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SUMMARY

Whole-exome sequencing (WES) and de novo variant detection have proven a powerful approach 

to gene discovery in complex neurodevelopmental disorders. We have completed WES of 325 

Tourette disorder trios from the Tourette International Collaborative Genetics cohort and a 

replication sample of 186 trios from the Tourette Syndrome Association International Consortium 

on Genetics (511 total). We observe strong and consistent evidence for the contribution of de novo 

likely gene-disrupting (LGD) variants (rate ratio [RR] 2.32, p = 0.002). Additionally, de novo 

damaging variants (LGD and probably damaging missense) are overrepresented in probands (RR 

1.37, p = 0.003). We identify four likely risk genes with multiple de novo damaging variants in 

unrelated probands: WWC1 (WW and C2 domain containing 1), CELSR3 (Cadherin EGF LAG 

seven-pass G-type receptor 3), NIPBL (Nipped-B-like), and FN1 (fibronectin 1). Overall, we 

estimate that de novo damaging variants in approximately 400 genes contribute risk in 12% of 

clinical cases.

INTRODUCTION

Tourette disorder (TD) is an often-disabling developmental neuropsychiatric syndrome 

characterized by persistent motor and vocal tics. Onset is typically in early childhood, and 

estimates of the worldwide prevalence are between 0.3% and 1% (Centers for Disease 

Control and Prevention, 2009; Robertson, 2008; Scharf et al., 2015). The vast majority of 

children and adults who present for medical attention have other impairing co-occurring 

psychiatric disorders, including obsessive-compulsive disorder (OCD) (do Rosário and 

Miguel Filho, 1997; Ghanizadeh and Mosallaei, 2009; Hounie et al., 2006), attention-deficit/

hyperactivity disorder (ADHD) (Burd et al., 2005; Leckman, 2003; Roessner et al., 2007), 

and mood and anxiety disorders (Cavanna et al., 2009; Hirschtritt et al., 2015). Rates of 

OCD-like conditions, such as trichotillomania and pathologic skin picking (Lochner et al., 

2005), are likewise elevated.

Current treatments for tics and TD have limited efficacy and pharmacotherapies may carry 

significant long-term adverse effects. A fundamental obstacle to identifying novel 
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therapeutic targets is a limited understanding of underlying pathophysiology. There is 

widespread agreement that genetics plays a significant role in TD etiology based on twin and 

family studies (Browne et al., 2015; Mataix-Cols et al., 2015; Pauls et al., 1981, 1991; Price 

et al., 1985). To date, non-parametric linkage analyses (The Tourette Syndrome Association 

International Consortium for Genetics, 1999, 2007) and a genome-wide association study 

(Scharf et al., 2013) have not yet led to reproducible, statistically significant findings. 

Studies of rare pedigrees have identified putative risk genes expressed in the developing 

striatum and mediating neurite outgrowth (Abelson et al., 2005; Stillman et al., 2009) or 

involved in histaminergic neurotransmission (Ercan-Sencicek et al., 2010), signal 

transduction and cell adhesion (Lawson-Yuen et al., 2008; Verkerk et al., 2003), or serotonin 

transport (Moya et al., 2013). None of these findings can yet be considered definitive.

Our group and others have reported on copy number variations (CNVs) in TD (Fernandez et 

al., 2012; McGrath et al., 2014; Nag et al., 2013; Sundaram et al., 2010), confirming a role 

for rare structural variants and showing a trend toward enrichment of de novo events. These 

findings also provide additional support for the involvement of histaminergic 

neurotransmission, as well as dopaminergic neurotransmission, in the pathogenesis of TD 

(Ercan-Sencicek et al., 2010; Fernandez et al., 2012) and suggest a potential overlap with 

CNVs contributing to other neurodevelopmental syndromes (Malhotra and Sebat, 2012).

Studies of de novo sequence variation using whole-exome sequencing (WES) have proven to 

be a powerful approach to systematic gene discovery in genetically complex 

neurodevelopmental disorders (NDDs) apart from TD (Bilgüvar et al., 2010; de Ligt et al., 

2012; Deciphering Developmental Disorders Study, 2015, 2017; Epi4K Consortium, 2016; 

Allen et al., 2013; EuroEPINOMICS-RES Consortium et al., 2014; Rauch et al., 2012), 

particularly autism spectrum disorders (ASDs) (De Rubeis et al., 2014; Dong et al., 2014; 

Iossifov et al., 2014; Iossifov et al., 2012; Neale et al., 2012; O’Roak et al., 2011, 2012; 

Sanders et al., 2012, 2015; Willsey et al., 2013). In light of these findings and our previous 

results suggesting a role for de novo CNVs, we performed WES in 325 (311 after quality 

control) TD parent-child trios from the Tourette International Collaborative Genetics group 

(TIC Genetics; http://tic-genetics.org) to identify de novo single-nucleotide variants (SNVs) 

and insertion-deletion variants (indels). We observe significant evidence for the contribution 

of de novo likely gene-disrupting (LGD) variants (insertion of premature stop codon, 

frameshift, or canonical splice-site variant) to TD. We then replicate these findings in WES 

data from 186 parent-child trios (173 after quality control) from the Tourette Syndrome 

Association International Consortium for Genetics (TSAICG; https://www.findtsgene.org/). 

We also observe evidence for the contribution of de novo damaging variants (LGD and 

probably damaging missense). Overall, we estimate that 12% of clinical cases will carry a de 

novo damaging variant (LGD and probably damaging missense) mediating TD risk and that 

approximately 400 genes are vulnerable to these variants. Finally, a combined analysis 

identifies one high-confidence TD (hcTD) risk gene (false discovery rate [FDR] < 0.1), 

WWC1 (WW and C2 domain containing 1), and three additional probable TD (pTD) risk 

genes (FDR < 0.3) CELSR3 (Cadherin EGF LAG seven-pass G-type receptor 3), NIPBL 
(Nipped-B-like), and FN1 (fibronectin 1). See Figure 1 for an overview of this study.
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RESULTS

De Novo LGD Variants Are Associated with TD Risk in the TIC Genetics Cohort

We first conducted WES of 325 TIC Genetics trios. Dietrich et al. (2015) have previously 

described ascertainment and phenotyping of this cohort (Dietrich et al., 2015). We utilized 

the SeqCap EZ Human Exome v.2.0 library kit (Roche NimbleGen) to capture exomes from 

whole-blood-derived DNA and then sequenced with Illumina HiSeq 2000 technology. In all 

analyses, we compared TD trios passing quality control to control trios from the Simons 

Simplex Collection (SSC) (Fischbach and Lord, 2010a). The SSC consists of simplex 

families: two unaffected parents with a single child affected with autism spectrum disorder 

(ASD). Approximately 80% of these families also include one or more unaffected siblings. 

Therefore, our control trios consist of two unaffected parents and an unaffected sibling. We 

randomly selected 625 control trios from among the 96.9% (n = 2,438 of 2,517) of SSC 

families that had been captured with the same library used for the TIC Genetics cohort and 

sequenced using Illumina technology. 311 TD trios (311/325, 95.7%) and 602 SSC trios 

(602/625, 96.3%) passed quality control (Table 1; Table S1). We summarize sequencing 

metrics in Table 1 and detail all sample- and cohort-level data in Table S1. The distribution 

of de novo coding variants per individual in the TIC Genetics cohort and in the SSC siblings 

follow an expected Poisson distribution (Figure S1), as has been observed in other disorders 

(e.g., Fromer et al., 2014; Homsy et al., 2015; Neale et al., 2012; Sanders et al., 2012; Xu et 

al., 2012).

We conducted Sanger-sequencing-based validation for all de novo variants predicted in TD 

probands and observed confirmation rates of 97.2% in the TIC Genetics trios (97.8% for 

SNVs and 60% for indels). We did not do so in SSC controls, and consequently, for all 

burden analyses, we compared unconfirmed de novo variants identified using identical 

methods from both cohorts. For analysis of recurrent mutations in probands, we relied solely 

on confirmed variants. See Table S2 for detailed annotations of each predicted de novo 

variant, including validation status.

We compared the rate of de novo mutation per base pair (bp), restricting these analyses to 

base pairs covered at ≥20× in all members of a trio (our minimum criteria for de novo 

calling; Sanders et al., 2012). We calculated the rate per base pair as the total number of 

variants observed within this target region. More specifically, for the overall (coding plus 

non-coding) mutation rate (e.g., Table 2), this encompassed the exome capture array 

intervals plus the 100 bp of interval padding added during GATK processing (denoted as 

“total callable” in Table 1). For coding mutation rate (e.g., Table 2; Figures 2A, 2B, 3A, and 

3B), this encompassed the intersection of these intervals with the coding portion of the 

exome based on RefSeq hg19 gene definitions (“total callable exome” in Table 1). This 

strategy normalizes for differences in capture array design and coverage distribution across 

the exome.

We calculated the mutation rate per base pair for each individual. For Figures 2 and 3, we 

plotted the mean of these rates by cohort, along with the 95% confidence intervals (see also 

Table 2). We utilized a one-sided rate ratio test, comparing the number of variants per the 

number of callable base pairs assessed to estimate rate ratios and p values (Table S3).
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Based on consistent observations in other NDDs and our TD CNV analyses, we 

hypothesized that de novo LGD variants would be significantly overrepresented in TD cases 

versus controls. We confirmed this expectation, with de novo LGD variants showing a 

significantly elevated rate ratio in TD probands (rate ratio [RR] 2.14, 95% CI 1.28–3.61, p = 

0.006; Figure 2A; Table 2). De novo missense (Mis) variants, particularly those predicted to 

be damaging by PolyPhen2 (Missense 3 or Mis3; PolyPhen2 [HDIV] score ≥ 0.957; 

Adzhubei et al., 2010, 2013), are also enriched in probands (RR 1.27, 95% CI 1.03–1.57, p = 

0.03; Figure 2A). As a group, therefore, damaging de novo variants (Mis3 and LGD 

variants) occur at a significantly higher rate in coding regions in TD probands versus SSC 

controls (RR 1.38, 95% CI 1.14–1.67, p = 0.003). No differences were seen in the rate of de 

novo synonymous variants (RR 0.91, 95% CI 0.70–1.17, p = 0.8) nor in the rate of in-frame 

indels (RR 0.45, 95% CI 0.019–3.48, p = 0.9). A one-sided binomial exact test, which is 

typically used in WES studies to assess the significance of observed burden differences in 

cases versus controls (e.g., Iossifov et al., 2014; Sanders et al., 2012; Willsey et al., 2013), 

produced consistent results (Figure S2). Indeed, these results more strongly support the 

association of de novo variants with TD. However, as the distribution of callable base pairs 

per sample varied across the cohorts due to differences in experimental design (e.g., library 

capture protocol or sequencing coverage; Table 1; Figure S3), we felt the rate ratio test 

would provide a more accurate estimate of the significance of true variant burden. This 

approach compares the number of variants while also controlling for the per sample 

differences in the number of base pairs with sufficient coverage and quality for de novo 

detection.

