for target mRNA
mapping. All output files can be downloaded and viewed from supplementary materials.
The analysis was carried out on an Apple Macbook Pro computer with Intel Core i5
2.7 GHz dual-core CPU and 8 GB memory.

Figure 2A shows the input file layout. Upon importing the data to the R environment
(sample data object name: liver), target mRNA mapping is conducted using the
rbiomirgs_mrnascan function, through the command line: rbiomirgs_mrnascan(objTitle
= ‘‘mmu_liver_predicted’’, mir = liver$miRNA, sp = ‘‘mmu’’, queryType = ‘‘predicted’’,
addhsaEntrez = TRUE, parallelComputing = TRUE, clusterType = ‘‘FORK’’). Figures 2B
and 2C show truncated mapping results for both predicted and validated mapping results
for miRNA mmu-miR-25a-5p. The mapping results showed that more predicted targets
were retrieved than validated targets. The function output R projects as well as one csv file
per miRNA tested. Since the case study enabled human ortholog Entrez ID conversion
functionality, the function exported an R object including the Entrez ID for the human
orthologs, with the suffix ‘‘_hsa_entrez_list ’’ in the name.

Prior to enrichment, GS database files need to be obtained. For the case study,
we used gmt files for KEGG and GO term databases downloaded from MSigDB
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Figure 3 Layout for output GS enrichment results file for the case study, using two parameter opti-
mizationmethods. (A) IWLS method; (B) BFGS method.

Full-size DOI: 10.7717/peerj.4262/fig-3

(http://software.broadinstitute.org/gsea/msigdb). Regarding GO term, separated files
were used for biological processes (BP) and molecular function (MF) databases. The case
study used the predicted miRNA:mRNA interaction results for enrichment. Furthermore,
since all GS database files were based on human genes, we used the human ortholog
Entrez ID list. GS enrichment was carried out with the command line (using KEGG
database as the example): rbiomirgs_logistic(objTitle = ‘‘mirna_mrna_iwls’’, mirna_DE
= liver, var_mirnaName = ‘‘miRNA’’, var_mirnaFC = ‘‘FC’’, var_mirnaP = ‘‘pvalue’’,
mrnalist = mmu_liver_predicted_mrna_hsa_entrez_list, mrna_Weight = NULL, gs_file
= ’’kegg.v5.2.entrez.gmt’’, optim_method = ‘‘IWLS’’, p.adj = ‘‘fdr’’, parallelComputing =
TRUE, clusterType = ‘‘PSOCK’’).

We tested all three parameter optimization algorithms on the KEGG analysis to select
for the most effective method. The KEGG database included 186 pathways. Firstly, the
liver data failed to converge for all the gene sets tested using the L-BFGS-B algorithm.
Figure 3 shows a truncated version of the IWLS and BFGS results. The results suggest
that both methods led to consistent coefficient values and model significance (Figs. 3
and 4). We found that the IWLS method with parallel computing enabled with the Unix
operating system exclusive FORK mode took the least amount of time to converge for
KEGG analysis (Fig. 5, based on three repeats). The one-way analysis of variance (ANOVA)
test on the computation time suggested the time reduction when using such configuration
was significant (Fig. 5).

As such, the following GO term enrichment was also carried out using IWLS and FORK
methods. The results showed a similar trend as that of the KEGG analysis (Figs. 4 and 6),
where more GO terms with a positive model coefficient value were identified.
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Figure 4 Visual representation of KEGG pathway analysis for the case study.Volcano plot depicts the
significance and directionality distribution for the KEGG pathway tested (−log p value vs. model coeffi-
cient). Blue (upper quadrants) represent the significantly enriched KEGG pathways and the bar graph in
the volcano plot shows the overall distribution of model coefficient. Top 15 most significantly enriched
KEGG pathways are labeled. Bar graph shows the top 50 enriched gene sets; the bars are model coeffi-
cient± standard error. Only the gene sets with an FDR adjusted p < 0.05 are plotted. (A) IWLS method;
(B) BFGS method.

Full-size DOI: 10.7717/peerj.4262/fig-4
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Figure 5 Comparison of relative computation time for parameter optimization between non-parallel
and parallel settings using the KEGG database. FORK and PSOCK are parallel computing modes, with
the former Unix or Unix-like operating system only. Bars are relative computation time± SEM; differ-
ent letters represent statistically significant changes (p< 0.05) according to a one-way ANOVA test with a
Tukey post-hoc test. The raw mean value for each test is labeled in the graph based on three repeats.

Full-size DOI: 10.7717/peerj.4262/fig-5

DISCUSSION
RBiomirGS requires a miRNA identity list, a DE results list, as well as a GS database file
as input (Fig. 1). The package uses fold change (FC) and p value to calculate the miRNA
score, Smirna. Since the DE results are associated with the miRNAs, both miRNA identity
and DE results can be provided in a single csv file. The data layout can be viewed in Fig. 2.
In addition, due to the modularization of the package functionality, target mRNAmapping
can be used as a standalone function, with a list of miRNA names as input. The GS database
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Figure 6 Visual representation of GO term analysis for the case study. (A) biological processes (BP); (B) molecular functions (MF). Additional
information is same as Fig. 4.

Full-size DOI: 10.7717/peerj.4262/fig-6

file can be downloaded from various sources. One such source is MSigDB, which indexes
popular GS database such as KEGG and GO term. Naturally, databases from other sources
can also be used.

To efficiently process high throughput datasets, RBiomirGS implements parallel
computing across all major functions. Depending on the user’s computer configuration
(i.e., number of CPU cores), parallel computing can provide significant speed
enhancements. Moreover, both Unix/Unix-like operating system exclusive FORK and
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universal PSOCK modes are available for maximizing hardware compatibility. It is worth
noting that this feature can be disabled by users. Function rbiomirgs_logistic also implements
linear algebra for score calculation to reduce computation time.

