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Abstract: Background: Alzheimer’s disease (AD) is currently incurable and a majority of investigational 
drugs have failed clinical trials. One explanation for this failure may be the invalidity of hypotheses focusing 
on amyloid to explain AD pathogenesis. Recently, hypotheses which are centered on synaptic and metabolic 
dysfunction are increasingly implicated in AD.  

Objective: Evaluate AD hypotheses by comparing neurotransmitter and metabolite marker concentrations in 
normal versus AD CSF. 

Methods: Meta-analysis allows for statistical comparison of pooled, existing cerebrospinal fluid (CSF) marker 
data extracted from multiple publications, to obtain a more reliable estimate of concentrations. This method 
also provides a unique opportunity to rapidly validate AD hypotheses using the resulting CSF concentration 
data. Hubmed, Pubmed and Google Scholar were comprehensively searched for published English articles, 
without date restrictions, for the keywords “AD”, “CSF”, and “human” plus markers selected for synaptic and 
metabolic pathways. Synaptic markers were acetylcholine, gamma-aminobutyric acid (GABA), glutamine, and 
glycine. Metabolic markers were glutathione, glucose, lactate, pyruvate, and 8 other amino acids. Only studies 
that measured markers in AD and controls (Ctl), provided means, standard errors/deviation, and subject num-
bers were included. Data were extracted by six authors and reviewed by two others for accuracy. Data were 
pooled using ratio of means (RoM of AD/Ctl) and random effects meta-analysis using Cochrane Collabora-
tion’s Review Manager software.  

Results: Of the 435 identified publications, after exclusion and removal of duplicates, 35 articles were in-
cluded comprising a total of 605 AD patients and 585 controls. The following markers of synaptic and meta-
bolic pathways were significantly changed in AD/controls: acetylcholine (RoM 0.36, 95% CI 0.24-0.53, 
p<0.00001), GABA (0.74, 0.58-0.94, p<0.01), pyruvate (0.48, 0.24-0.94, p=0.03), glutathione (1.11, 1.01-
1.21, p=0.03), alanine (1.10, 0.98-1.23, p=0.09), and lower levels of significance for lactate (1.2, 1.00-1.47, 
p=0.05). Of note, CSF glucose and glutamate levels in AD were not significantly different than that of the con-
trols.  

Conclusion: This study provides proof of concept for the use of meta-analysis validation of AD hypotheses, 
specifically via robust evidence for the cholinergic hypothesis of AD. Our data disagree with the other 
synaptic hypotheses of glutamate excitotoxicity and GABAergic resistance to neurodegeneration, given ob-
served unchanged glutamate levels and decreased GABA levels. With regards to metabolic hypotheses, the 
data supported upregulation of anaerobic glycolysis, pentose phosphate pathway (glutathione), and anaplerosis 
of the tricarboxylic acid cycle using glutamate. Future applications of meta-analysis indicate the possibility of 
further in silico evaluation and generation of novel hypotheses in the AD field. 

Keywords: Anaplerosis, anaerobic glycolysis, glutamate excitotoxicity, CSF, GABA resistance, cholinergic hypothesis, pen-
tose phosphate pathway, glutaminolysis. 

1. INTRODUCTION 

Alzheimer’s disease (AD) is a slowly progressing neu-
rodegenerative disease for which there is no cure and a high 

failure rate of therapeutic drugs in clinical trials (99.6% drug 
failure rate between 2002 and 2012 [1]). While there are 
some promising drugs, such as the Merck BACE inhibitor 
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[2], one possible explanation for the above reported high 
drug failure rate is likely the invalidity of some AD patho-
genic hypotheses targeted by these trials. There are many 
competing AD hypotheses proposed to explain the patho-
logical features of AD and it is becoming clear that these 
hypotheses need to be validated using human populations, 
rather than transgenic mouse models of CNS diseases [3]. 
Meta-analysis allows for statistical comparison of existing 
cerebrospinal fluid (CSF) marker data extracted from multi-
ple publications, providing a unique opportunity to provide 
evidence for or against several specific AD hypotheses. We 
speculated that any flaws in existing AD hypotheses related 
to synaptic and metabolic dysfunction could be revealed by 
comparing CSF levels of neurotransmitters and metabolites 
between AD and controls.  

The synaptic hypotheses related to AD are described be-
low. The cholinergic hypotheses of AD were formulated 
over 30 years ago based on the observations that acetylcho-
line plays an important role in cognition and that there are 
reduced acetylcholine levels and cholinergic neuronal loss in 
AD [4-6]. Thus, it has been well established that synaptic 
loss correlates strongly with memory loss in AD. Other AD 
hypotheses related to synapses include the glutamatergic 
hypothesis, [7-9] whereby elevated glutamate levels result-
ing in hyperactivity which then leads to neuronal cell death 
[9-11], and resistance of GABAergic cells to neurodegenera-
tion [12], with an expected decline in GABA CSF levels.  

The metabolic hypotheses of AD that we focused on here 
are related to glycolysis, the pentose phosphate pathway 
(PPP), and the tricarboxylic acid (TCA) cycle dysfunctions 
in AD. The inadequacy of these metabolic pathways were 
derived in part from Hoyer’s proposed lactate acidosis, as 
well as increased TCA anaplerosis due to hypoglycemia 
[13]. It is well known that hypoxic conditions, deficits in 
pyruvate dehydrogenase complex activity, or increased oxi-
dative stress all result in shifts to anaerobic glycolysis and/or 
the PPP in AD [14-19]. Of note, PPP activity generates 
NADPH which serves as a protective mechanism against 
oxidative stress and has been found to be increased during 
mild cognitive impairment [15]. With regards to the TCA 
cycle, the pyruvate dehydrogenase complex and enzyme 
alpha-ketoglutarate dehydrogenase are also known to be al-
tered and dysfunctional in AD [20, 21]. Last, it has been 
demonstrated by Krebs in 1960 [22] that the TCA cycle can 
function via utilization of the glutamate shunt (anaplerosis) 
[13, 23, 24]. Indeed, this truncated TCA shunt was more 
recently demonstrated during hypoglycemia, albeit in an 
animal model [25].  