We also estimated the theoretical number of variants per individual (exome) based on the 

total size of RefSeq hg19 coding intervals (33,828,798 bp); this is shown as a second axis on 

the same plots (Figures 2A and 2B). We reasoned this would provide a second and 

potentially more accurate comparison metric versus the rate of observed de novo variants per 

individual because the callable exome differed by cohort (Figure S3). The theoretical rate 

also has the advantage of providing an estimate of the total number of expected de novo 

variants under 100% coverage, as opposed to the number of observed variants per individual, 

and is therefore a useful metric for comparing across sequencing studies.

Analysis of the TSAICG Cohort Replicates Association of De Novo Likely Gene-Disrupting 
Variants

We next evaluated 186 TD trios ascertained through the Tourette Syndrome Association 

International Consortium for Genetics (TSAICG). Scharf et al. (2013) have previously 

described the ascertainment and phenotyping of this cohort. We compared the 173/186 

(93.0%) trios passing our quality control metrics (Table S1) to the same set of 602 SSC 

control trios (Table 2; Figures 3A and 3B). Within the TSAICG cohort, we attempted 

validation on only a subset of de novo variants based on their validation likelihood (De 

Rubeis et al., 2014). Within the variants from the TSAICG cohort prioritized for validation, 

94.3% of de novo variants confirmed, with 96.4% of SNVs and 60% of indels confirmed 

(Table S2). Again, all burden analyses were based on unconfirmed de novo variants in both 

TD and control cohorts. The distribution of de novo coding variants per individual in the 

TSAICG also follows an expected Poisson distribution (Figure S1).
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This analysis replicates the association of de novo LGD variants with TD (RR 1.97, 95% CI 

1.03–3.68, p = 0.04, one-sided rate ratio test; Figure 3A; Table 2). Again, neither 

synonymous de novo variants (RR 1.10, 95% CI 0.81–1.47, p = 0.3) nor de novo in-frame 

indels (RR 1.67, 95% CI 0.22–8.97, p = 0.4) showed any differences between TD and 

controls.

There is a male:female sex bias in both the TIC Genetics (3.64; Table 1) and TSAICG (4.97) 

cohorts but not in the SSC sibling trios (0.84); however, mutation rates were not significantly 

different between males and females in the TIC Genetics (p = 0.4, two-sided rate ratio test; 

Table S1), TSAICG (p = 0.9), or SSC siblings (p = 0.3) cohorts. Therefore, despite the 

differences in sex ratio, the direction of effect suggests that, if anything, there is a slightly 

higher rate of de novo variants in females, and therefore, a male-biased TD cohort and a 

non-male-biased control cohort should result in conservative burden estimates.

Managing Batch Effects across Multiple Cohorts and Array Types

We hypothesized that batch effects might confound the combined analyses due to the use of 

three different exome capture arrays and sequencing at different centers (Table 1). Indeed, 

the three cohorts have different coverage distributions (Figure S3) and cluster separately in 

principal-component analysis (PCA) based on sequencing quality metrics (Figure S4). 

Likewise, we observed that “naïve” estimates of de novo variant rates were highly divergent 

across cohorts (Figure S5). However, we did not observe a significant difference in the 

“normalized” de novo variant rates between TIC Genetics, TSAICG, and the SSC control 

trios, suggesting that we adequately controlled for these confounds in our analyses.

Nonetheless, to ensure that the observed increases in de novo burden were not due to 

additional batch effects, we also performed a Poisson regression (Figure 4) to control for 

other factors potentially influencing de novo variant rate and detection. In iterative univariate 

multiple regression analyses, we observed that paternal age, sequencing coverage (percent of 

exome at 2× coverage), sequencing coverage uniformity (fold 80 base penalty), 

heterozygous SNP quality, and the number of de novo synonymous variants provided the 

best model for de novo coding variants. We used the size of the callable coding exome as an 

offset (Table 1; Table S1; Figure S3). The correlation between paternal age and de novo 

variant rate has been previously observed (e.g., Iossifov et al., 2012, 2014; Kong et al., 

2012a; Neale et al., 2012; O’Roak et al., 2012; Sanders et al., 2012). Sex was not a 

significant predictor (Table S1). After controlling for these additional covariates in the 

Poisson multiple regression, de novo LGD variants still remained significantly associated 

with TD risk (Figure 4; RR 2.20, 95% CI 1.19–4.08, p = 0.01; RR 2.23, 95% CI 1.04–4.82, 

p = 0.04 in TIC Genetics and TSAICG, respectively). Additionally, de novo damaging 

variants (LGD + Mis3) showed enrichment in the TIC Genetics cohort (RR 1.38, 95% CI 

1.08–1.76, p = 0.009) and a trend toward enrichment in the TSAICG cohort (RR 1.37, 95% 

CI 0.98–1.92, p = 0.07). Mis3 variants alone were no longer significantly associated in either 

cohort, although we still observed evidence of modest effects in the TIC Genetics (RR 1.27, 

95% CI 0.97–1.65, p = 0.08) cohort.
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Combined Analysis Estimates a Rate Ratio of 2.32 for De Novo LGD Variants

Having observed that putatively deleterious de novo variants are overrepresented in both TIC 

Genetics and TSAICG probands separately, and that the overall rate of de novo mutations 

was not significantly different by cohort (Figure S5), we combined the TIC Genetics and 

TSAICG cohorts (484 TD trios) to obtain an overall estimate for de novo variant burden in 

TD (Figure 4). We observed a significant excess of de novo LGD variants (RR 2.32, 95% CI 

1.37–3.93, p = 0.002, Poisson regression) and de novo damaging (LGD + Mis3) variants 

(RR 1.37, 95% CI 1.11–1.69, p = 0.003). Mis3 variants alone again showed a trend toward 

enrichment in the combined data (RR 1.24, 95% CI 0.98–1.55, p = 0.07). We observed 

similar results with the binomial exact and rate ratio tests (Figures 3A and 3B; Table 2; 

Table S2), as well as a Fisher exact test normalizing for the rate of de novo synonymous 

variants (Figure S6).

De Novo Damaging Variants Contribute to TD Risk in Approximately 12% of Cases

As previously noted, we can estimate the theoretical de novo variant rate per individual 

(exome) by multiplying the observed rate per base pair by the total size of all RefSeq hg19 

coding regions. By subtracting the theoretical rate, per exome, of de novo variants in 

controls from the theoretical rate in probands, we can then estimate the percentage of 

probands in whom a de novo variant is contributing to TD risk (Iossifov et al., 2014; Sanders 

et al., 2015). Based on this calculation, we estimate that 5.0% (95% CI 1.3%–8.7%) of cases 

have a de novo LGD variant and 11.6% (95% CI 2.4%–20.8%) of cases have a de novo 

damaging variant contributing to TD risk (Table 3). Similarly, 6.9% (95% CI 4.9%–8.9%) of 

ASD cases have a de novo LGD variant mediating ASD risk (Sanders et al., 2015).

We can also estimate the fraction of observed proband de novo variants that contribute to TD 

risk (Iossifov et al., 2014; Sanders et al., 2015) by dividing the difference in theoretical rate 

by the theoretical rate in probands. Using this approach, we estimate that 51.3% (95% CI 

13.7%–89.0%) of de novo LGD and 22.9% (95% CI 4.8%–41.0%) of de novo damaging 

variants carry TD risk (Table 3). Again, the estimate for de novo LGD variants in TD is 

similar to that for ASD (45.9%, 95% CI 31.8%–55.5%) (Sanders et al., 2015).

Maximum Likelihood Estimation Predicts that Approximately 400 Genes Contribute TD 
Risk

We next utilized a maximum likelihood estimation (MLE) procedure to estimate the number 

of genes contributing risk to TD, based on vulnerability to de novo damaging variants, as has 

been done recently in congenital heart disease (Homsy et al., 2015). We observed 192 

confirmed damaging de novo variants in 484 TD probands. Therefore, for every possible 

number of risk genes, from 1 to 2,500, we simulated 192 variants. 50,000 permutations were 

conducted: in each permutation, we randomly selected risk genes and then, based on the 

fraction of damaging variants estimated to carry risk, randomly assigned a percentage of 

variants to the risk genes and the rest of the variants to the non-risk genes. We weighted the 

probability of variation by gene size and GC content (He et al., 2013). We then determined 

the combined number of risk and non-risk genes harboring multiple de novo variants and 

recorded when the number of genes with two variants and the number of genes with three or 

more variants in the simulated data matched the number observed in our study (4 and 1, 
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respectively). Based on the frequency of these occurrences versus gene number, we 

determined the MLE of the number of TD risk genes to be 420 genes (Figure 5A). 

Alternatively, based on methods we have used previously to evaluate target size in ASD 

(Sanders et al., 2011, 2012), we estimate 447 genes (95% CI 136.7–932.7).

