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Abstract

Rationale: Deep learning is a powerful tool that may allow for
improved outcome prediction.

Objectives: To determine if deep learning, specifically
convolutional neural network (CNN) analysis, could detect and stage
chronic obstructive pulmonary disease (COPD) and predict acute
respiratory disease (ARD) events and mortality in smokers.

Methods: A CNN was trained using computed tomography
scans from 7,983 COPDGene participants and evaluated using
1,000 nonoverlapping COPDGene participants and 1,672
ECLIPSE participants. Logistic regression (C statistic and the
Hosmer-Lemeshow test) was used to assess COPD diagnosis and
ARD prediction. Cox regression (C index and the Greenwood-Nam-
D’Agnostino test) was used to assess mortality.

Measurements and Main Results: In COPDGene, the C statistic
for the detection of COPDwas 0.856. A total of 51.1% of participants
in COPDGene were accurately staged and 74.95% were within one

stage. In ECLIPSE, 29.4% were accurately staged and 74.6% were
within one stage. In COPDGene and ECLIPSE, the C statistics
for ARD events were 0.64 and 0.55, respectively, and the
Hosmer-Lemeshow P values were 0.502 and 0.380, respectively,
suggesting no evidence of poor calibration. In COPDGene and
ECLIPSE, CNN predicted mortality with fair discrimination (C
indices, 0.72 and 0.60, respectively), and without evidence of poor
calibration (Greenwood-Nam-D’Agnostino P values, 0.307 and
0.331, respectively).

Conclusions: A deep-learning approach that uses only
computed tomography imaging data can identify those
smokers who have COPD and predict who are most likely to
have ARD events and those with the highest mortality. At a
population level CNN analysis may be a powerful tool for risk
assessment.

Keywords: artificial intelligence (computer vision systems); neural
networks; chronic obstructive pulmonary disease; X-ray computed
tomography

Quantitative image analysis has become a
cornerstone of clinical investigation. For
such conditions as chronic obstructive
pulmonary disease (COPD), objective

computed tomographic (CT) measures of
the lung parenchyma, airways, pulmonary
vasculature, and the chest wall have all been
shown to be useful for disease diagnosis,

stratification, and risk prediction (1–5).
Although objective CT analysis has
provided clinically relevant insights into
COPD it is essentially a radiographic
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method of anatomic and physiologic
analysis that relies on the prespecification
of radiographic features thought likely to be
associated with certain clinical outcomes.
New techniques in computer vision, natural
image analysis, and machine learning
have enabled the direct interpretation of
imaging data, going directly from the raw
image data to clinical outcome without
relying on the specification of radiographic
features of interest (6, 7). One such
machine learning approach is deep
learning, a term that includes convolutional
neural network (CNN) analysis (7–20).
CNN and other deep learning–based
models are trained using large amounts
of data from individuals with known
outcomes, such as known disease diagnoses
or clinical events like death. Once trained,
the CNN model can then use data from

other individuals to determine their
probability for that event, and can rapidly
assess risk across large populations without
the need for the manual extraction or
review of specific clinical or radiographic
features (21). We hypothesized that deep
learning analyses of imaging data could
predict clinically relevant outcomes in
smokers without the prespecification of
features of interest.

Methods

Data Acquisition

Cohorts. Details regarding the cohorts,
including cohort design and methods
regarding acute respiratory disease (ARD)
event reporting and mortality assessment,
are available in the online supplement.

Briefly, COPDGene is an observational
longitudinal study funded by the NHLBI
of 10,300 smokers whose goal is to define
the epidemiologic associations and genetic
risk factors for the development of COPD
(22). Participants with active lung diseases
other than COPD and asthma were
excluded from participation and all
participants underwent baseline testing
including an extensive interview,
volumetric high-resolution CT scan of the
chest, and spirometry. Smokers with and
without COPD were enrolled and are now
returning for their 5-year interval follow-up
visit.