While these synaptic and metabolic dysfunctions in AD 
have been published, some controversy exists in the litera-
ture. For example, increased use of glycolysis [14-18], is at 
odds with reduced glucose utilization in AD [19, 26]. There 
is also debate as to whether either anaerobic glycolysis or 
oxidative phosphorylation is increased in AD [16, 27]. Inter-
estingly, an elevation of lactic acid may reflect either an-
aerobic glycolysis, or increased synaptic activity [28]. With 
regards to synaptic hypotheses, elevated CSF glutamate lev-
els are not consistent across reports, and thus may not sup-
port the glutamate excitoxicity. Additionally, CSF GABA  
 

levels appear to be reduced, which contradicts GABAergic 
neurons resistance to cell death in AD [12]. Thus, it is im-
portant to be able to readily validate these hypotheses using 
CSF metabolite levels. 

We addressed these controversies in existing AD hy-
potheses by using meta-analysis to determine the concentra-
tion of important compounds/metabolites involved in the 
metabolic and synaptic dysfunctions in AD. Meta-analysis is 
a method of combining similar studies to increase accuracy 
and statistical power, furthermore the heterogeneity across 
studies can be analyzed. This method has previously been 
used to evaluate biomarkers in AD [29] (AlzBiomaker Data-
base, Version 2.0, April 2017 (www.alzforum.org/ alzbio-
marker), Alzforum Date of Access: June 2017). However we 
also realized that the data generated using this method could 
be used to validate AD hypotheses. An important proof-of-
concept of this hypothesis would be validation of the cho-
linergic hypothesis, as reflected by significant lower CSF 
acetylcholine levels in AD patients compared to the controls.  

2. METHODS 

2.1. Literature Retrieval 

A literature search using Hubmed, Pubmed, and Google 
Scholar was performed from inception to August 5, 2016 for 
specific markers (e.g. metabolites, amino acids, neurotrans-
mitters) involved in glycolysis and the TCA cycle according 
to PRISMA (Preferred Reporting Items for Systematic Re-
view and Meta-Analyses) guidelines [30]. Additionally, 
relevant publications were identified via citations within 
relevant publications and reviews, as well as metabolomic 
databases http://www.csfmetabolome.ca/ [31], allowing for 
an evaluation of the completeness of the search criteria for 
this meta-analysis. 

2.2. Inclusion Criteria 

Published studies measuring any of the following synap-
tic [acetylcholine, glutamate, GABA] or metabolic [glu-
tathione, glucose, lactate, pyruvate, alanine, glycine, aspar-
agine, aspartate, glutamine, isoleucine, leucine and valine] 
markers in CSF in both control patients and subjects with 
AD.  

The control patients in these studies were healthy pa-
tients, without neurological disorders, and had CSF with-
drawn by lumbar puncture as part of the study (Appendix 

Table 1). The majority of AD patients were evaluated ac-
cording to Diagnostic and Statistical Manual of Mental Dis-
orders (DSM) III and higher or National Institute of Neuro-
logical and Communicative Disorders and Stroke- 
the Alzheimer's Disease and Related Disorders Association 
(NINCDS-ADRA) criteria, with comorbidities assessed in 
some publications (Appendix Table 1). Studies both with 
and without Mini-mental state exam (MMSE) scores for AD 
were included in the analysis so as to reduce bias in the 
selection of studies and to increase the pool of data. These 
studies were observational studies and included both un-
matched/unadjusted and matched/adjusted publications. De-
tails of the studies (e.g. number of enrolling centers, enrol-
ment period, how were patients identified) are not known.  
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Table 1 Demographics of AD and Ctl patients in the meta-analysis sorted by publication. Demographic data for age and mini-mental 

state exam (MMSE, a measure of cognitive impairment). Data was collected from 35 publications, however 2 did not report mean 

± standard deviations and were not included in this table (Kuroda 1983, Tosca 1992). 

Author Compound Ctl Age AD Age Ctl MMSE AD MMSE 

Bareggi 1982 GABA 50.2±11.9 62.3±10.7   

Basun 1990 Arg, Ala, Glu, Gln, Gly, His, Ile, Leu, Lys, Val 79.0±2 79.0±2   

D'Aniello 2005 Arg, Ala, Asp, Asn, GABA, Glu, Gln, Gly, 

His, Ile, Leu, Lys, Val 

72.0±10 72.0±10   

Degrell 1989 Arg, Ala, Glu, Gln, Gly, His, Ile, Leu, Lys, Val 29.0±9 77.3±2.7   

Fisher 1998 Arg, Ala, Asp, Asn, GABA, Glu, Gln, Gly, 

His, Ile, Leu, Lys, Val 

70.1±7.8 75.2±10.4   

Frolich 1998 Acteylcholine 58.8±2.7 69.1±8.3 29.7±0.7 16.2±5.5 

Jia 2004 Acteylcholine 65.6±5 68.0±6 28.5±1.2 15.6±2.9 

Jimenez 1998  Arg, Asp, Asn, GABA, Glu, Gln, Gly 67.9±9.2 70.9±8.5  11.6±5.5 

Kadurah-Daouk Glutathione (GSH) 69.5 69.0 30.0±0 23.0±3 

Konings 1999 Glutathione (GSH) 65.0±10 65.0±8   

Kuiper 2000 Arg, Glu 65.8±11.9 64.5±7.8   

Liguiori 2016 Lactate 68.07±7.64 71.786.75 27.79±0.91 19.72±5.81 

Madiera 2015 (suppl 

table) 

Glycine 71.6±6.65 72.1±8.46 26.3±2.14 12.7±6.22 

Malm 1991 Lactate 73.8±8.2 71.2±4   

Martinez 1993 Arg, Ala, Asp Asn, Glu, Gln, Gly, His, Ile, 

Leu, Lys, Val 

66.0±8 68.0±6 17.8±9 17.7±10 

Mochizuki 1996 Arg, Ala, Asp, Asn, GABA, Glu, Gln, Gly, 

His, Ile, Leu, Lys, Val 

62.0±10 66.0±10 29.0±1.1 16.1±5.7 

Mohr 1986 GABA 57.0±1.8 58.0±2   

Molina 1998 Arg, Ala, GABA, His, Ile, Leu. Lys, Val 67.9±9.2 70.9±8.5  11.6±5.5 

Oishi 1996 GABA 66.7±8.9 66.3±9.2 30.0±1 17.0±5 

Parnetti 1995 Glucose, Pyruvate, Lactate 69.0±5 71.0±7 29.0±1 15.5±5.4 

Parnetti 2000 Lactate 69±1 71.0±7 28.0±1.5 15.0±6.7 

(Table 1) contd…. 
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Author Compound Ctl Age AD Age Ctl MMSE AD MMSE 

Pomara 1989 Arg, Asp, Asn, GABA, Glu, Gln, Gly, His, Ile, 

Lys, Val 

64.0±11.8 60.7±9.4  17.1±9.9 

Pomara 1992 Arg, Asp,Asn, Glu, Gln, Gly, His, Ile, Lys, Val  63.8±1.7 59.7±10.8  16.6±3.5 