The target mRNAmapping module also features an optional gene Entrez ID conversion
functionality that searches for human gene orthologs on Ensembl databases for rodent
models (i.e., mouse or rat). Given the high conservation level in miRNA primary structure
across species, such function enables the potential of revealing the miRNA functional
implication in human from rodent models. The human Entrez ID conversion function is
built upon the open sourced Biomart platform (Durinck et al., 2005; Durinck et al., 2009).
By integrating Biomart software into the package, RBiomirGS connects directly to Ensembl
database (http://www.ensembl.org) for human ortholog search using the most up-to-date
information. While beneficial, such configuration imposes one limitation of the package
wherein an active and functional internet connection is required for the target mRNA
mapping function.

RBiomirGS conducts GS analysis through mRNA scores, miRNA scores and logistic
regression. The mRNA score Smrna is based on the assumption that, in most cases, miRNAs
inhibit target mRNA translation events. Therefore, Smrna represents the inhibitory effect on
themRNAof interest. As the sign reversed summation of Smirna, the biological interpretation
of Smrna can be described as the following: In the case of a two-group comparison (i.e.,
experimental vs control), a positive Smrna means the mRNA of interest might be inhibited
more in the control group, whereas a negative value means the mRNA might be under
miRNA inhibition upon experimental conditions. In addition, a bigger absolute value
represents a stronger miRNA inhibitory effect. Given that Smirna contains directionality
information, such approach allows for accumulation and cancelation effects on the mRNA
when the mRNA of interest is targeted by multiple miRNAs. Since the strength of the
interaction between miRNA and mRNA varies among different miRNAs, it is critical to
incorporate such consideration into the Smrna calculation, regardless of the availability of
such measurement. Therefore, we added the weight term w to Eq. (2) to accommodate the
affinity of the miRNA:mRNA interaction, should such metric be available.

The central goal of the current logistic regression-based classification modelling is to
separate the members of a gene set from the rest of the genes using Smrna, which represents
the overall miRNA regulatory effect. If a gene can be categorized into a gene set solely based
on its Smrna, then said gene set is under miRNA-dependent regulation. As such, based on
the model significance test and user customizable GS p value threshold (e.g., FDR adjusted
p value < 0.05 by default), a GS model with a significant adjusted p value means that the
membership to such gene set for a gene can be determined based on its Smrna, or that the
gene set is significantly impacted by miRNA regulation. The biological interpretation of
the model coefficient from Eq. (4) can be stated as follows (again, in the context of
two-group comparison, i.e., experimental vs control): if the coefficient is positive, miRNA
inhibition on target mRNAs might be lifted, thereby leading to less suppression on the
gene set of interest in the experimental group. Furthermore, with a positive coefficient, a
unit increase in Smrna results in an increased odds ratio of a gene belonging to the gene
set of interest. Conversely, a negative value means the opposite. It needs to be clarified
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that a positive model coefficient for a gene set means that the gene set of interest might
be under more miRNA-dependent inhibition in the control group, as opposed to being
activated under the experimental condition. Such observation is closely related to the fact
that the miRNA regulation on a pathway is mostly indirect, and represents only one layer
of regulation on the mRNAs. As such, another limitation of RBiomirGS is in its limited
capacity for evaluating gene set activation when solely relying on miRNA DE results.

The case study demonstrated the usage of RBiomirGS. In general, enrichment on all three
GS databases suggested that more gene sets were free from miRNA-dependent inhibition
in the livers of torpid marsupials, represented by positive model coefficient values (Figs. 4
and 6). The result is consistent with the observation from the original study where most
miRNAs tested showed decreased relative expression levels in liver (Hadj-Moussa et al.,
2016), leading to less inhibitory effect on their targetmRNAs, which in turn resulted inmore
gene sets independent from miRNA-dependent regulation. For example, such enriched
KEGG pathways included mTOR signaling pathway and MAPK signaling pathway, which,
when activated, were considered to play critical roles in facilitating torpor (Hadj-Moussa
et al., 2016). However, the volcano plots in Figs. 4 and 6 suggest that potentially inhibited
gene sets in the liver from torpid marsupials exhibited a greater impact by the miRNA,
i.e., a wider spread pattern on the x-axis in the negative direction. The KEGG pathways
that might be suppressed included Ribosome (KEGG ID: map03010), RNA polymerase
(KEGG ID: map03020), Oxidative phosphorylation (KEGG ID: map00190), and Pyruvate
metabolism (map00620). Inhibition of those pathways may contribute to suppressing ATP
expensive cellular processes such as global gene transcription and protein synthesis, all
of which have been reported to be inhibited in other hibernating animals (Storey, 2010;
Wu & Storey, 2016). It is also not a surprise that oxidative phosphorylation and pyruvate
metabolism pathways were inhibited under hypometabolic conditions (Storey, 1997).
Overall, by using RBiomirGS, additional miRNA-dependent regulatory mechanisms that
underpin the molecular adaptations facilitating daily torpor in marsupials were revealed.

By incorporating all the core steps into one R package, RBiomirGS eliminates the need
for switching between different software packages, or between different software platforms.
The package also provides two data visualization functions that can produce three types
of plots. Furthermore, the modular structure of RBiomirGS enables various access points
to the analysis, with which users can choose the most relevant functionalities for their
workflow. With RBiomirGS, users will be able to comprehensively assess the functional
implications of the miRNA expression profile under the corresponding experimental
condition by minimal input and intervention. Accordingly, RBiomirGS provides an
all-in-one and highly accessible miRNA GS analysis solution.
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