The ECLIPSE (Evaluations of COPD
Longitudinally to Identify Predictive
Surrogate End-points) study was a 3-year
multicenter multinational longitudinal
study of 2,164 subjects with Global Initiative
for Chronic Obstructive Lung Disease
(GOLD) stage 2–4 COPD and 582 control
subjects that was completed in 2011 (23).
Participants were excluded if they had
known respiratory diseases other than
COPD or severe alpha-1 antitrypsin
deficiency. Study procedures were
performed at baseline, 3 months, 6 months,
and then every 6 months for a total of 3
years. Spirometry was performed at
baseline, and CT scans were performed at
baseline, Year 1, and Year 3. Only the 2,164
ECLIPSE participants with COPD were
included in this study, and of those 1,928
completed the 3-year follow-up (23).

ARD events. ARD events occur in
smokers with and without COPD and
are temporary increases of respiratory

symptoms including cough, sputum
production, and dyspnea warranting
a change in therapy (24, 25). For this
study, severe events (those requiring
hospitalization) were not considered
separately from mild and moderate events.
Because of the high rate of ARD events
in ECLIPSE, for this study a subject was
considered to have had an ARD event if at
least one occurred within the first year of
follow-up. To ensure comparable results
across cohorts, in COPDGene the primary
outcome for this study was also an ARD
event within the first year of follow-up.
In COPDGene a secondary analysis was
also performed in which a subject was
considered to have had an ARD event if
at least one occurred within the first 3 years
of follow-up.

Deep-Learning Structure
CT interpretation was enabled using the
system shown in Figure 1. Because of
constraints caused by the processing
capabilities of existing graphical processing
units the full high-resolution CT images
from an individual cannot be used by the
CNN. Therefore an object detector was
used to automatically extract four canonical
CT slices at preselected anatomic
landmarks (26). This dimensionality
reduction step “normalizes” the CT data
using anatomic information. These images
were joined into a single montage and
included an axial slice centered at the heart
at the level of the mitral valve, two sagittal
reformatted slices centered at the left
and right hilum, and a coronal reformatted
slice centered in the ascending aorta. The
CNN consisted of three convolutional
layers alternating with rectified linear and
max-pooling operations. The final two
layers of the CNN were fully connected and
the size of the last fully connected layer
varied (two, number of classes and one,
respectively) based on the task (binary
classification, categorical classification, or
regression). Further details regarding the
deep learning structure are available in the
online supplement.

Training Methodology
The COPDGene dataset was divided
into two nonoverlapping subcohorts to be
used for model development and testing.
The model development cohort consisted
of a group to be used for model training
(Training) and a group used for
optimization of the metaparameters of

At a Glance Commentary

Scientific Knowledge on the
Subject: Deep learning has been used
to analyze and categorize a variety of
medical data including imaging.
However, little work has been done on
the use of deep learning to directly
predict outcomes, and few studies have
validated deep-learning approaches in
cohorts entirely different than those in
which they were developed.

What This Study Adds to the
Field: In this study we show that a
deep learning–based analysis of
computed tomography scans of the
chest can categorize smokers as having
chronic obstructive pulmonary disease
or not, and can directly predict
outcomes including acute respiratory
disease events and mortality. In
addition, we have found that this
deep-learning approach can be
developed in one cohort and applied
to a separate cohort without any
additional training. This approach
may provide a useful tool for
identifying high-risk subgroups in
large populations that can be applied
to multiple different cohorts and may
enable the identification of specific
clusters of patients with chronic
obstructive pulmonary disease who
share unique imaging and clinical
features.
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the CNN (Validation; n = 1,000). Further
details regarding training and optimization
including selection of cohort size and the
sensitivity of our models to training set
size and different image reconstruction
characteristics are available in the online
supplement. The testing set (Testing;
n = 1,000) consisted of subjects whose data
were not used for model training or
optimization. The reported COPDGene
results were obtained from those 1,000
Testing subjects. Finally, the CNN
developed using COPDGene data was then
applied to the CT images collected in
ECLIPSE without additional training.