Proctor 1988 Gln 73.3±10.2 72.5±11.4   

Redjems-Bennani 1998 Glucose, Pyruvate, Lactate 75.0±11 78.0±7  9.9±4.6 

Shuvaeva 2001 Glucose 27.0±19 79.0±8   

Smith 1985 Asp, GABA, Glu, Gln, Gly, Ile 62.0±6 61.0±5   

Tato 2016 Glucose 67.0±11 70.0±7  17.5±7.4 

Toghi 1992 Arg, Ala, sp, Asn, GABA, Glu, Gly, acetylchol 65.8±6 69.0±10  13.20±8.2 

Vitvisky 2012 Glu, Gln 77.0±15 79.0±8   

Weiner 1996 GABA 69.7±5 75.9±4.3 29.0±0.8 16.2±7.9 

White 2014 Ala, Glu, GLn, Glucose, lactate, pyruvate 57.3±7.3 61.7±10.2   

Zimmer 1984 GABA 69.9±10.1 73.6±8.8  2.8±2.3 

 

2.3. Exclusion Criteria 

Rejection criteria for data included literature reviews, 
publications with no numerical data on metabolites of inter-
est (including data only in graphical format), animal studies, 
pooled CSF samples, or those publications that did not in-
clude paired AD and control data acquired under similar 
conditions. Studies with values acquired by using brain ex-
tracts were omitted. However, studies of brain extracts were 
included for enzymes since intracellular metabolic enzymes 
are not in the CSF. Metabolome databases such as the 
http://www.csfmetabolome.ca [31] were omitted as they 
typically did not contain paired AD and Control (Ctl) CSF 
data.  

Several metabolites involved in glycolysis and the TCA 
cycle were not included in this publication. For example, 
only a single publication each was identified as meeting in-
clusion criteria for ATP, ammonia, and fumarate values in 
CSF, so these data were not included in the meta-analysis. 
The CSF data for the following compounds also did not meet 
inclusion criteria (e.g. data not containing both control and 
AD values): succinyl-CoA, acetyl-CoA, NADPH, NAD, 
alpha-ketoglutarate, malate, and oxaloacetate.  

2.4. Data Extraction 

Six (SS, MP, AN, MC, ST, NK) investigators independ-
ently extracted data for each metabolite and entered them 
into an excel database. The data were independently checked 
for errors by three investigators (IM, BB, RM). Data ex-

tracted from the publications included authors and publica-
tion year, NCBI Pubmed publication URL, the number of 
subjects (AD and controls), and marker levels in CSF with 
their appropriate units.  

2.5. Calculations for Meta-Analysis 

Data were pooled using Ratio of Means (RoM) on the 
logarithmic scale. RoM is calculated as the mean CSF con-
centration in the AD group divided by the mean CSF con-
centration in the Ctl group for each marker in each study. 
Standard error for the natural logarithm for the RoM in each 
study, SE(ln[RoM]) was calculated according to Friedrich 
[32, 33]: SE[ln(RoM)] = SQRT((1/n AD) (Standard Devia-
tion AD/mean AD)2 + (1/n Ctl) (Standard Deviation 
Ctl/mean Ctl)2), where “n” is the number of patients in the 
AD and Ctl groups, respectively. These calculations were 
performed in an Excel spreadsheet prior to entering the re-
sulting data into the meta-analysis software of the Cochrane 
Collaboration, Review Manager, Version 5 (Revman, Coch-
rane Collaboration, Oxford, England, freely available at 
http://ims.cochrane.org/revman/download) and analyzed 
using the random effects model. Revman software uses stan-
dard equations for inverse variance weighting. Random ef-
fects analysis was performed using the DerSimonian and 
Laird [34] method which incorporates heterogeneity leading 
to wider (more conservative) confidence intervals when het-
erogeneity is present. Statistical heterogeneity, or variability 
of results between studies beyond that expected by chance 
was quantified using the I2 statistic, with I2 >50% considered 
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to indicate a high degree of heterogeneity. Funnel plots were 
created to assess for publication bias. We should note that 
for the enzyme data that lacked standard error data, these 
errors were imputed from the publications with the largest 
error to allow for meta-analysis. This is noted in the figure 
legends.  

3. RESULTS 

3.1. Inclusion/Exclusion of Publications 

We document the inclusion/exclusion for different cate-
gories, and not individual markers below: antioxidants, 
amino acids, and metabolites/neurotransmitters (Fig. 1). In 
total thirty-five (35) publications met the selection criteria, 
including publications with paired control data, and the in-
cluded markers and included publications are listed in Tables 

2-4. Excluded publications for each group are below. For the 
antioxidant glutathione (GSH), 13 publications were rejected 
[35-47]. For the amino acids, 20 publications were rejected 
[41, 48-67]. Last, for the metabolites/neurotransmitters 14 
publications were rejected [5, 58, 68-78].  

3.2. Clinical Diversity of Subjects in Publications Used 
for this Study 

We attempted to address clinical heterogeneity by record-
ing age and cognitive abilities (MMSE), however, this data 
was not included in all studies. Table 1 provides data for 
metabolites, average age, and MMSE for all studies for each 
metabolite. It is clear that the age of the controls did not 
match that of AD in two publications (Degrell and Shuvaev, 
Ctls 29 and 27 in Table 1), while other studies had young 
ages relatively near or below 60 years of age (Bareggi, 
Mohr, Smith, Pomara 1989, and White in Table 1). However 
these age differences did not appear to affect the variation in 
the results (Tables 2-4), with the exception of Mohr which 
may be an outlier (lower GABA, Table 3). 

With regards to cognitive scores, the mini-mental state 
evaluation (MMSE) is scored out of a total of 30 points, al-
lowing AD cognitive impairment to be ranked as severe (≤9 
points), moderate (10-18 points) or mild (19-23 points). Sev-
eral publications had relatively mild AD (Kaddurah-Daouk, 
Table 1) or abnormally low MMSE for the control 

 

Fig. (1). PRISMA Flow diagram showing meta-analysis selection of publications for all biomarkers, using PubMed database search 

as an example. Data represents pooled publications collected for 15 different markers for both space limitations and clarity. The duplicates 
were removed later in the work flow diagram, because this more accurately reflects the work flow which involved several authors independ-
ently searching for publications. Furthermore, several publications were common for several compounds, especially when amino acid analy-
ses were performed. Additional publications from other sources highlight creativity of medical students in their searches. The workflow dia-
gram is modified from Moher et al. [34]. Details of the individual markers investigated in this study are in Tables 1-4. 
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Table 2. Ratios of the means (RoM) of selected metabolites and amino acids. RoM of selected metabolites and amino acids are pre-

sented as the ratio of CSF concentrations between patients with Alzheimer’s disease and controls. For each individual publication 

or study (author name and year), the filled squares are the ratio value and the size of the square indicates the weight of the study. 