Recurrent De Novo Variants Identify Four Candidate Genes

We next asked whether de novo variants cluster within specific genes. Here we considered 

only de novo damaging variants that confirmed using Sanger sequencing (Table S2). We 

chose to focus on de novo damaging variants because both LGD and Mis3 variants showed 

evidence of TD association. We identified five genes with multiple (two or more) de novo 

LGD or Mis3 variants. None of these had two de novo LGD variants. Based on our MLE of 

420 risk genes, we estimated the per-gene p and q values for these observations with TADA, 

using the de novo only algorithm (He et al., 2013). Based on previously established q value 

thresholds (FDR thresholds) (De Rubeis et al., 2014; He et al., 2013; Sanders et al., 2015), 

one of these genes is a high-confidence TD (hcTD) gene (q < 0.1)— WWC1 (WW and C2 

domain containing 1)—and three of these genes are probable TD (pTD) risk genes (q < 0.3)

— CELSR3 (Cadherin EGF LAG seven-pass G-type receptor 3), NIPBL (Nipped-B-like), 

and FN1 (fibronectin 1) (Figure 5B).

Prediction of the Number of Risk Genes Identified by Cohort Size

We also utilized our MLE of the number of genes involved in TD risk to predict the likely 

future gene discovery yield from WES. We fixed the gene number at 420 and varied the 

cohort size. Therefore, we calculated the number of variants in each iteration based on the 

cohort size and the observed variant rate per proband. In each iteration, we randomly 

selected 420 TD risk genes and then assigned a fraction of the permuted variants to these TD 

risk genes and the leftover fraction to the remaining non-TD risk genes. This allocation was 

determined based on the fraction of variants estimated to carry risk. We performed 10,000 

permutations at each cohort size, separately randomly generating LGD and Mis3 variants, 

using their observed rates and per-gene likelihoods. These data were then combined, and 

each permutation was run through the TADA de novo algorithm to assess the per gene q 

values. We then recorded the number of pTD genes (q < 0.3) and hcTD genes (q < 0.1) 

observed at each cohort size (Figure 5C). Based on the smoothed curves, the predicted 

number of probable genes for the cohort presented in this study (484 trios) tracked very 

closely with our empirical results: we predict 2.8 pTD genes (we observed 3) and 0.69 hcTD 

genes (we observed 1). Moreover, we can further predict that, at 1,000 trios, we will identify 

approximately 11.8 pTD genes and 3.2 hcTD genes and, at 2,000 trios, will identify 39.8 

pTD genes and 13.4 hcTD genes.

DISCUSSION

Exome sequencing of TD trios establishes the increased rate of de novo LGD variants in 

cases versus controls. We observe this excess burden in two independently ascertained 

cohorts: TIC Genetics and TSAICG. We also observe evidence for enrichment of de novo 

Mis3 variants in TD probands, though statistical significance is not reached in all tests. 

Sequencing of additional trios is certain to clarify this result. As has been well established in 

Willsey et al. Page 8

Neuron. Author manuscript; available in PMC 2018 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exome studies of other NDDs, these results provide a highly reliable avenue for gene 

discovery based on the recurrence of damaging de novo mutations. In the current dataset, 

one gene, WWC1, meets the threshold for high-confidence association and three genes meet 

the threshold for probable association.

The four likely TD genes span a range of biological pathways and functional ontologies and 

are all clearly brain expressed (Kang et al., 2011; Kapushesky et al., 2012; Petryszak et al., 

2014, 2016). Indeed, these genes provide interesting avenues for additional investigations: 

WWC1, also known as KIBRA (kidney and brain expressed protein), is a cytoplasmic 

phosphoprotein that shows evidence of interaction with multiple proteins and pathways 

(Kremerskothen et al., 2003; Rebhan et al., 1997; Zhang et al., 2014). For instance, it may be 

a transcriptional co-activator of estrogen receptor 1 (ESR1), regulate the collagen-stimulated 

activation of ERK-MAPK cascade, and regulate the Hippo/SWH signaling pathway (Zhang 

et al., 2014). It has been demonstrated to have roles in cell polarity, migration, and 

trafficking, as well as learning and memory (Schneider et al., 2010). It is also likely 

regulated by PRKCZ (protein kinase C zeta), a kinase known to play a role in synaptic 

plasticity and memory formation (Büther et al., 2004).

CELSR3 belongs to the flamingo subfamily of non-classic cadherins, which are defined by 

non-interaction with catenins and seven transmembrane domains (Feng et al., 2012). The 

protein encoded by this gene may be involved in the regulation of contact-dependent neurite 

outgrowth (Chai et al., 2015). In mice, Celsr3 appears to be critical for axon pathfinding in 

the central nervous system, with cortico-cortical and cortico-subcortical connections 

defective in mutant mice (Tissir et al., 2005; Zhou et al., 2008). Moreover, the role of Celsr3 
in steering motor axons innervating the dorsal hindlimb and in the anterior-posterior 

patterning of monoaminergic neurons has also recently been demonstrated (Chai et al., 2014; 

Fenstermaker et al., 2010).

NIPBL, also known as Delangin, appears to have two critical functions: (1) it is essential for 

loading the cohesin complex onto sister chromatids during meiosis I and DNA double-

stranded break repair (Peters et al., 2008) and (2) it may influence gene expression during 

development (Zuin et al., 2014). Variants in NIPBL are associated with Cornelia de Lange 

syndrome (CdLS), a developmental disorder characterized by slow growth, moderate to 

severe intellectual disability, and abnormalities of bones in the arms, hands, and fingers 

(Brachmann, 1916; De Lange, 1933). Many affected individuals also have behavior 

problems, including compulsive repetition, anxiety, OCD, and ADHD (Mulder et al., 2017; 

Oliver et al., 2008). Given that approximately 60% of CdLS cases have a heterozygous 

NIPBL variant (Mannini et al., 2013), we were surprised to observe variants in this gene in 

our subjects. However, we only observed Mis3 variants, perhaps suggesting that these 

variants have less severe consequences. Indeed, cdLS severity is highly correlated to the 

expression levels of NIPBL (Kaur et al., 2016), and the de novo Mis3 variants that we 

observed were in exons 29 and 47 whereas exon 10 has the greatest proportion of pathogenic 

CdLS variants (Mannini et al., 2013). In addition, both patients have some phenotypic 

aspects that are consistent with CdLS: (1) the TIC Genetics proband has failure to thrive in 

childhood with adult short stature (final height in the fifth percentile for males), generalized 

anxiety, and irritable bowel, and (2) the TSAICG proband has developmental delay, 
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intellectual disability, and mild hearing loss, although birthweight, height, and weight were 

within normal limits.

FN1 codes for two types of fibronectin-1 protein: a soluble plasma protein, mainly produced 

by the liver and involved in blood clotting and wound healing; and an insoluble protein 

released to the extracellular space, helping with formation of fibrils and the extracellular 

matrix (Frantz et al., 2010; Pankov and Yamada, 2002; Rebhan et al., 1997). Both types of 

proteins are involved in cell adhesion, spreading, migration, and differentiation (Frantz et al., 

2010; Pankov and Yamada, 2002). It is therefore possible that this gene will be similarly 

involved in neurite outgrowth or a similar process during brain development. Indeed, 

homozygous knockout mice display neural tube defects and shortened anterior-posterior 

axes (George et al., 1993). Variants in FN1 also appear to be involved in glomerulopathy 

with fibronectin deposits (Castelletti et al., 2008). Unlike the probands with NIPBL variants, 

affected individuals do not appear to have overlapping phenotypic characteristics, although 

this disorder has a late onset (Castelletti et al., 2008).

Given the current results, a comparison to recent studies of ASD may be instructive: to date 

2,517 simplex SSC ASD families have been reported, and both de novo LGD and Mis3 

variants have been associated with ASD risk, with mutation rates and effect sizes consistent 

with those observed here (e.g., rate ratio of 2.08 versus 1.74 for de novo LGD variants in TD 

versus ASD) (Iossifov et al., 2014). Of note, the ascertainment strategies used in both TD 

cohorts did not restrict to apparently simplex families, as was done in the SSC. Given the 

evidence for an increased burden of de novo variation in simplex versus multiplex families 

in ASD (e.g., Leppa et al., 2016), it would be reasonable to hypothesize that the current 

analysis may underestimate the rate ratios for de novo variants in simplex TD families.

The widespread success in gene discovery leveraging de novo variation in ASD (De Rubeis 

et al., 2014; Dong et al., 2014; Iossifov et al., 2012, 2014; Neale et al., 2012; O’Roak et al., 

2011, 2012; Sanders et al., 2012, 2015; Willsey et al., 2013) strongly argues for additional 

WES in TD. The current gene discovery by cohort size curves predict that increasing our 

study size to 2,517 trios would lead to the identification of ~21 hcTD genes, which is a 

similar order of magnitude to the 27 hcASD genes identified from 2,517 trios in Iossifov et 

al. (2014). Moreover, the integration of de novo CNV data should further increase the yield 

of risk genes (Sanders et al., 2015). The discovery of a large number of TD-associated genes 

will provide a critical substrate for model systems and systems-biological studies aimed at 

understanding the spatial, temporal, and cell-level dynamics of TD pathology (Parikshak et 

al., 2013; Willsey et al., 2013; Willsey and State, 2015; Xu et al., 2014) and, importantly, for 

the development of novel, more effective therapeutic targets.

STAR★METHODS

Detailed methods are provided in the online version of this paper and include the following:
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

TIC Genetics trios (n = 325) Tourette 
International 
Collaborative 
Genetics Study

https://tic-genetics.org/

TSAICG trios (n = 273) Tourette Syndrome 
Association 
International 
Consortium for 
Genetics

https://www.findtsgene.org

Deposited Data

Whole exome sequencing 
data from TIC Genetics (n = 
325)

This paper. SRA: 
SUB2101648

SRA url

Whole exome sequencing 
data from TSAICG (n = 286)

This paper. SRA: 
XXX.