Statistical Analysis
Data are presented as means and SD where
appropriate. For all binary categorical
outcomes evaluated using the CNN-based
probabilities (presence or absence of COPD,
occurrence of an ARD event, and mortality),
an individual was categorized as being
predicted by the CNN to have that outcome
if the CNN-derived probability was greater
than 0.5 for that category or event. For
GOLD staging, the per-subject stage with
the highest probability was chosen. All
analyses were replicated in the ECLIPSE
cohort using the CNN models trained in the
COPDGene cohort training set. Because the
CNN-based approach is a global assessment
of risk, no multivariable analyses were
performed. Analyses were performed using
MedCalc (MedCalc Software) and SAS 9.4
and JMP 12 (SAS Institute). P values less
than 0.05 were considered to be statistically
significant.

COPD detection and staging. COPD
detection was limited to COPDGene
because there were a limited number of

smokers in ECLIPSE without expiratory
airflow obstruction. Clinically, participants
were defined as having COPD if the ratio of
their FEV1 to their FVC was less than
0.7 (27). The ability of the CNN to identify
participants with COPD was evaluated
using logistic regression for the calculation
of the C statistic and the Hosmer-Lemeshow
calibration test using 10 risk categories. The
C statistic is a measure of the model’s
discrimination, or how well it performs with
regard to assessing who does and does not
have COPD, whereas the Hosmer-Lemeshow
goodness-of-fit test assesses the model
calibration, which is the agreement between
the observed and predicted risk (28, 29). Note
that for the Hosmer-Lemeshow test a
significant P value (,0.05 in this study)
indicates poor calibration. Therefore the
desired outcome for a predictive model is for
the Hosmer-Lemeshow test P value to be
nonsignificant (28).

The GOLD stage was defined by
spirometry only (stages 1–4), and the
classification by the CNN into the
appropriate stage was evaluated by
the percentage of correctly classified cases
and by the percentage of cases whose
classification lay within one class of the
clinical stage (27).

Univariate associations between CNN
predicted FEV1 and actual FEV1 were
assessed using Pearson correlation.

ARD events. CNN performance for the
prediction of ARD was expressed using
logistic regression for the calculation of odds
ratios and C statistic, as well as with the
Hosmer-Lemeshow calibration test using
10 risk categories. In addition, the
number of events per CNN probability
quartile was evaluated using the

Cochran-Mantel-Haenszel (CMH) trend
test, and the performance of the CNN
for the prediction of ARD events was
compared with the performance of a
univariate logistic regression model that
used low-attenuation area (LAA), a well-
validated measure of emphysema severity
(1, 2, 30, 31). LAA was defined as the
percentage of lung with a density less
than 2950 Hounsfield units, and was
dichotomized at the median for binary
analyses.

Mortality. Three year, all-cause
mortality prediction using the CNN was
assessed using Cox proportional hazards,
and all covariates were evaluated using the
Martingale residuals method and found
not to violate the proportional hazards
assumption (32). Three-year mortality was
selected to allow for comparison between
the COPDGene and ECLIPSE cohorts
because only 3 years of follow-up were
available in the latter. Model discrimination
was measured using the C index and
model calibration was assessed using the
Greenwood-Nam-D’Agnostino (GND)
test. The C index and the GND test are
the survival analysis analogs to the C
statistic and Hosmer-Lemeshow test
described previously. As with the Hosmer-
Lemeshow test, a nonsignificant P value
for the GND test suggests no evidence of
poor calibration and is therefore the
desired outcome for a predictive model
(28, 33–35). The GND test becomes
unstable when there are fewer than 5
events per group so it was performed with
four risk categories (35). Kaplan-Meier
analyses stratified by CNN-predicted
probability quartile for death were
performed to aid in the visualization of
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Figure 1. The input of the convolutional neural network is a composite image of four canonical views of the computed tomography scan: an axial slice at
the level of the mitral valve, a coronal slice taken at the level of the ascending aorta, and two sagittal slices at the level of the right and left hila. The
image is analyzed with a convolutional neural network consisting of three convolutional layers (Conv) followed by max-pooling operations, each reducing
the image size fourfold in each direction. At the end of the convolutional layers are two fully connected networks, the first one of 1,024 neurons and the
second one of variable size depending on the problem at hand: classification, multiclass classification, or regression.
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the results. As with the ARD event
analyses, the performance of the CNN was
compared with the performance of a
univariate Cox regression model using
LAA for the prediction of mortality. In
addition, in the ECLIPSE cohort and in the
subgroup of participants with COPD in
the COPDGene cohort, the performance
of the CNN was also compared with the
performance of the body mass index,
airflow obstruction, dyspnea, and exercise
capacity (BODE) index, a multicomponent
predictor of mortality (36). The BODE
score was dichotomized at the median for
binary analyses.