The horizontal lines represent the 95% CIs for each individual study. The average ratio for the pooled studies is indicated by a 

diamond, with the diamond width indicating the 95% CI. Heterogeneity (Tau2, Chi2 and I2) and effect size (Z), and effect size sta-

tistical significance (P) for the pooled data is also indicated for each subgroup. 

�
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Table 3. Ratios of the means (RoM) of selected neurotransmitters. RoM of selected metabolites and amino acids presented as the ratio 

of CSF concentrations between patients with Alzheimer’s disease and controls. For each individual publication or study (author 

name and year), the filled squares are the ratio value and the size of the square indicates the weight of the study. The horizontal 

lines represent the 95% CIs for each individual study. The average ratio for the pooled studies is indicated by a diamond, with the 

diamond width indicating the 95% CI. Heterogeneity (Tau2, Chi2 and I2) and effect size (Z), and effect size statistical significance 

(P) for the pooled data is also indicated for each subgroup. 

�
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Table 4. Ratios of the means (RoM) of antioxidant glutathione and selected branched chain amino acids. RoM of the antioxidant 

glutathione and selected branched chain amino acids (isoleucine, leucine, and valine) presented as the ratio of CSF concentrations 

between patients with Alzheimer’s disease and controls. For each individual publication or study (author name and year), the 

filled squares are the ratio value and the size of the square indicates the weight of the study. The horizontal lines represent the 

95% CIs for each individual study. The average ratio for the pooled studies is indicated by a diamond, with the diamond width in-

dicating the 95% CI. Heterogeneity (Tau2, Chi2 and I2) and effect size (Z), and effect size statistical significance (P) for the pooled 

data is also indicated for each subgroup. 

 
 

groups (Martinez) or the AD groups (Redjems-Bennani, 
Zimmer, Table 1). These cognitive differences appeared to 
have greater effect than age, with GSH RoMs being slightly 
elevated with less cognitive deficits or increased MMSE in 
AD patients (Kaddurah-Daouk, Table 4). Other metabolites 
affected include, increased aspartate with lower MMSE in 
controls (Martinez, Table 2), and increased pyruvate and 
lactate with low MMSE in AD patients (Redjems-Bennani, 
Table 2). The last publication with low MMSE was Zimmer, 
however there was no effect on the only metabolite measured 
(GABA, Table 3). However, MMSE is of limited value in 
this study as it was reported in only a subset of the publica-
tions.  

3.3. Publication Bias (Funnel Plots Appendix Fig. 1) 

For publication bias one is looking for asymmetry in the 
“funnel” of the funnel plots. However, for most of the me-
tabolites there are less than 10 studies which are generally 
too few to assess funnel plots for asymmetry. In addition 
many of the studies have similar SE yielding little discrimi-
nation along the y-axis of the funnel plots. 

3.4. Heterogeneity of Included Studies 

Most variations were noted for GABA, glutamate, aspar-
tate, asparagine, pyruvate, isoleucine, and lactate (Tables 2 
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and 3). For the most part this was also reflected in their I2, a 
statistical measure of heterogeneity. In general the largest 
variations were noted in Fisher and D’Aniello publications 
which used postmortem CSF (Appendix Table 1). The ma-
jority of compounds had an I2 below 50, such as alanine, 
asparagine, glucose, and glutathione. The low heterogeneity 
in glucose levels (I2=0), is likely because the measurement of 
glucose is fairly standardized and routine (Table 2). Surpris-
ingly asparagine had an I2 of 0% even though there was 
variation in the data, and this reduced variation was due to 
low weighting of the publications with more variability 
(D’Aniello and Fisher, Table 2). Of note, the acetylcholine 
data still had high heterogeneity (78%), even though it had 
the fewest included publications for the metabolites (n=3) 
and highest effect size significance (<0.00001, Table 3).  

Methodological variation may have also accounted for 
some variation in the results of this analysis. Use of several 
different methods may also have contributed to variation. 
For example lactate and pyruvate levels were relatively 
higher in the Redjems-Benneni reference where gas chroma-
tography-mass spectrometry (GC-MS) was used, and their 
levels were lower in the Parnetti publication which used en-
zymatic assays (Tables 2 and 3, Appendix Table 1). It is also 
known that certain CSF collection, storage or preparation 
methods can alter levels of asparagine, aspartate, glutamine, 
glutamate. For example, acid hydrolysis-mediated deamida-
tion of asparagine and glutamine can result in conversion to 
aspartic and glutamic acids [79]. Additionally, improper CSF 
storage can cause artificial elevations in glutamate and aspar-
tate as well as decreases in glutamine and asparagine, while 
hemolysis results in increased aspartate and glutamate [79]. 
This deamidation and improper CSF storage are unlikely to 
explain the variation in aspartic and glutamic acid levels 
(Table 2), as there were no inverse changes in asparagine and 
glutamine, with the exception of glutamine and glutamate in 
Fisher and D’Aneillo. Of note, the latter publications used 
post mortem CSF. It is more likely that aspartate and gluta-
mate elevations are due to hemolysis.  

3.5. Meta-Analysis 

Meta-analyses of the ratios of several amino acid and me-
tabolites (Tables 2-4, Fig. 2) were mapped to biochemical 
pathways (Fig. 3), providing insight into changes relevant to 
metabolic and synaptic AD hypotheses. The majority of the 
metabolites and amino acids studied had fold changes, or 
effect sizes, that were not markedly different from one 
(unity) and thus indicating CSF concentrations similar to 
control values (Fig. 2).  