SRA url

Whole exome sequencing 
data from SSC control trios 
(n = 625)

Iossifov et al., 2014 SRA url

Software and Algorithms

Genome Analysis Tool Kit 
(GATK)

DePristo et al., 2011; 
McKenna et al., 
2010; Van der 
Auwera et al., 2013

https://software.broadinstitute.org/gatk/best-practices/

BWA-mem Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

Picard Tools Broad Institute https://broadinstitute.github.io/picard/

Annovar Wang et al., 2010 http://annovar.openbioinformatics.org/en/latest/

PLINK/SEQ Fromer et al., 2014 https://atgu.mgh.harvard.edu/plinkseq/

Primer Design This paper http://primerdesign.willseylab.com/

DeNovoFinder De Rubeis et al., 
2014

Perl & Shell script code for 
data processing & analysis

This paper https://bitbucket.org/willseylab/tourette_phase1

R code for data analysis This paper https://bitbucket.org/willseylab/tourette_phase1

TADA He et al., 2013 http://wpicr.wpic.pitt.edu/WPICCompGen/TADA/TADA_homepage.htm

Other

1000 Genomes GRCh37 
hg19 genome build

N/A http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/human_g1k_v37.fasta.gz

RefSeq hg19 gene annotation N/A http://genome.ucsc.edu/cgi-bin/hgTables?command=start

Intervals file for NimbleGen 
SeqCap EZ Exome v2

Roche NimbleGen https://bitbucket.org/willseylab/tourette_phase1

Intervals file for NimbleGen 
SeqCap EZ Exome v3

Agilent Technologies https://bitbucket.org/willseylab/tourette_phase1

Intervals file for Agilent 
SureSelect v1.1

Roche NimbleGen https://bitbucket.org/willseylab/tourette_phase1

Coding regions only from 
RefSeq hg19 gene annotation

This paper https://bitbucket.org/willseylab/tourette_phase1
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Matthew W State (matthew.state@ucsf.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sample Selection—Two independent collaborative groups recruited 511 parent-child 

trios subjects for DNA sequencing: the Tourette International Collaborative Genetics group 

(325 trios; TIC Genetics; http://tic-genetics.org) and the Tourette Syndrome Association 

International Consortium for Genetics (186 trios; TSAICG; https://www.findtsgene.org/). 

Dietrich et al. (2015) and Scharf et al. (2013) have previously described recruitment criteria 

in detail for each group. Briefly, each of the parent-child trios recruited by TIC Genetics or 

TSAICG consisted of an affected child (proband) meeting criteria for TD or a chronic tic 

disorder based on the Diagnostic and Statistical Manual of Mental Disorders-Fourth edition, 

Text Revision (DSM-IV-TR) (American Psychiatric Association, 2000). Phenotypic data 

available for each cohort is described in more detail in Tables 1 and S1, but briefly: both the 

TIC Genetics and TSAICG cohorts have phenotype data for sex, parental age, co-morbid 

OCD and/or ADHD in the proband, and most have data on whether there is any history of tic 

disorders in the first degree relatives. The TIC Genetics cohort generally has data on tic 

disorders in second-degree relatives as well. Among the 511 total trios sequenced here, 

parental clinical data was available for 487 families. Of these, 442 families (90.8%) had no 

evidence of a tic disorder in either parent. Sibling and second-degree relative histories were 

available for 278 families. Of these, 206 families (74.1%) had no evidence of a tic disorder 

in parents or siblings, and 163 families (58.6%) had no evidence of a tic disorder in parents, 

siblings, or a second degree relative (Table S1).

All adult participants and parents of children provided written informed consent along with 

written or oral assent of their participating child. The Institutional Review Board of each 

participating site approved the study.

METHOD DETAILS

Whole Exome Sequencing

Exome Capture and Sequencing: We performed whole-exome capture and sequencing of 

DNA from 511 affected children and their parents (1,533 samples total). We derived all 

DNA samples from primary blood cells. Of the 511 trios, we sequenced 325 (TIC Genetics) 

at the Yale Center for Genomic Analysis (YCGA), using the NimbleGen SeqCap EZ Exome 

v2 capture library (Roche NimbleGen, Madison, WI, USA) and the Illumina HiSeq 2000 

sequencing platform (74 bp paired-end reads; Illumina, San Diego, CA); 149 (TSAICG) at 

the Broad Institute, using the Agilent SureSelect v1.1 capture library (Agilent Technologies, 

Santa Clara, CA, USA) and Illumina HiSeq 2500 sequencing platform; and 37 (TSAICG) at 

UCLA using the NimbleGen SeqCap EZ Exome v3 capture library (Roche NimbleGen, 

Madison, WI, USA) and the Illumina HiSeq 2500 sequencing platform.

Control Data: We obtained WES data from unaffected parent-child trios (n = 625) from the 

Simons Simplex Collection (SSC) (De Rubeis et al., 2014; Dong et al., 2014; Iossifov et al., 
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2012, 2014; Neale et al., 2012; O’Roak et al., 2011, 2012; Sanders et al., 2012, 2015; 

Willsey et al., 2013). These children and their parents have no evidence of autism spectrum 

or other neurodevelopmental disorders (Fischbach and Lord, 2010b). Like the TIC Genetics 

data, these SSC data were generated from primary blood-derived DNA and sequenced on the 

Illumina HiSeq 2000 sequencing platform after capture with the NimbleGen SeqCap EZ 

Exome v2 array.

Variant Detection: We utilized GATK best practices (https://software.broadinstitute.org/

gatk/best-practices/) for pre-processing and variant discovery (DePristo et al., 2011; 

McKenna et al., 2010; Van der Auwera et al., 2013). We processed each cohort separately, 

including the TSAICG – Broad, and TSAICG – UCLA sub-cohorts. BWA-mem (Li and 

Durbin, 2009) aligned raw reads to the 1000 Genomes GRCh37 hg19 genome build, Picard 

Tools (https://broadinstitute.github.io/picard/) marked duplicates, and GATK conducted base 

quality score recalibration. We conducted variant calling per sample with HaplotypeCaller in 

GVCF mode. Subsequent joint genotyping conducted across each cohort produced a multi-

sample VCF callset for each cohort. Where appropriate, we utilized a list of capture targets 

corresponding to each cohort’s respective library capture kit, with an interval padding of 

100. We applied variant quality score recalibration (VQSR) to each VCF to refine the 

callset. We utilized passing variants only in downstream analyses. Example commands for 

variant calling are located in the project bitbucket repository at https://bitbucket.org/

willseylab/tourette_phase1. Annovar (Wang et al., 2010) annotated variants according to 

RefSeq hg19 gene definitions.

De Novo Variant Detection: We called de novo variants using a combination of 

PLINK/SEQ (Fromer et al., 2014) and in-house scripts (see https://bitbucket.org/willseylab/

tourette_phase1 for example commands). Empirically validated filters identified high 

confidence de novo SNVs and indels (see Sanders et al., 2012). Briefly, we called a de novo 

variant if:

1. The child was heterozygous for a variant with alternate allele frequency (AB) 

between 0.3 and 0.7 in the child and ≤ 0.05 in the parents (i.e., not present)

2. Minimum sequencing depth ≥ 20 in all family members at the variant position

3. Allelic depth for the alternate allele (AD) ≥ 8

4. Observed allele frequency in the respective cohort ≤ 0.001

5. Minimum map quality ≥ 30

6. Minimum phred-scaled genotype likelihood ≥ 20

De Novo Variant Validation: We attempted validation of all de novo coding variants 

predicted in TD subjects. We PCR-amplified whole-blood derived DNA and then Sanger 

sequenced the amplicon. We assessed all family members to ensure that (1) the variant was 

present in the child, and (2) absent in both parents. We predicted 301 de novo coding 

variants in the 311 TIC Genetics trios; however, we were unable to attempt confirmations on 

51 of these variants due to difficulties with primer design, PCR amplification, and/or Sanger 

sequence quality. In the 250 variants with confirmation data, 243 confirmed as true de novos 
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(97.2%). 240/245 of the de novo SNVs confirmed (97.8% confirmation rate), and 3/5 of the 

de novo indels confirmed (60%).

In total, we identified 153 de novo coding variants in the TSAICG data. For each identified 

de novo variant, a Python script developed by Samocha and colleagues (DeNovoFinder) (De 

Rubeis et al., 2014) estimated both the relative probability of a true de novo event versus an 

inherited variant, and the likelihood of validation given a variety of quality control metrics. 

This script estimates the relative probability of true de novo (p_dn) based on the genotype 

likelihood of all trio members (PL, normalized Phred-scaled likelihoods), the allele 

frequency, and the average mutation rate per genome. We assigned one of three levels of 

validation likelihood (high, medium, and low) to each de novo variant as a result of 

combination of the relative probability of true de novo (p_dn), allele balance and read depth 

of all trio members, and allele frequency. Samocha and colleagues’ work shows that the de 

novo SNV and indel variants with high likelihood of validation have validation rate 97.3% 

and 92.3%, respectively. Therefore, we carried out validation on all low de novo variants and 

a subset of medium and high indel de novo variants by Sanger Sequencing or by Sequenom 

SNP genotyping. Due to previously demonstrated high validation rate, we randomly chose 

only 87% of the high SNV variants for validation. For the TSAICG cohort, we were unable 

to attempt validation on 35 variants, and we did not attempt validation on 30 based on the 

validation prediction described above. In the remaining 88, 83 confirmed (94.3%); 80/83 

were de novo SNVs (96.4%) and 3/5 were de novo indels (60%). We provide A list of all 

predicted de novo variants and their confirmation status in Table S2.

Quality Control: We created a panel of informative genotypes to confirm family 

relationships, and we omitted trios if expected family relationships did not confirm, or if 

there were unexpected relationships within or across families (Supplemental Experimental 

Procedures). Additionally, we removed samples with excess de novo variants (> 5).

Picard Tools (https://broadinstitute.github.io/picard/) generated capture, sequencing, 

alignment, and variant level quality metrics; and GATK DepthOfCoverage generated 

coverage metrics for the exome intervals (Table 1; Table S1). Principal components analysis 

(PCA) of these data focused on the first four principal components (PCs) to identify outliers 

(Figure S4). We considered samples greater than three standard deviations (SD) from the 

mean in any of the first four principal components as outliers and removed them from 

analysis. See next section for more details on the PCA.