Results

Image Preprocessing
Baseline imaging and patient
characterization data were available for

9,983 COPDGene subjects and 1,672
ECLIPSE subjects (Table 1; see Table E1 in
the online supplement). Automated slice
selection correctly identified the
appropriate axial, sagittal, and coronal
structures in 9,408 (92.4%) of the
COPDGene participants and 1,547 (92.5%)
ECLIPSE participants.

COPD Detection and Staging
The CNN model correctly determined the
presence or absence of COPD in 773 of
the 1,000 subjects in the testing cohort with
a C statistic of 0.856 (Figure 2A). Although
the Hosmer Lemeshow test indicated poor
calibration (P = 0.011), visual inspection
of the model calibration by deciles
demonstrated a reasonable fit between the
CNN model predicted probabilities of
COPD and the observed probability of
COPD (Figure 2B).

With regard to CNN prediction of
GOLD stage, accurate designation of the
exact stage was achieved 51.1% of the time
and was correct or off by one stage 74.9%
of the time in the COPDGene cohort. The
same model applied to the ECLIPSE
cohort correctly predicted the GOLD stage
in 29.4% of the cases and was correct or
off by one stage in 74.6%. Finally, in the
COPDGene testing cohort there was a
strong correlation between CNN
predicted FEV1 and actual FEV1 (r = 0.734;
P, 0.001).

ARD Events
In the COPDGene testing cohort, the
CNN model of ARD events had a C
statistic of 0.64, and those subjects
predicted by the model to be at risk for an
ARD event had a 2.15 higher odds of
having an event compared with those who
were not (P, 0.001) (Figure 3A). As
shown in Figure 3B, the CNN prediction
model was well calibrated with regard to
risk prediction with Hosmer-Lemeshow
(P = 0.502), suggesting no evidence of
poor calibration. This is further
supported by the fact that the number of
individuals with an event in the higher
CNN probability quartiles was greater
than in the lower quartiles (CMH, P, 0.001)
(see Table E2A).

In the ECLIPSE cohort the CNNmodel
of ARD events had a C statistic of 0.55
(Figure 3C). Those subjects predicted by
the model were not at a significantly higher
risk for an ARD event than those who were
not (P = 0.125). As shown in Figure 3D,
the CNN prediction model was well
calibrated with regard to risk prediction
with Hosmer-Lemeshow (P = 0.380),
suggesting no evidence of poor calibration.
Also, as shown in Table E2B, the number of
individuals with an event in the higher
CNN probability quartiles was slightly
greater than in the lower quartiles (CMH,
P = 0.049).

Of note, as shown in the online
supplement, the CNN model had similar
performance in the prediction of ARD
events over 3 years of follow-up in the
COPDGene cohort despite a broader range
of event probabilities (see Table E3 and
Figure E1).

By comparison, the model based on
LAA for the prediction of ARD events
within the first year of follow-up showed
evidence of poor calibration (P = 0.032) (see
Figure E2). Although the LAA-based model

Table 1. Baseline Characteristics of the COPDGene and ECLIPSE Cohorts

COPDGene ECLIPSE

Age, yr, mean (SD) 59.5 (9.0) 63.6 (7.1)
Sex, % female (n) 46.7 (4,819) 33.0 (582)
Race, % black (n) 33.2 (3,420) *
BMI, mean (SD) 28.8 (6.3) 26.7 (5.6)
Pack-years, mean (SD) 44.2 (24.9) 50.3 (27.4)
Current smoking, % (n) 52.6 (5,417) 35.5 (626)
FEV1 % predicted, mean (SD) 76.6 (25.6) 47.5 (15.9)
MMRC score, mean (SD) 1.4 (1.4) 1.5 (1.8)
Percent LAA, mean (SD) 6.2 (9.6) 13.4 (12.0)
BODE 1.4 (1.8) 4.8 (2.2)
GOLD stage
0 42.8 (4,387) 0.0 (0)
1 7.7 (791) 0.0 (0)
2 18.8 (1,926) 42.0 (741)
3 11.4 (1,164) 43.7 (770)
4 5.9 (607) 13.95 (216)