3.6. Synapse 

Our data provides an important proof-of-principle which 
supports the validity of this meta-analysis method. Neuronal 
death and synaptic dysfunction are well described pathologi-
cal features of AD that underlie cognitive deficits and mem-
ory loss. The cholinergic hypothesis, one of the oldest AD 
hypotheses, and its effects on cognition, and loss of acetyl-
choline-secreting neurons are well described. For support of 
this hypothesis, low acetylcholine levels are expected. Im-
portantly, this was supported by our data with a highly sig-
nificant decrease in CSF acetylcholine levels (Figs. 2, 3, and 

Table 3, 0.36-fold change, p <0.00001). Three additional 
neurotransmitters were analyzed in this study: the major ex-
citatory neurotransmitter glutamate, and the inhibitory neu-
rotransmitters GABA and glycine (Figs. 2, 3, and Table 3). 
Of these 3 additional neurotransmitters, only GABA CSF 
levels were found to be significantly decreased in AD (Table 

3, GABA 0.74-fold change, p=0.01). It is likely that GABA 
production was reduced in order to maintain glutamate levels 
since glutamate is crucial for detoxification and TCA 
anaplerosis (Fig. 3). We were unable to find data meeting 
meta-analysis criteria for the enzyme that converts glutamate 
to GABA (glutamate decarboxylase) to corroborate the as-
sertion of reduced GABA synthesis. The second neurotrans-
mitter evaluated was glycine. The levels of glycine were 
slightly, but not significantly elevated (Table 3). Last, glu-
tamate concentrations in AD were normal, and due to gluta-
mates additional role in metabolism, it is addressed in more 
detail in that section below. Thus, our meta-analysis supports 
the idea that synaptic perturbations are a feature of AD, spe-
cifically cholinergic and GABAergic systems. 

3.7. Metabolism 

CSF glucose levels were found to be similar between AD 
and Ctl patients (Table 2), suggesting that there is no deficit 
in glucose supply to the brain for metabolism. Increased an-
aerobic glycolysis was found to be present in AD observed 
as a significant increase in lactate and a significant decrease 
in pyruvate (Fig. 2 and Table 2). A second glycolytic altera-
tion suggested in AD is the increased activity of the Pentose 
Phosphate Pathway (PPP). Glutathione (GSH) has been used 
as a marker for the PPP [32], although it is an imperfect 
marker that is susceptible to oxidative loss. Glutathione 
(GSH) was found to be slightly but significantly increased in 
AD overall (p= 0.03, Table 4). We should note, NADPH 
generated by PPP, and is needed as coenzyme for glutamate 
dehydrogenase the latter of which was increased in AD. Our 
data supports both increased anaerobic glycolysis and in-
creased PPP activity in AD.  

Elevated glutamate was speculated to be central to the 
glutamate excitotoxicity hypothesis in AD [9]. Pooling of 
several (14) studies increased the subject numbers to 418, 
allowed for a more accurate estimate of CSF glutamate lev-
els (Glu), which we found to be not different between AD 
and Ctl groups (Table 3). To further investigate this result, 
we examined the four (4) major metabolic pathways and 
enzymes that produce glutamate in the brain.  

1) Glutamate is formed by transamination of branched chain 
amino acids (isoleucine, leucine and valine) taken up 
from the blood. In the brain, this reversible reaction fa-
vors the direction whereby there is usage of alpha-
ketoglutarate and synthesis of glutamate. Branched chain 
amino acids exhibited only slight and non-significant 
elevations which indicate close to normal metabolism 
(Fig. 3, Table 4).  

2) Glutamate is formed by glutamate dehydrogenase in a 
reaction using alpha-ketoglutarate, free ammonia and 
NADPH, with the NADPH for this reaction likely pro-
vided by the PPP. The reaction is reversible, however in 
the brain it is used to detoxify ammonia by incorporating 
ammonia into glutamate (Fig. 3). Independent support of 
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Fig. (2). Meta-analysis of AD-specific changes in CSF markers. Bubble plot of the meta-analysis data plotting 3 values: effect size, z-
score, and a number of subjects. The effect size, or the Ration of the Means (RoM), on the y-axis is the ratio of the pooled means (AD/Ctl 
concentrations). A ratio greater than unity indicates that CSF concentrations in AD are greater than the control, while a lower ratio indicates 
decreased CSF concentrations in AD vs Ctrl. The Z-score, shown on the x-axis, is a statistic indicating the deviation of the mean from the 
standard error. For example, any Z-score > 1.645 relates to significant p-value < 0.10. The bubble size reflects the total number of subjects in 
each meta-analysis (e.g. the smallest and largest bubbles represent pooled subject sizes of 67 and 323, respectively).  
 

 

Fig. (3). Mapping of meta-analysis data onto biochemical pathways. Several metabolic and synaptic pathways are depicted. Metabolic 
pathways include anaplerosis, glycolysis, and the pentose phosphate pathway (PPP), all shown as boxes. The synaptic pathways include the 
cholinergic (boxed), glutamatergic (boxed) and GABA. The relevant metabolic enzymes and CSF metabolites and amino acids were mapped 
to these biochemical pathways, with increases (green arrows) or decreases (red arrows), and significant changes denoted with their p-values. 
Note: for simplicity, several additional sources of glutamate are not depicted e.g. from the TCA cycle. For enzyme data lacking standard de-
viation, these values were imputed. The GDH fold change based on 1 publication [80]. 
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 the activity of this pathway is from enzyme levels of glu-
tamate dehydrogenase (GDH). The level of GDH was 
2.46 fold increased in the AD brain as noted in one pub-
lication [80].  

3) Glutamate can be formed by alanine aminotransferase 
(ALT) using α-ketoglutarate and alanine as substrates. 
This reaction is also reversible. While brain ALT activity 
was not altered (1.0 RoM, Table 5a), metabolite levels 
suggest that the direction of the reaction does not favor 
glutamate production. E.g. the significantly increased 
alanine levels (Fig. 2, Table 2) suggest reduced utiliza-
tion of this pathway to form glutamate, instead with pref-
erential formation of alpha-ketoglutarate. This reduced 
formation of glutamate via ALT is also supported by the 
decreased levels of pyruvate, however reduced pyruvate 
levels can also result from increased lactate formation 
(Fig. 3). 

4) Glutamate can be formed by aspartate aminotransferase 
(AST). Although data for the TCA metabolites oxaloace-
tate and alpha-ketoglutarate were not obtained, there was 
a slight non-significant increase in aspartate (Table 2), 
and the level of AST enzyme was increased 1.75 fold (p 
< 0.00001) in the AD brain (Table 5a). We should note 
that the meta-analysis of the enzyme data relied on im-
puting the standard deviation for some publications.  

In summary, our data indicate a possible shunt in the AD 
brain metabolism using glutamate to refill the TCA cycle at 
the level of alpha-ketoglutarate as shown in Fig. 3. This al-
lows the bypassing of the pyruvate dehydrogenase (PDH) 
complex which is less functional in the AD brain due to low 
levels of pyruvate (Table 2). Use of this shunt in the TCA 
cycle can start with alpha-ketoglutarate and finishes with 
oxaloacetate formation. Instead of using oxaloacetate and 
acetyl CoA for citrate formation, oxaloacetate and glutamate 
may be used by AST to form aspartate and alpha-
ketoglutarate to refill the modified TCA cycle.  