311 TIC Genetics trios (311/325, 95.7%), 173 TSAICG trios (173/186, 93.0%), and 602 

SSC trios (602/625, 96.3%) passed quality control (Table S1). We provide sequencing 

metrics for all subjects following alignment in Table S1.

Principal-Components Analysis: Although processed concurrently and with the same 

pipeline, the 484 TD trios from the TIC Genetics and TSAICG cohorts, as well as the 602 

SSC control trios, were sequenced at different times using different capture platforms, 

sequencing machines, and genomic core facilities (Figure 1). Therefore, we performed 

principal components analysis (PCA) to check for potential batch effects (Figure S4). We 

collected sequencing quality metrics using the Picard tools CollectHsMetrics, 
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CollectAlignmentSummaryMetrics, and Collect-VariantCallingMetrics. We also estimated 

the number of callable base pairs within each trio as the number of base pairs at ≥ 20× 

coverage in all family members (we refer to this as joint coverage at 20×). These metrics, as 

well as paternal and maternal age, where available, informed the PCA (Table S1). The PCA 

revealed clear batch effects based on sequencing facility, particularly with respect to the 

TSAICG UCLA and Broad subsets, and within the SSC control trios (Figure S4). We 

focused on the first four principal components (PCs), which explain 61.6% of the variance in 

the quality metrics. We considered samples greater than three standard deviations (SD) from 

the mean in any of the first four principal components outliers, and consequently, we 

removed from the analysis the entire family containing that sample (n = 23 of 1219 families 

or 1.89% of all families; Table S1; Figure S4).

Burden Analyses

Comparison to Poisson Distribution: To compare the observed distribution of de novo 

coding variants per individual to the corresponding expected Poisson distribution we 

determined the frequency of the counts per individual for each cohort (TIC Genetics, 

TSAICG, and SSC Siblings) and then plotted this as a histogram. We next plotted a Poisson 

distribution using the dpois R function with lambda (λ) equal to the mean of the counts per 

individual. l was determined per cohort (see #2 below). All three cohorts appear to follow 

the expected Poisson distribution. However, to confirm this, we conducted a Chi Square 

goodness-of-fit test between the observed and expected distributions with the following 

steps (example R code in italics):

1. Determine the number of individuals with 0, 1, 2, 3, 4, 5, or more de novo coding 

variants. Note that because during quality control we trimmed individuals with > 

5 de novo variants the number of individuals with > 5 de novo coding variants is 

0 for each cohort.counts = count(< df with number of de novos per individual >, 
numPassingCoding)$n

2. Create a vector of the number of de novo coding variants within each, separate 

individual and calculate the mean of this vector.x = rep(0:5, times = 
counts)distMean = mean(x)

3. Estimate the probabilities of 0, 1, 2, 3, 4, or 5 de novo coding variants in a given 

individual with the dpois R function, with l = the mean calculated in 2. probs = 
dpois(0:5, lambda = distMean)

4. Estimate the probability of > 5 de novo coding variants in a given individual by 

determining the complement of (3). In other words, 1 – the sum of probabilities 

estimated in (3).comp = 1-sum(probs)

5. Using a Chi-Square test in R (chisq.test), determine the p value for the observed 

distribution being different that the expected Poisson distribution, based on λ = 

the mean calculated in 1. We estimated p values through Monte Carlo 

simulation.pvalue < - chisq.test(x = c(counts, 0), p = c(probs, comp), 
simulate.p.value = TRUE)$p.value
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In all three cohorts, the distribution of observed de novo coding variants per individual was 

not significantly different from the expected Poisson distribution (TIC Genetics, p = 0.96; 

TSAICG, p = 0.74; SSC Siblings, p = 0.77; Figure S1), suggesting the observed distributions 

can be modeled by the Poisson distribution.

Definition of Coding Portion of Exome: We defined the coding portion of the RefSeq hg19 

by restricting to coding exons only (i.e., excluding UTRs, etc) in the RefSeq hg19 gene 

definitions (downloaded from the UCSC Genome Browser, “Table Browser” tool), and then 

merging all overlapping or book-ended intervals with bedtools sort and then bedtools merge 
(Quinlan and Hall, 2010). We then calculated the combined size by summing the intervals 

with awk. The resulting “coding exome” is 33,828,798 bp. The final bedfile, along with 

commands to create it and to calculate the total size are available on bitbucket (https://

bitbucket.org/willseylab/tourette_phase1).

Estimation of Mutation Rate per BP: Within each family, we estimated the rate of de novo 

mutations per base pair (bp). To accurately calculate the rate, we first precisely defined the 

interval within which de novo variant calling was possible. We then calculated the rate per 

base pair as the total number of variants within this target region. We did this both for all de 

novo variants (coding + non-coding) and only for de novo coding variants.

We started with the exome capture array intervals plus the 100 bp of interval padding added 

during GATK processing but further restricted to the portion covered at ≥ 20× in all family 

members (with minimum base quality ≥ 10 and minimum map quality ≥ 20). The coverage 

threshold matches our threshold for de novo calling and the base and map quality thresholds 

correspond to the minimum considered by GATK during variant calling. We denote this 

interval “total callable” (see Table 1). We further defined the “total callable exome” (Table 

1) as the intersection of this interval with the coding portion of the exome, according to 

RefSeq hg19 gene definitions (see previous section).

For the overall de novo mutation rate (i.e., coding plus non-coding variants), we considered 

all variants identified within the total callable (exome + other) interval. For coding mutation 

rate (e.g., Table 2; Figures 2A, 2B, 3A, and 3B), we applied the same approach with the total 

callable exome. This strategy normalizes for differences in capture array design and 

coverage distribution across the exome and precisely estimates coding mutation rate.

To plot mutation rates per cohort (e.g., Figures 2 and 3), we determined the mutation rate per 

individual (number of variants divided by total callable exome), and then determined the 

mean mutation rate per cohort. We provided one vector of data, corresponding to the 

individual mutation rates, to the t.test function in R to estimate the 95% confidence interval.

Alternatively, we can estimate an overall rate per bp as the number of de novo variants of a 

particular class observed cohort-wide divided by the number of callable bp assessed cohort-

wide. These mutation rates were very similar to the mean rates estimated per bp (Table S3).

Estimation of Mutation Rate per Child: We estimated the theoretical rate of coding de 

novo variants per child by multiplying the per bp mutation rate by the size of the RefSeq 
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hg19 coding exome (33,828,798 bp; see “Definition of Coding Portion of Exome”). We then 

determined the mean mutation rate per cohort. Again, we estimated the 95% CI in R using 

the t.test function with one vector of data corresponding to the individual mutation rates. We 

obtained an identical estimate by simply multiplying the mean mutation rate per bp by the 

size of the coding exome.

Rate Ratio Test: We compared de novo mutation rates per base pair in R using a one-sided 

rate ratio test. Essentially, the rate ratio test compares the number of variants observed 

between two cohorts while using the number of base pairs assessed as a denominator. 

Therefore, for this test we utilized the total number of variants observed across each cohort, 

and the total callable bp assessed across each cohort. We used this general format in R:

Where we set x, the number of events, to a vector of length two, containing the number of 

proband variants and the number of sibling variants; T, the event counts, to a vector of 

length two, containing the number of callable bp assessed in probands and in siblings. This 

function estimates the rate ratio, along with 95% CI.

Chi-square Analysis of Deviance: We utilized a chi-square analysis of deviance test to 

determine whether the mutation rates per bp differed between the TIC Genetics, the 

TSAICG, and the SSC Sibling trios. We first conducted a poisson regression with the glm 
function in R and then utilized the anova function to test the resulting model.

The Poisson regression utilized the number of passing de novos of a particular class as the 

response variable, with cohort as the predictor, and callable bp as the offset.

We then passed the model to the anova function and extracted the p value for cohort:

Binomial Exact Test: The binomial exact test has been used in many whole exome 

sequencing studies to assess the burden of de novo variants in cases versus controls (e.g., 

Iossifov et al., 2012, 2014; Sanders et al., 2012). We therefore performed this test as a 

comparison to the rate ratio test conducted in the main text. We utilized the R function 

binom.test, and conducted a one-sided test with ‘hypothesis = “greater”’. We set the test up 

to compare the number of observed de novo variants of a particular class in probands versus 

siblings, accounting for the number of samples in each cohort by estimating the “probability 

of success” based on the proportion of samples that were TD probands versus controls. 

Hence, we used this general format in R:
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Where we set x, the number of successes, to the number of proband variants; n, the number 

of trials, to the total number of proband and sibling variants; and p, the hypothesized 

probability of success, to the fraction of individuals that are probands 

(numberProbands=numberProbands + numberSiblings).

Poisson Regression: We also performed a Poisson regression to control for factors 

influencing de novo mutation rate and detection, such as paternal age and sequencing 

coverage (Iossifov et al., 2014; Kong et al., 2012b; O’Roak et al., 2012; Sanders et al., 

2012), respectively. We used the Akaike information criterion (AIC), implemented in R, to 

assess the relative quality of different Poisson models for predicting the number of de novo 

coding variants. During model selection, we assessed potential covariates versus the 

response variable of coding de novo mutation rate in SSC control trios, and without 

including affected status as a covariate. We chose to look in the SSC trios only, because we 

observed that most batch effects observed across the cohorts were strongly correlated with 

phenotype status. However, repeating these steps across all of the cohorts resulted in the 

same final model (not shown). We determined that paternal age, sequencing coverage 

(percent of exome at 2× coverage), sequencing coverage uniformity (fold 80 base penalty), 

and heterozygous SNP quality provided the best model. Additionally, however, we reasoned 

that the number of de novo synonymous mutations per individual could potentially control 

for additional batch effects affecting the rate of de novo variant detection. Indeed, when we 

included the number of de novo synonymous variants, along with the aforementioned 

covariates, in a Poisson regression to predict the number of de novo nonsynonymous 

mutations (we chose nonsynonymous because coding mutations include the synonymous 

mutations), we observed a stronger model (better AIC) than excluding de novo synonymous 

variants. We used the size of the callable coding exome as an offset because each base pair 

represents an opportunity for a de novo variant. Therefore, the final model to estimate the 

rate ratios, confidence intervals, and p values for association was:

Because of the inclusion of the number of de novo synonymous mutations in the model, we 

did not estimate the rate ratios for de novo synonymous mutations, as was done with the 

other methods. We conducted regression analyses in R using the glm function.