ARD event, % (n)
Reported at least one ARD event within 1 yr of
enrollment

8.8 (791)† 54.7 (966)

Reported at least one ARD event within 3 yr of
enrollment

38.2 (3,426)† ‡

Death, % (n)
Died within 3 yr of enrollment 5.1 (458)x 9.8 (211)
Died during follow-up 12.8 (1,160)x ‡

Definition of abbreviations: ARD = acute respiratory disease; BMI = body mass index; BODE = body
mass index, airflow obstruction, dyspnea, and exercise capacity; COPD= chronic obstructive
pulmonary disease; ECLIPSE = Evaluations of COPD Longitudinally to Identify Predictive Surrogate
End-points; GOLD =Global Initiative for Chronic Obstructive Lung Disease; LAA = low-attenuation
area; MMRC=Modified Medical Research Council Dyspnea Scale.
Detailed summary statistics for each of the COPDGene subgroups (training, validation, and testing)
are available in the online supplement. Except where indicated percentages are percent of overall
cohort.
*No race data available.
†Number with longitudinal ARD event data available = 8,966.
‡Not analyzed.
xNumber with mortality data available = 9,057.
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showed better calibration in the ECLIPSE
cohort, its discrimination was quite poor
(C statistic = 0.548), likely in part because
of the limited range of event probabilities in
that cohort (see Figure E3). Visual
inspection of the calibration of the LAA-
based model for the prediction of ARD
events over 3 years of follow-up showed
evidence of poor calibration, especially at
low event probabilities (see Figure E4).

Mortality
An example of the response of the network
trained to predict mortality is shown in

Figure 4 and a summary of the assessment
of the CNN mortality model is shown in
Figures 5A–5C. Kaplan-Meier survival
analysis results by quartile of CNN
predicted probability of death for the
COPDGene testing cohort and the
ECLIPSE cohort are shown in Figures 5A
and 5B. In both the COPDGene testing
cohort and ECLIPSE, the CNN model for
mortality showed fair discrimination
based on C indices of 0.72 (confidence
interval, 0.50–0.90) and 0.60 (confidence
interval, 0.49–0.71) respectively, and no
evidence of poor calibration as indicated

by nonsignificant GND P values
(Figure 5C). In both ECLIPSE and the
subgroup of individuals with COPD in the
COPDGene testing cohort (n = 391), the
CNN model showed similar or better
discrimination for mortality as the BODE
index (Figure 5C). However, in both of
these groups, the confidence interval for
the C index for both predictors included
values less than 0.5, suggesting relatively
poor discrimination overall. In addition,
based on the GND test there was evidence
for poor calibration of the CNN model in
the COPD subgroup. However, it should
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calibration.
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be noted that because of a low overall
mortality rate there were fewer than five
deaths in two of the CNN COPD subgroup
quartiles, which may have resulted in test
instability. Finally, the LAA-based model
performed slightly worse than the CNN-
based model with regard to discrimination
in both the COPDGene testing cohort
and ECLIPSE, and similarly in the
COPDGene testing cohort subgroup with
COPD (Figure 5C).

Discussion

Our investigation suggests that a deep
learning–based approach, CNN analysis,
applied to the CT imaging data of current
and former smokers, can identify those
individuals with COPD, characterize
disease severity, and predict clinical

outcomes including ARD events and
death.

A multitude of studies using both
qualitative and quantitative imaging
techniques have shown the utility of CT
imaging in assessing lung function,
categorizing disease severity, and predicting
outcomes in patients with a variety of
lung diseases (30). For instance, both the
percentage of lung occupied by low-density
emphysematous tissue and measurements
of airway structure on CT have been
shown to be highly associated with lung
function (37–40). Other examples of
CT-based metrics include the ratio of the
diameters of the pulmonary artery to
aorta, which is associated with acute
respiratory exacerbations, and
bronchiectasis, which is associated with a
longer recovery from acute exacerbations
and increased mortality (25, 41, 42).