With regards to glutamine synthesis, glutamate is also a 
substrate for glutamine synthetase and results in sequestering 
of ammonia. While glutamine levels were slightly elevated 
(non-significant changes, Fig. 2, Table 3), the levels of glu-
tamine synthetase (2.4 RoM, non-significant, Table 5a) and 
also of glutamate dehydrogenase were increased in AD [80]. 
Thus, another reason why glutamate levels were likely kept 
within the normal range was due to the importance of gluta-
mate in both maintaining the TCA cycle as well as detoxifi-
cation of ammonia as shown in Fig. 3.  

4. DISCUSSION 

This meta-analysis has evaluated several published hy-
potheses related to metabolic and synaptic dysfunction in 
AD. As a proof-of-concept, this research approach validates 
the Cholinergic hypothesis, as evidenced by the significant 
lower CSF acetylcholine levels in AD patients compared to 
the controls. As for the synaptic hypotheses, our data also 
support significant reductions in CSF GABA levels in AD 
patients. However, the glutamate excitotoxicity hypothesis is 
not supported because CSF glutamate levels in AD were 
normal, or not significantly different from controls. With 
reference to the metabolic hypotheses, this meta-analysis of 

CSF metabolites supports a metabolic shift towards 
increased anaerobic glycolysis, PPP, and TCA cycle 
anaplerosis using glutamate in AD.  

We have attempted to validate synaptic hypotheses utiliz-
ing CSF metabolite concentrations. Our meta-analysis data 
strongly supports the cholinergic hypothesis by demonstrat-
ing a statistically significant reduction in CSF acetylcholine 
levels in AD (p < 0.00001). These data should be interpreted 
cautiously, as it is derived from only 3 publications and more 
data is required to reduce confirmation bias. Regardless, the 
decreased levels of acetylcholine are even more remarkable 
given that cholinergic neurons make up about 1% and 10% 
of total brain cells and nerve terminal populations, respec-
tively [81]. The highly significant findings are supported by 
studies which suggest that degeneration of acetylcholine 
releasing cholinergic neurons in the brain are one of the ear-
liest changes in AD [82]. The decreased production of ace-
tylcholine is likely due to a reduction in the substrate acetyl-
CoA, which itself is predominantly synthesized from pyru-
vate via PDH [81, 83]. (Note: pyruvate levels were signifi-
cantly lowered). Indeed, cholinergic marker loss has been 
shown to correlate with reduced energy metabolism and de-
mentia severity prior to death [81]. Thus, reductions of CSF 
acetylcholine levels reflect metabolic dysfunction and con-
tribute to cognitive deficits in AD. 

GABA is the primary inhibitory neurotransmitter in the 
brain and is synthesized within GABAergic neurons in a 
single step from glutamate via glutamate decarboxylase 
(GAD). In AD, there are conflicting reports on the levels of 
GABA and the enzymes and neurons which synthesize it. 
For example, increases in brain GABA levels in AD have 
been cited [84], however, pronounced deficits were observed 
in our meta-analysis and in other reports [85]. There are also 
conflicting reports on GAD enzyme levels in AD, with cited 
increases [84], no significant changes, and decreases simply 
being attributed to postmortem changes [86]. Controversy 
over the loss of neurons producing GABA in AD reflects the 
discrepancy between the widely held beliefs that these neu-
rons are resistant to neurodegeneration [12], whereas some 
reports indicate neuronal loss [87]. From a metabolic stand-
point, GABA production reflects both glutamine-glutamate 
concentrations and synthesis by GAD. It is likely that in-
creased glutamate flux to glutamine, in order to sequester 
toxic ammonia in the brain, results in this reduced GABA 
synthesis in AD (Fig. 3). This reduced GABA level found in 
our meta-analysis data likely underlies the early association 
of depression, insomnia, and seizures with AD [88-92]. 

Our meta-analysis finding of normal glutamate CSF lev-
els has important ramifications on the glutamate excitotoxic-
ity hypothesis or the idea that neuronal death is due to exces-
sive glutamatergic activity [7, 8]. Notably, this hypothesis 
has the inherent assumption that toxicity is directly due to 
elevated glutamate levels in the brain. Our data indicate that 
glutamate levels are normal in AD with slight elevations in 
aspartate, which is supported by similar amino acid changes 
in early AD [93]. Based on our data, any apparent glutamate 
hyperactivity and related toxicity could be attributed to ele-
vated aspartate. It has been suggested elevated aspartate ex-
erts toxic effects via binding to glutaminergic receptors [13, 
93]. Alternatively, this glutamatoxicity could be attributed to
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Table 5. (A). Changes in enzymes related to anaplerosis. Meta-analysis data are shown for enzyme protein level changes glutaminase, 

glutamate dehydrogenase (GDH), and glutamine synthetase (GS) , and activity changes for aspartate aminotransferase (AST) and 

alanine aminotransferase (ALT). Since some publications did not report standard deviation, we imputed the largest standard de-

viation among the other studies reporting to allow estimation of SE. The errors for glutaminase were estimated using the of 44% 

from D’Aneillo. Glutamine synthase (GS) errors for Timmer were estimated using the error of 60% from Tumani. Meta-analysis 

was not performed on Glutamate dehydrogenase (GDH), as there was only 1 study. However the study reported a 2.05 fold in-

crease protein concentration in AD vs Ctl [80].  

 

B. Biochemical reactions for the enzymes above. 

Enzyme Biochemical Reactions 

Glutaminase levels Glutamine → glutamate + ammonia 

Glutamate dehydrogenase (GDH)  α-Ketoglutarate + ammonia + NADPH → glutamate 

Glutamine synthetase (GS) l Glutamate + ammonia + ATP → glutamine 

Aspartate aminotransferase (AST)  Aspartate + α-ketoglutarate ↔ oxaloacetate + glutamate 

Alanine aminotransferase (ALT) Alanine + α-ketoglutarate ↔ pyruvate + glutamate 

 

disinhibition of glutamatergic neurons resulting from the 
significantly reduced GABA levels. Reduced neuronal inhi-
bition by GABA could explain the hippocampal hyperactiv-
ity observed in early AD [94,95], which may itself be a 

compensation for neuronal loss [94-96]. This is an interest-
ing concept which ultimately suggests that in pre-AD stages, 
neuronal hyperactivity may lead to increased neuronal glu-
tamate release. Later in the progression of AD, glutamatergic 
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neuronal death makes the elevated secretion of glutamate by 
remaining neurons appear “normal”. Lastly, since cancers 
also utilize anaplerosis [97], it is possible that competition 
for this common metabolic pathway may explain the inverse 
relationship between AD and cancer occurrence [98, 99]. 