Additionally, we utilized the Bayesian information criterion (BIC) for model selection, 

implemented in R using the bic.glm function from the BMA package. Based on the BIC, the 

best model included percent of bases ≥ 2× and maternal age only. However, we chose to 

utilize all of the covariates identified with the AIC because we felt it was important to 

include additional covariates that may be more relevant when considering other classes of de 

novo mutation. Nonetheless, Poisson regression with the simplified model above results in 

consistent results (not shown).
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Fisher Exact Test: As a third, independent method to estimate burden of de novo variants in 

TD probands versus SSC Siblings, we performed a Fisher exact test that “normalizes” by the 

number of de novo synonymous mutations (Sanders et al., 2012). We chose this method 

because we hypothesized that the number of de novo synonymous mutations per individual 

should be unrelated to phenotypic status, and therefore, could potentially control for batch 

effects affecting the rate of de novo variant detection. For this analysis, we constructed a 2×2 

contingency table from the counts of de novo mutations of a particular class in probands and 

SSC sibling controls, and the counts of de novo synonymous mutations in probands and SSC 

sibling controls. A one-sided Fisher exact test then estimated the odds ratio and p value for 

each class of mutation. For example, for de novo LGD variants in the combined cohort the 

contingency table is:

TD Probands SSC Siblings

De novo LGD 39 22

De novo synonymous 111 134

We then conducted the Fisher exact test in R as:

This estimates an odds ratio of 2.1 with p = 0.0068 for LGD variants.

Percent of Variants Contributing Risk: As mentioned previously (see “Estimate of 

Mutation Rate per Child”), we estimated the theoretical de novo coding mutation rate per 

child based on the observed mutation rate per bp and the number of bp in the RefSeq hg19 

coding exome (Table 3). We then estimated two parameters: (1) the percent of cases that 

have a de novo variant contributing TD risk, and (2) the fraction of observed proband de 

novo variants that contribute to TD risk.

1. The percent of cases that havea de novo variant contributing TDrisk. In order to 

calculate this difference, while also estimating 95% CI’s, we leveraged the t.test 
function in R to determine the mean difference between the rate in TD probands 

and SSC controls. We input two vectors of data, one with mutation rate. This 

function also outputs 95% CI’s for this difference. See Table 3 for results.

2. The fraction of observed proband de novo variants that contribute TD risk. We 

estimated this parameter based on the results in (1): we divided the difference in 

theoretical rate (percent of cases that have a de novo variant contributing risk) 

calculated above by the theoretical rate in probands. To estimate the 95% CI’s, 

we utilized the upper and lower bounds of the 95% CI calculated for (1) in the 

same formula.

TADA: The enrichment of de novo damaging (LGD + Mis3) variants in TD, as well as the 

observation of 5 genes with multiple de novo damaging variants raises the possibility that 

this class of variant targets a set of genes that mediates TD risk. We tested this hypothesis 
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with the transmitted and de novo association (TADA) test, a Bayesian model that can 

effectively combine data from de novo variants, inherited variants in families, and standing 

variants in the population (via case-control cohorts) to assess the association of specific 

genes with TD risk. In this study, we elected not to include rare inherited exome variants 

because we have not yet associated this class of variant with TD risk, as expected given their 

small effect size. Instead, we used a specialized version of TADA that analyzes only the de 

novo variants from exome sequencing data, called TADA-Denovo (He et al., 2013).

The TADA-Denovo test considers two types of variants, de novo LGD and de novo severe 

missense (those predicted by PolyPhen2-HDIV to be “probably damaging” to protein 

function, abbreviated as “Mis3”; Adzhubei et al., 2010, 2013). The main input is the number 

of de novo LGD and number of de novo Mis3 variants per gene. Additionally, we utilized 

the included mutation rates (mu) for all human genes, which are based on Sanders et al. 

(2012). The test analyzes each of these event types separately and then combines the 

evidence in a Bayesian fashion, weighting each type of variant differently.

To compute the Bayes factors and p values, TADA-Denovo requires the following 

parameters:

• ntrio: the number parent-child trios passing QC (484)

• mu: per gene mutation probabilities for each class of de novo variant assessed; in 

our case, de novo LGD and de novo Mis3 variants. The per gene probability of 

any mutation, from Sanders et al. (2012), was modified to reflect the chance of 

each class of mutation by the following steps:

• The fraction of de novo variants that are LGD was estimated as:

• The fraction of de novo variants that are Mis3 was estimated as:

• Next, the per gene overall de novo mutation probability was multiplied by each 

of these fractions to estimate the per gene probabilities of each class of mutation:

• gamma.mean.dn (γ): the average relative risk (γ) is related to the fold-

enrichment (λ, relative to random expectation) and the fraction of causal genes 

(π) by the following equation: π (γ − 1) = λ − 1.
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• We calculated the fraction of causal genes (π) as:

• Fold-enrichment (λ) for LGD as:

• Fold-enrichment (λ) for Mis3 as:

• Solving for the relative risk (γ):

Using these parameters, TADA-Denovo calculates the Bayes factors of all input genes. Next, 

it computes the p value for each gene by generating random mutational data, based on each 

gene’s specified mutation rate, to obtain a null distribution of Bayes factors. We used 1,000 

samplings of de novo variants in each gene to determine null distributions. Finally, TADA-

Denovo calculates a false discovery rate (FDR) q-value for each gene using a Bayesian 

“direct posterior approach.” A low q-value represents strong evidence for TD association.

Estimation of Number of TS Genes

Maximum Likelihood Estimation: In the 484 TD trios passing quality control, we 

observed 199 damaging de novo variants. However, seven of these variants did not pass 

validation, leaving 192 damaging variants. Within these, four genes had two damaging de 

novo variants, and one gene had ≥ 3 damaging variants. Therefore, to estimate the number of 

genes contributing risk to TD, we leveraged a maximum likelihood estimation (MLE) 

procedure to identify the number of genes (we tested between 1:2500) that best fits these 

observations (Homsy et al., 2015).

For each possible number of risk genes, from 1 to 2,500, we simulated 192 variants. We 

repeated this 50,000 times. In each permutation, we randomly selected risk genes and 

randomly assigned a percentage of variants to the risk genes and the rest of the variants to 

the non-risk genes. We based these percentages on the fraction of damaging variants 

estimated to carry risk (27.3%; see below). We utilized the per gene probabilities of 
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mutation from TADA, which are weighted by gene size and GC content (He et al., 2013; 

Sanders et al., 2012). We then counted the number of both risk and non-risk genes that 

harbored multiple variants and recorded when the number of genes with two variants and the 

number of genes with three or more variants in the simulated data matched the number 

observed in our study (4 and 1, respectively). We then calculated the frequency of 

concordance between the permuted data and the observed data. Finally, we determined the 

MLE by plotting the smoothed trend line of frequency versus number of risk genes using 

local polynomial regression fitting (loess in R) and used the predict function in R to estimate 

the MLE of the number of risk genes (420 genes).

To estimate the fraction of damaging mutations carrying risk (E), we calculated M1 and M2, 

the observed rates of de novo damaging variants per TD proband and per SSC sibling 

control, respectively. More specifically, M1 = (199/484) and M2 = (180/602). We then 

estimated E as:

For this calculation, we calculated E from unconfirmed counts (199 proband mutations, 180 

SSC sibling mutations), as confirmation of the sibling de novo mutations was not attempted 

and we reasoned that both populations should have a similar rate of false positives.

We performed a similar estimate in the main text: we divided the difference in theoretical 

rate between probands and SSC sibling controls by the theoretical rate in probands. Using 

this approach, we estimated that 51.3% (95% CI 13.7 – 89.0%) of de novo LGD and 22.9% 

(95% CI 4.8 – 41.0%) of de novo damaging variants contribute risk to TD. However, we 

chose to estimate E using the first method to match work done by (Homsy et al., 2015).

‘Unseen Species’: As has been done previously in ASD (Sanders et al., 2012), we estimated 

the number of risk genes (C) based on the framework developed for the ‘unseen’ species 

problem. This estimate requires four parameters: (1) number of risk associated variants (d), 

(2) total number of observed risk genes (c), (3) number of genes mutated once (c1), and (4) 

probability that newly added variant hits a previously mutated gene (u).

d was estimated as the number of damaging variants observed (199) minus the expected 

number of damaging variants, where the expected number of variants was estimated from 

the SSC control trios. More specifically, we scaled the observed number of damaging 

variants in the 602 control trios (180) to the expected number in 484 trios (180 *(484/602) = 

145). Therefore, we estimated d as 199−145 = 54.

We estimated c, the number of observed risk genes, as d minus the number of recurrent 

variants (11) plus the number of genes with recurrent variants (5). d is the total number of 

risk associated variants, so we subtracted the number of de novo variants present in 

recurrently mutated genes to account for the multiple variants in the same gene. We then 

added back the number of genes with recurrent variants to obtain the final estimate of c 

Willsey et al. Page 22

Neuron. Author manuscript; available in PMC 2018 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(essentially, we removed the extra variants within genes with multiple de novo variants). 

Therefore, c was equal to 54 − 11 + 5 = 48.