Although studies of these measures and
many others have revealed a great deal
about respiratory diseases, they require
prior knowledge of the anatomic and
physiologic implications of disease to
prespecify which radiographic features
are of interest. In addition, those studies
that rely on qualitative analysis may
suffer from a loss of data because
of individuals with indeterminate
findings (43).

More recently, machine learning
approaches, such as deep-learning and
CNN-based analysis, have been used to
establish a direct link between diagnostic
images and disease categorization,
bypassing the identification of features of
interest. For example, Esteva and coworkers
(21) recently showed that a CNN-
based approach performed as well as
dermatologists in the categorization of

LAYER 1 LAYER 2

L
A

Y
E

R
 3

Figure 4. Response of the neural network trained to predict mortality for a testing case. The large, medium, and small subimages represent the first,
second, and third convolutional layers, respectively. For each layer, the responses of the individual filters are used to generate a composite image.
The image values have been limited between 0 (dark blue) and 0.5 (red) for display purposes. Different filters enhance different areas of the image, such as
the lungs, the chest wall, or the bone structures. The interpretation of the second and third convolutional layers is impeded by the lack of resolution of the
response images.
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images of skin lesions as melanomatous or
benign, and Lakhani and Sundaram (44)
demonstrated that a similar method could
categorize chest radiographs as having
evidence of active tuberculosis or not. In
this study we showed that deep learning
using a CNN-based method was able to
discriminate between smokers with and
without COPD as well as previous image-
based methods (45, 46).

Beyond disease categorization, we also
developed CNN models for assessing the
risk for ARD episodes and death, and
showed that the models were well
calibrated for those outcomes. Although a
model’s ability to discriminate between
those who are and are not likely to have an
exacerbation is important, equally so is
whether the predicted probability of an
event based on the model is similar to

the observed probability, a model
characteristic known as calibration.
Although the discriminatory ability of
the deep-learning models for
exacerbations and death was somewhat
limited, they showed no evidence of poor
calibration and they performed well across
a wide range of event probabilities. In
addition, visual comparison of the receiver
operating characteristic and calibration
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Figure 5. Mortality predictions by convolutional neural network (CNN) in the COPDGene and ECLIPSE cohorts. (A and B) Kaplan-Meier survival analyses
for the CNN prediction of all-cause mortality in the COPDGene testing cohort (A) and in the ECLIPSE cohort (B). Insets show survival probabilities of 0.8
and greater. (C) Summary table of the hazard ratios, C indices, and tests of calibration (Greenwood-Nam-D’Agnostino) comparing CNN-based risk
prediction with low-attenuation area–based and BODE-based risk prediction. The hazard ratios for the CNN are expressed as the risk in the group
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analogous to the C statistic for logistic regression. The Greenwood-Nam-D’Agnostino test is a test for evidence of poor calibration. That is, a nonsignificant
P value (.0.05) indicates no evidence for poor calibration. *Fewer than five events in two of the quartiles, which may make the estimate unstable.
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Longitudinally to Identify Predictive Surrogate End-points.
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curves suggested that the CNN models
for ARD performed better than models
based on a more standard objective CT
measure, LAA. This was particularly true
of model calibration at lower event
probabilities where the LAA-based models
showed evidence of poor calibration.
Perhaps more importantly, the CNN-
based method performed well not only in
a separate testing component of the cohort
in which it was developed, but also
when applied to an entirely different
cohort with much more severe disease.
Together these findings suggest that this
approach may be useful at a population
level for identifying higher risk subgroups
that should be targeted for new and
existing interventions, and for assessing
overall population level risk.