We have used a similar approach to validate metabolic 
hypotheses in AD, as several lines of evidence implicate 
metabolic dysfunction in AD. First, the high energy require-
ment and limited energy stores of the brain [14, 96] leads to 
neuronal dysfunction and death in AD because of the patho-
logical reduction of glucose utilization and hypoperfusion 
[17, 26, 100-102]. Even though the AD brain may utilize 
lactate, pyruvate, glutamate, and glutamine, it is glucose 
which is the major energy source for ATP production [24]. 
There is also a correlation between reduced glucose utiliza-
tion and AD severity [26]. Indeed, this glucose dysregulation 
have been described as insulin resistance in the brain, or 
Type 3 diabetes [103-106]. Second, nutrient deficiency via 
chemical inhibition of metabolism or deficiency of thiamine 
(important for pyruvate dehydrogenase and alpha-
ketoglutarate dehydrogenase activities) both mimic AD pa-
thology [21, 103]. Third, reduced nutrient supply triggers 
endoplasmic reticulum (ER) stress responses such as protein 
aggregation and autophagy [104, 105], which are also patho-
logical features of AD. Examples of metabolic dysregulation 
proposed in AD include glycolytic changes, such as upregu-
lated anaerobic glycolysis and pentose phosphate pathway 
(PPP) [14-19], and tricarboxylic cycle (TCA) changes [14, 
17, 23, 106].  

Our data demonstrate that CSF glucose levels are normal 
in AD brain. This seems contradictory to the reduced glucose 
utilization/reduced flurodeoxyglucose (FDG) uptake in AD 
described above. This can be explained by several different 
observations. First, CSF levels of glucose are different than 
cellular utilization of glucose. This reduced glucose utiliza-
tion may be a result of insulin resistance in the brain (type 3 
diabetes) [107, 108], or alterations to vascular flow or glu-
cose uptake by astrocytes [109]. Second and alternatively, 
there are two concurrent processes taking place: loss of me-
tabolically active neurons [26] and neuronal hyperactivity 
[96, 110]. An overall decrease in glucose utilization with 
increased disease severity [26] may, therefore, reflect neu-
ronal loss, while the elevated lactate reflects increased syn-
aptic activity [111] and thus also glycolytic flux. Regardless 
of glucose levels and glucose utilization, it is clear that there 
are changes in glycolysis and the TCA cycles as described 
below. 

Our meta-analysis strongly suggests altered glycolysis in 
the brains of AD patient. An elevation in anaerobic glycoly-
sis is supported by pyruvate and lactate data which suggest 
increased conversion of pyruvate to lactate in the AD brain. 
Importantly, aerobic glycolysis is increased in the default 
mode network (DMN), an area which is affected by AD pa-
thology [112]. There are several published explanations for 
the elevation of CSF lactate levels in AD. First, switching 
from aerobic to anaerobic glycolysis may be an adaptive 
response to the hypoperfusion and oxygen deficiency, the 
latter which is known to occur in AD [113, 114]. Second, 
decreased pyruvate levels, along with damaged pyruvate 
dehydrogenase complex and alpha-ketoglutarate dehydro-

genase [115-120], result in pyruvate not being able to par-
ticipate in the TCA cycle. Pyruvate dehydrogenase defi-
ciency diseases cause marked increases in lactate [121]. 

The PPP branches out of glycolysis, and increased PPP 
metabolic activity has been described in AD [14-19] likely in 
response to increased oxidative stress [15]. Using glutathione 
as a marker for PPP activity [122], our analysis does support 
an elevation of PPP in AD. It is likely that such changes oc-
cur in the early stages of the disease [18, 123]. However, this 
finding should be interpreted with caution due to limited data 
being available and glutathione not being an ideal marker for 
PPP up-regulation. Although reduced glutathione should 
theoretically give an indication of PPP activity, it is also sub-
ject to loss by oxidative stress. Better markers are required to 
accurately evaluate the alterations in the PPP within AD. 
Indirectly an increase of NADPH formation in the PPP is 
suggested by the increased activity of glutamate dehydro-
genase, which needs NADPH in its reaction. 

TCA cycle dysfunction is likely due to reduced pyruvate 
utilization by a deficient pyruvate dehydrogenase complex as 
indicated previously. One response to this TCA dysfunction 
is the utilization of glutamate as an alternative substrate to 
fuel the TCA cycle [23, 124]. The inter-conversion of gluta-
mate to aspartate was demonstrated by Krebs in 1960 [22], 
and importantly this TCA shunt was demonstrated to be util-
ized under hypoglycemic conditions [25]. Of note the latter 
condition may occur in AD under conditions of reduced glu-
cose utilization. This shunt uses glutamate and aspartate to 
refill the TCA cycle, thus bypassing TCA enzymes known to 
be dysfunctional in AD.  

Why are the glutamate levels normal? There are several 
sources of glutamate in the brain. Of note, glutamate has to 
be formed in the brain as it cannot cross the blood-brain bar-
rier [125]. The brain/CSF glutamate stores originate not only 
from the neurotransmitter pool (including neuronal and as-
trocytic uptake, and astrocytic conversion from glutamine 
via glutaminase) [7, 125, 126], but also from metabolic 
sources [125]. Fig. 3 depicts four metabolic sources of glu-
tamate formation: transamination reactions of branched-
chain amino acids aminotransferase, ALT and AST, as well 
as synthesis from alpha-ketoglutarate. Importantly, gluta-
mate formation from glutamate dehydrogenase scavenges 
free ammonia. Normal glutamate levels allow for the 
continuation of clearing this toxic compound from the brain 
by synthesis of glutamine [11, 125, 126]. Indeed, an excess 
of glutamate was not required for removal of ammonia, and 
the amount of glutamate formed was proportional to the 
amount or ammonia removed [127]. Thus the normal levels 
of CSF glutamate result from different synthetic pathways, 
as well as glutamate’s role as the major excitatory neuro-
transmitter and in several other metabolic processes in the 
brain.  