We estimated c1 as c minus the number of recurrent genes: c1 = 48 − 5 = 43

We estimated u as 1 − (c1/d) = 1 − (43/54) = 0:2037

Finally, combining all of these parameters, we estimated the total number of risk genes (C) 

to be approximately 447:

To calculate the 95% CI for this estimate, we repeated the analysis, substituting in the upper 

and lower 95% CI’s for the expected number of damaging variants. More specifically, recall 

that we scaled the observed number of damaging variants in the 602 control trios (180) down 

to the expected number in 484 trios (180 * (484/602) = 145). Thus, we similarly estimated 

the upper limit of the expected number of damaging variants by determining the upper CI of 

the number of de novo damaging variants per child in the SSC (0.3443 variants per child) 

using the t.test function in R, and multiplying this estimate by 602 trios and rounding up. For 

example, we determined the upper estimate of the number of expected damaging variants as:

Therefore, we estimated d as 199−167 = 32.

We similarly determined the lower estimate of the number of expected damagaing variants 

as:

Therefore, we estimated d as 199−123 = 76

Utilizing the same formula as above, we then estimated the 95% CI as 136.7–932.7.

Estimation of Gene Discovery by Cohort Size—After estimating the number of 

genes involved in TD risk, we utilized this number to predict the gene discovery yield, as 

additional TD trios are whole-exome sequenced. We fixed the gene number at 420, and 

varied the cohort size. Therefore, we calculated the number of variants in each iteration 

based on the observed mutation rate in probands (based on 199 de novo damaging mutations 

– 7 that failed confirmation = 192 variants). As was done in the MLE, we randomly selected 

TD risk genes, and then assigned a fraction of these variants to TD risk genes and the 

remaining fraction to non-TD risk genes (see below for estimation of fractions). We 

performed 10,000 permutations at each cohort size, and randomly generated LGD and Mis3 

variants separately, using their respective rates and per gene likelihoods. We then combined 

these data and each permutation was run through the TADA de novo algorithm with the 
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same parameters used above for the observed data to assess the per gene q-values. We then 

recorded the number of probable genes (q < 0.3) and high confidence genes (q < 0.1) that 

were observed at each cohort size and plotted the smoothed trend line using local 

polynomial regression fitting (loess in R). The regression model also predicted the number 

of genes identified at a given number of trios.

To estimate the fraction of LGD and Mis3 variants carrying risk (ELGD and EMis3), we 

calculated M1 and M2, the observed rates of de novo LGD or Mis3 variants per TD proband 

and per SSC sibling control, respectively. More specifically, for LGD variants, M1 = 

(39/484) and M2 = (22/602), and therefore, we estimated E as: E = ((M1−M2)/M1) = 

((39/484) − (22/602)/(39/484)) = 0.546. For Mis3 variants, M1 = (303/484) and M2 = 

(158/602), and therefore, we estimated E as: E = ((M1−M2)/M1) = ((303/484) − (158/602)/

(303/484) = 0.206.

As was previously done, we calculated E from unconfirmed counts because we did not 

attempt confirmation of the sibling de novo mutations and we reasoned that both populations 

should have a similar rate of false positives. Moreover, in order to keep these calculations 

consistent with the maximum likelihood estimate and TADA, we did not utilize the 

theoretical rate per individual, as we did in the main text.

QUANTIFICATION AND STATISTICAL ANALYSIS

We conducted all statistical analyses in R (v ≥ 3.31). We have made the R scripts used in 

these analyses available on bitbucket at https://bitbucket.org/willseylab/tourette_phase1. 

Where appropriate, we present data as mean ± the 95% confidence interval (CI). We 

estimate mean and 95% CI with the t.test function. We describe the value of n in the main 

text and/or in Tables 1, 2, and 3, and n stands for number of samples (trios), number of base 

pairs, or number of variants as indicated. We conducted the primary burden analyses with a 

rate ratio test, using the poisson.test function, and comparing, across two cohorts, the 

number of de novo variants per the number of callable bp assessed. When comparing TD 

probands versus SSC controls, we utilized a one-sided test (alternative = “greater”), given 

the prior evidence for the role of de novo mutations in TD and other neurodevelopmental 

disorders. However, we compared rates between TD cohorts with a two-sided test because 

we did not expect these rates to differ. In secondary burden analyses, one-sided binomial 

exact tests (binom.test) and Fisher’s exact tests (fisher.test), as well as a Poisson regression 

(see “Poisson Regression”) also assessed significance.

We did not correct p values for multiple comparisons because our primary hypotheses 

focused on de novo LGD variants, followed by secondary characterization of other variant 

classes. We considered a p value < 0.05 statistically significant and we list individual p 

values in the main text, Figures 2, 3, 4, and 5, and Tables 1, 2, and 3.

As described above in the STAR Methods, we estimated p- and q-values for individual 

association with TD risk with the algorithm, TADA, which is described in detail in He et al. 

(2013).
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DATA AND SOFTWARE AVAILABILITY

Data—We have deposited aligned whole exome sequencing data (.bam files) in the 

Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra/) under accession IDs 

SUB2101648 (Tic Genetics data) and YYY (TSAICG data).

Software—Perl, Shell, and R code used to process these data and complete statistical 

analyses are available on bitbucket at https://bitbucket.org/willseylab/tourette_phase1. Our 

in-house primer design software that generated primer sets for variant confirmations is 

located at http://primerdesign.willseylab.com/.

ADDITIONAL RESOURCES

Description: url. TIC Genetics website. https://tic-genetics.org/

Description: url. TSAICG website. https://www.findtsgene.org

Description: url. Bitbucket repository. https://bitbucket.org/willseylab/tourette_phase1

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Exome sequencing links damaging de novo sequence variants with Tourette 

disorder

• De novo variants in 420 genes contribute risk in 12% of clinical cases

• Recurrent de novo variants identify one high-confidence TD risk gene: 

WWC1

• Gene discovery will exponentially increase as additional cohorts are 

sequenced
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Figure 1. Study Overview
Using WES, we assessed the burden of de novo variants in Tourette disorder (TD) in the 

Tourette International Collaborative Genetics group (TIC Genetics; http://tic-genetics.org) 

and the Tourette Syndrome Association International Collaboration for Genetics (TSAICG; 

https://www.findtsgene.org/) cohorts. We performed an initial analysis of de novo single-

nucleotide variant (SNV) and insertion-deletion variants (indel) in the TIC Genetics cohort 

(n = 325, 311 in parentheses passed quality control [QC]). This was followed by replication 

in the TSAICG cohort (n = 186, 173 passed QC: 143 of 149 samples sequenced at the Broad 

Institute and 30 of 37 samples sequenced at UCLA) and then a combined analysis (n = 484 

trios). We obtained control trios, consisting of unaffected parents and unaffected sibling 

controls, from the Simons Simplex Collection (SSC; n = 625, 602 passed QC). In this figure, 

affected cohorts are outlined in a red box and control trios in blue. After assessing the 

contribution of de novo variants to TD risk, we assessed the number of TD genes that 

contribute to TD risk via damaging de novo variants (likely gene disrupting, a.k.a. LGD, and 

probably damaging missense, a.k.a. missense 3 or Mis3). We then utilized the TADA 

algorithm (He et al., 2013) to identify TD risk genes based on per-gene burden of de novo 

variants. Finally, we predicted the gene discovery yield as additional TD trios are sequenced. 

See Table S1 for detailed sample- and cohort-level information, Table S2 for a list of 

annotated de novo variants, and Table S4 for TADA gene association p and q values.
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Figure 2. De Novo Variants Are Associated with Risk in the TIC Genetics Cohort
We first compared the rate of de novo mutation per base pair(bp) in the TIC Genetics and 

SSC cohorts. We determined the “total callable exome” for each TD proband or SSC sibling 

(Table 1; Table S1). We then calculated the mutation rate per bp for each individual based on 

the observed number of de novo variants and the size of the callable exome. The mean of 

these rates is plotted by cohort in (A) and (B) (see left y axis; see also Table 2). To estimate 

rate ratios and p values, we compared the number of mutations observed per the number of 

callable bp assessed using a one-sided rate ratio test. We estimated the theoretical rate of 

coding de novo variants per individual by multiplying the variant rate by the size of the 

“coding” exome (RefSeq hg19 coding exons; 33,828,798 bp). We display this as the right y 

axis in (A) and (B). We compare the main classes of variants in (A). All classes of de novo 

non-synonymous variants show a significantly elevated rate ratio in TD probands (red) 

versus SSC siblings (blue). As expected, de novo synonymous variants are not significantly 

overrepresented in TD probands (p = 0.8). We compare subclasses of LGD variants in (B). 

Frameshift (FS) indels trend toward a higher rate ratio (RR) than LGD SNVs (RR 6.0, p = 

0.003 versus RR 1.5,p = 0.1). In-frame indels, which are not expected to have marked 

biological impact, are not significantly overrepresented in TD probands (p = 0.9).Aone- 

sided binomial exact test to assess the significance of the observed burden differences in TD 

cases versus controls produced consistent results (Figure S2). Mis3, missense variants 

predicted to be damaging by PolyPhen (Missense 3 or Mis3; PolyPhen2 [HDIV] score ≥ 

0.957).
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Figure 3. Association of De Novo Variants with TD Is Confirmed in the TSAICG Cohort
We next repeated the analyses in a non-overlapping cohort, ascertained and characterized by 

the TSAICG. De novo mutation rate per bp and theoretical mutation rate per child were 

calculated as in Figure 2. The TIC Genetics cohort is in red, TSAICG in green, the 

“Combined” TD cohort of TIC Genetics and TSAICG in purple, and the SSC control trios in 

blue. We compared the rate of de novo variants within the total callable exome with a one-

sided rate ratio test (see Figure 2; Table 1). As in the TIC Genetics cohort, de novo LGD 

variants are elevated in TSAICG TD probands (p = 0.04) (A). De novo damaging variants as 

a group (LGD + Mis3) showed a trend toward enrichment in probands (p = 0.2). Again, FS 

indels occur at a substantially elevated rate (p = 0.02) (B). Neither synonymous de novo 

variants (p = 0.3; A) nor de novo in-frame indels (p = 0.4; B) showed any differences 

between TD and controls. Finally, we combined the TIC Genetics and TSAICG cohorts to 

obtain an overall estimate for de novo variant burden in TD (purple bars in A and B). De 

novo LGD variants are strongly associated with TD risk, occurring 2-fold more frequently in 