This study and approach do have
significant limitations including high
training computational cost and memory
requirements, which limit the amount
of data we can use to train our models.
Ideally, one would use all of the CT images
for training and prediction, but analytics
on this scale are beyond the processing
capabilities of existing graphical processing
units. To address this, four representative
images were used with the goal of obtaining
the broadest sampling of features in the
thorax. Thus this CNN in this study
did not fully use all of the CT data available,
and because the images used were
preselected, the method was not entirely
unguided. However, it should be noted
that the four images chosen were selected
based only on their inclusion of major
thoracic structures, not based on any a
priori hypotheses about the relationship
between those structures and the outcomes
evaluated. For example, images that would
have allowed for the assessment of the
ratio of the diameters of the pulmonary
artery to aorta were not included in the
montage. In addition, no specific features
from the four image montage were
selected and the CNN was unguided from
that point.

A second challenge to this approach is
the amount of data needed for training. As
shown in the online supplement, our data
suggest that several thousand subjects are
needed to achieve stable model performance
for select clinical outcomes.

From a clinical standpoint, the
featureless nature of deep learning, or its
ability to predict outcomes without
specification of clinical or radiographic

predictors of interest, is both a strength and
a weakness. Understandably, this “black
box” nature of deep learning, the fact that it
does not tell the provider what from the
images it is using to assign a probability,
may result in discomfort with using the
results, and may greatly limit its utility in
the short term. In addition, there were clear
decrements in the performance of the
COPDGene-based deep-learning models in
the ECLIPSE cohort. These decrements
could be attributed to differences in cohort
characteristics including disease severity
and differences in the protocols used for
image acquisition and reconstruction, but
further work is needed to determine if this
is the case.

With regard to other approaches for
assessing disease-related risk, all of the
models, including those based on both
LAA and BODE, and with the notable
exception of the CNN-based model in the
COPDGene testing cohort, performed
relatively poorly for the discrimination of
mortality. Only the CNN-based model in
the subgroup of patients with COPD in
COPDGene showed evidence of poor
calibration for the risk of mortality,
although this latter finding may have
been caused by the small number of events
that may have made the GND test of
calibration unstable. Together, these
findings show the challenge of accurately
predicting mortality in an individual
patient with COPD, and suggest that
this approach, at least in the near term,
is better suited to population-based
analyses.

That said, at a population level, the
ability to use only one data source, such
as CT scans, and not rely on the availability
of multiple types of clinical data, such as
is required for clinical models like the BODE
index, is a particular strength of the
deep-learning approach. This is especially
true in systems where the volume or form
of other clinical measures may be
inadequate. For example, spirometry results
may only be available in certain systems
in unstructured text reports, paper form, or
in scanned images of those paper results,
which can be a barrier to their large-scale
analysis. Although ongoing work using
natural language processing and other
approaches will likely eventually overcome
this issue, it remains a challenge for the
analysis of clinically acquired data in
particular (47, 48). By contrast, CT image
data is stored in a standard format, and

the rapid growth in CT imaging for a
wide range of indications means that it is
increasingly available, even if its acquisition
was not initially clinically indicated. Even
when spirometry is available, several studies
suggest that using spirometry alone, across
a healthcare system COPD is frequently
either misdiagnosed or missed as a
diagnosis entirely, suggesting a role for
other methods for diagnosis for
epidemiologic studies and population-
based research (49–52).

By using a method that relies less on
the a priori specification of measures of
interest on CT, deep learning may also
allow for a more standardized approach
to assessing disease risk across multiple
populations, especially in future iterations
when processing power enables the use
of all of the CT images available. Finally,
detailed inspection of the model response
to the CNN layers, as provided in
Figure 4, and detailed clinical evaluation
of patients determined to be at risk for
adverse outcomes by the CNN method
may inform about imaging patterns and
clinical characteristics that may provide
insights about disease manifestations
and etiology.

Deep learning, including CNN, can
provide a fast and flexible method for the
integration of imaging into biomedical
research. In addition, it may allow for the
assessment of population-wide disease.
Unlike current reductionist methods that
require the use of a summary statistic of a
feature of interest, deep learning uses all of
the data available in the image to predict
clinically relevant outcomes. Although
current processing power limits the
number of images that this technique can
be applied to at the moment, this exciting
new field may ultimately enhance the
ability to identify disease subtypes because
it is not hindered by the ability to a priori
specify what imaging data should be
used for investigation. Therefore it may
provide a more standardized approach to
image analysis and overall risk assessment
across research and clinical care
networks. n
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