We now come back to discuss these findings in relation 
to AD brain in general and to potential metabolic and synap-
tic therapeutic avenues to remedy the failure of AD therapeu-
tic drugs mentioned in the introduction. First we will discuss 
potential metabolic interventions. Our re-evaluation of the 
metabolic hypotheses supports the idea that the brain is 
“starving” in AD [14]. While anaerobic glycolysis and the 
anapleurotic shunt still can generate energy for the brain, 
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they would do so at reduced levels. Levels of ATP have pre-
viously been determined to decrease with AD progression by 
7% in early stages, then by 20%, and 35% - 50% in ad-
vanced AD stages [109]. Thus increasing energy production 
in the brain are viable strategies. Treatment with 
phenylbutyrate, an FDA approved drug for treating pyruvate 
dehydrogenase deficiencies [128], may be useful in treating 
AD as well [129, 130]. Increasing glucose utilization with 
insulin sensitizing drugs is another strategy. Insulin and insu-
lin-like drugs are in trials for AD treatment, likely aiming to 
address the underlying insulin resistance exhibited in AD by 
increasing glucose utilization [131]. The insulin-sensitizing 
FDA approved drug metformin, in population studies re-
sulted in a reduction of dementia risk, however, the effects 
on AD cognition are controversial [132]. Another 
hypoglycemic treatment that may have therapeutic potential 
is the natural plant compound berberine. In addition to hav-
ing anti-atherosclerotic effects [133, 134], berberine also 
reduces amyloid beta aggregation in an in vitro assay [135], 
representing a multifactorial treatment.  

Are there any synaptic therapies that appear promising in 
light of our data? Yes, there are already several FDA-
approved therapies for AD, that already target cholinergic, 
GABAergic, and glutamatergic systems. The majority of the 
FDA approved AD drugs target acetylcholinesterases, aim-
ing to compensate for the acetylcholine deficits that have 
historically been presumed to underlie short-term memory 
loss in AD [82]. However, the acetylcholinesterase inhibitor 
drugs donepezil, galantamine, rivastigmine, and huperzine A 
only provide short-term symptomatic improvement and are 
not useful as a long term cure [136]. Additionally, treatments 
aimed at recovery of GABA levels in patients with low 
GABA did not have therapeutic benefit [59]. Finally, target-
ing glutamatergic neurons with memantine, an uncompeti-
tive NMDA antagonist approved by the FDA in 2004 for 
moderate to severe AD, also only alleviates symptoms [137]. 
Our meta-analysis re-evaluation of synaptic hypotheses has 
also generated insight into existing therapeutics and their 
mechanisms of action. The evidently normal levels of gluta-
mate may be one reason why memantine inhibition of glu-
tamatergic activity only offers symptomatic effects and does 
not constitute a cure. Our meta-analysis also identified sig-
nificantly reduced levels of acetylcholine and GABA and 
serves to highlight the effects of neuronal loss on neuro-
transmitter levels in AD. Here, synaptic therapies fail to pro-
vide a cure because therapeutic efficacy wanes as the tar-
geted neuronal populations are lost. We must point out that 
there is some evidence that synaptic loss itself causes AD, as 
exposure to organophosphates, such as paraquat, and di-
eldrin, which affect the cholinergic system, are associated 
with increased AD risk [138]. Some studies have demon-
strated a link between benzodiazepine use and AD risk, 
however, a recent study indicated that there was no increased 
risk [139]. Such varied reports likely indicate that AD 
etiogenesis is multifactorial, with some cases being meta-
bolic in origin, while others have a synaptic pathology. 
However, the majority of synaptic drugs have only had 
symptomatic amelioration. This may reflect the idea that 
synaptic dysfunction is secondary to neuronal loss and cog-
nitive decline later on in the progression of the disease.  

It is important to note that the present work is unable to 
estimate sensitivities and specificities for detection of Alz-
heimer's disease since group averages, not individual patient 
values, were reported in the studies included in our meta 
analysis. As such we are unable to suggest specific neuro-
transmitter and metabolite cutoff levels for clinical guidance. 

CONCLUSION 

This investigation has effectively demonstrated that 
meta-analysis of existing publications can yield considerable 
insight into metabolic and synaptic hypotheses of AD. Syn-
aptic involvement in AD is clear, and drug development 
based on the cholinergic hypothesis has been successful. We 
have invalidated the glutamatergic hypothesis, suggesting 
instead that excitotoxicity could be due to reduced CSF 
GABA levels. Of course these correlations need to be further 
evaluated.  

The role of metabolic dysfunction in AD is less clear cut, 
however it is undisputed that reduced perfusion and glucose 
utilization occur in AD (reviewed [102]). These changes are 
expected to result in metabolic dysfunction. Further exam-
ples of metabolic dysfunction are oxidative damage to TCA 
cycle enzymes [102], and autoantibody attacks on several 
metabolic enzymes [140]. The connection is strengthened by 
the fact that metabolic diseases, obesity and type 2 diabetes, 
are risk factors for AD (reviewed [141]). From a prevention 
standpoint, epidemiological studies indicate that metabolic 
diseases of obesity and diabetes increase the risk of AD, 
while specific diets, such as MIND and Mediterranean [141], 
and caloric restriction [142] appear to reduce AD incidence. 
Indeed, metabolic intervention, albeit in a small study group, 
slowed cognitive decline and in some cases reversed the 
cognitive deficits in AD [143]. However, systematic reviews 
indicate that many dietary, exercise multi-interventions have 
a modest or inconclusive effect on cognitive abilities. These 
reviews were performed by both the Agency for Healthcare 
Research & Quality and National Academies of Science, 
Engineering, and Medicine, and included well known studies 
such as Finnish Geriatric Intervention Study to Prevent Cog-
nitive Impairment and Disability FINGER), Multidomain 
Alzheimer Preventive Trial (MAPT), Advanced Cognitive 
Training for Independent and Vital Elderly (ACTIVE), and 
Prevention of Dementia by Intensive Vascular Care 
(PreDIVA) [144,145].  

 This meta-analytical correlation of metabolites to cogni-
tive dysfunction evaluated the various metabolic hypotheses 
of AD to allow for more precise interventions and therapeu-
tic targets in the future. We are not proposing a catch-all 
theory of AD, but instead are using metabolite correlations 
with AD diagnoses in order to validate several of the hy-
potheses investigated and invalidate others. Our study dem-
onstrates the need for incorporation of routine measurements 
of these metabolites and amino acids in future CSF studies. 
It is our hope that a continued re-evaluation of AD hypothe-
ses will lead to more effective therapeutic options and even-
tually to a cure for AD. Finally, our study also demonstrates 
an important proof-of-concept of this meta-analysis method 
for rapid validation of AD hypotheses, and evaluation of 
therapeutics.  
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