TD probands (RR 2.1, 95% CI 1.3–3.4, p = 0.004). De novo damaging variants (LGD + 

Mis3) are also associated (RR 1.3, 95% CI 1.1–1.5, p = 0.006). The distribution of de novo 

coding variants per individual in the TIC Genetics and TSAICG cohorts, as well as in the 

SSC siblings, follows an expected Poisson distribution (FigureS1). Mis3, missense variants 

predicted to be damaging by PolyPhen (Missense 3 or Mis3; PolyPhen2 [HDIV] score ≥ 

0.957).
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Figure 4. Poisson Regression to Control for Paternal Age and Sequencing Coverage Confirms 
Association of De Novo LGD Variants
To ensure that the observed differences in burden were not due to additional batch effects 

(Figures S3–S5), we performed a Poisson regression to control for other factors influencing 

de novo variant rate and detection. We first confirmed that the distribution of de novo coding 

variants per individual in the TIC Genetics and TSAICG cohorts, as well as in the SSC 

siblings, follow an expected Poisson distribution (Figure S1). Next, after several model 

building steps, we selected paternal age, sequencing coverage (percent of exome at 2× 

coverage), sequencing coverage uniformity (fold 80 base penalty), heterozygous SNP 

quality, and the number of de novo synonymous variants as covariates, along with affected 

status, in the regression analysis (Figure S3). The size of the callable coding exome served 

as the offset, and the number of de novo variants in a particular class was the response 

variable. After controlling for these covariates, de novo LGD variants remained associated 

with TD risk in both cohorts, and in the combined cohort, we estimate the rate ratio as 2.32 

(95% CI 1.37–3.93, p = 0.002). Additionally, de novo damaging variants (LGD + Mis3) 

showed enrichment in the TIC Genetics cohort, a trend toward enrichment in the TSAICG 

cohort, and are significantly enriched overall with a rate ratio of 1.37 (95% CI 11.11–1.69, p 

= 0.003). Using this approach to analysis, Mis3 variants alone are not significantly 

associated in either cohort but show a trend toward enrichment in the combined data (rate 

ratio 1.24,95% CI 0.98–1.55, p = 0.07). Other approaches to correct for batch effects 

consistently supported an increased burden of de novo LGD and damaging variants in TD 

probands (see Figures S2 and S6 for details). Mis3, missense variants predicted to be 

damaging by PolyPhen (Missense 3 or Mis3; PolyPhen2 [HDIV] score ≥ 0.957).
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Figure 5. Recurrent De Novo Damaging Variants Identify Four Likely TD Risk Genes
(A) Given the number of confirmed damaging de novo variants observed in 484 TD 

probands (192) and an empirical estimate of the fraction of these carrying risk, we used a 

maximum likelihood estimation (MLE) procedure to estimate the total number of “target” 

genes. After 50,000 permutations, we estimate that 420 genes contribute to TD risk based on 

vulnerability to de novo damaging variants. We identified five genes with recurrent de novo 

LGD or Mis3 variants confirmed using PCR and Sanger sequencing (Table S2).

(B) We estimated the per-gene p values and q values for recurrence with TADA using the de 

novo only algorithm (He et al., 2013). Based on previously established q value (false 

discovery rate) thresholds (see De Rubeis et al., 2014; He et al., 2013; Sanders et al., 2015), 

one of these genes, WWC1, is a high-confidence TD (hcTD) risk gene (q < 0.1), and three of 

these genes are probable TD (pTD) risk genes (q < 0.3; shown in A). The fifth gene, TTN, 

did not meet this threshold (q = 0.76), as expected given its large size.

(C) The estimate of 420 genes derived from (A) was utilized to predict the likely future gene 

discovery yield as additional TD trios are whole-exome sequenced. For each of 10,000 

permutations, we ran simulated variants through the TADA de novo algorithm to assess per-

gene q values. We then recorded the number of pTD genes (q < 0.3) and hcTD genes (q < 

0.1) observed at each cohort size and plotted the smoothed trend line using local polynomial 

regression fitting. The regression model also predicted the number of genes identified at a 

given number of trios. The predicted number of TD genes for the cohort presented in this 

study (484 trios) tracked very closely with our empirical results: we predict 2.8 pTD genes 
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(we observed 3) and 0.69 hcTD genes (we observed 1). Mis3, missense variants predicted to 

be damaging by PolyPhen (Missense 3 or Mis3; PolyPhen2 [HDIV] score ≥ 0.957).
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Table 1

Cohort-Level Information, Quality Control, and Sequencing Metrics

Cohort TIC Genetics TSAICG-Broad TSAICG-UCLA SSC Siblings

Samples sequenced (trios) 975 (325) 447 (149) 111 (37) 2,124 (708)

Samples passing QC (trios)a 933 (311) 429 (143) 90 (30) 1,806 (602)

Male:Female (sex ratio)b 244:67 (3.64) 115:28 (4.11) 29:1 (29.0) 275:327 (0.84)

Paternal agec 32.83 (±0.61) 33.29 (±0.81) 31.25 (±2.20) 32.99 (±0.47)

Exome capture platform Nimblegen EZ
Exome V2

Agilent SureSelect v1.1 Nimblegen EZ
Exome V3

Nimblegen EZ
Exome V2

Size of capture region 44,001,748 bp 32,760,120 bp 63,564,965 bp 44,001,748 bp

RefSeq hg19 coding region coveredd 32,586,393 bp 31,844,591 bp 33,644,238 bp 32,586,393 bp

% Refseq hg19 coding region covered 96.33% 94.13% 99.45% 96.33%

Mean callable exome (million bp) 27.52 (±0.66) 26.84 (±1.11) 27.09 (±3.63) 25.80 (±1.06)

Total callable exome (million bp) 8,560.01 3,838.13 812.71 15,529.00

Total callable exome + other (million bp) 17,108.37 6,549.29 2,089.62 28,584.79

Mean total reads per sample (million) 99.03 (±1.42) 86.45 (±2.68) 105.17 (±3.71) 111.33 (±1.89)

Mean read length 76 (±0) 75.98 (±0.004) 100 (±0) 77.64 (±0.71)

Passing unique aligned reads (million) 93.64 (±1.33) 73.40 (±2.04) 86.17 (±3.04) 102.43 (±1.64)

% passing, unique reads aligned 99.76% (±0.01%) 98.70% (±0.03%) 99.68% (±0.03%) 98.95% (±0.12%)

Number of bases in target (million)e 2,748.94 (±39.20) 2,505.88 (±66.45) 1,964.89 (±67.91) 2,256.09 (±41.76)

% Duplicate reads 5.17% (±0.07%) 13.19% (±0.35%) 17.52% (±1.39%) 6.46% (±0.20%)

Mean coverage in targete 80.79 (±1.15) 73.65 (±1.95) 57.75 (±2.00) 66.31 (±1.23)

Median coverage in targete 67.72 (±1.00) 62.41 (±1.68) 46.19 (±1.60) 55.73 (±1.05)

% target at 2×e 94.89% (±0.05%) 92.53% (±0.03%) 96.49% (±0.07%) 94.76% (±0.07%)

% target at 10×e 90.20% (±0.13%) 87.72% (±0.14%) 92.38% (±0.25%) 88.34% (±0.13%)

% target at 20×e 83.76% (±0.22%) 81.57% (±0.31%) 84.72% (±0.95%) 79.51% (±0.30%)

% target at 40×e 68.77% (±0.40%) 66.41% (±0.81%) 57.97% (±1.97%) 59.37% (±0.63%)

Fold 80 vase penalty 3.27 (±0.03) 3.29 (±0.01) 2.37 (±0.02) 3.65 (±0.37)

Het SNP 1uality 10.97 (±0.04) 9.27 (±0.05) 12.68 (±0.10) 11.08 (±0.04)

Base pair error rate 0.0034 (±0.0001) 0.0043 (±0.0001) 0.0043 (±0.0001) 0.0044 (±0.0001)

Novel transition/transversion ratio 2.01 (±0.02) 2.30 (±0.02) 2.23 (±0.05) 2.13 (±0.01)

Novel insertion/deletion ratio 0.51 (±0.01) 0.31 (±0.02) 0.52 (±0.03) 0.42 (±0.01)

We sequenced two Tourette disorder (TD) cohorts in this study: TIC Genetics and TSAICG. Two different locations sequenced the TSAICG—the 
Broad Institute and UCLA. We compared these cohorts to control trios from the Simons Simplex Collection (SSC). Three different library kits 
captured exomes with different target sizes and, therefore, varying coverage of RegSeq hg19 coding regions. Mean and median coverage differed 
across the cohorts. To control for these factors, we determined the number of “callable” bp, or the number of bp in each family that have ≥20× 
coverage in all family members. We summed these lengths across all families within a given cohort to determine the “total callable” bp. We then 
intersected these coordinates with RefSeq hg19 coding exons to determine the “total callable exome,” or the number of bp within RefSeq coding 
exons that had sufficient coverage for de novo calling. Picard Tools (https://broadinstitute.github.io/picard/) generated capture, sequencing, 
alignment, and variant level quality metrics, and GATK DepthOfCoverage generated coverage metrics for the exome intervals. We remove samples 
with excess de novo variants (>5). A panel of informative genotypes confirmed familiality, and trios were removed if expected family relationships 
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did not confirm or if there were unexpected relationships within or across families. If any family member failed QC, we removed all family 
members from the analysis. Principal-component analysis (PCA) revealed outliers, which we removed from analysis (Figure S4). Sequencing 
metrics summarized in this table are from samples passing QC only. We provide quality control information and detailed sequencing metrics for all 
subjects in Table S1.

a
Statistics were estimated from passing samples only

b
Calculated from children only. Mutation rates were not significantly different between males and females in the TIC Genetics (p = 0.4, two-sided 

rate ratio test, STAR Methods), combined TSAICG (p = 0.9), or SSC siblings cohorts (p = 0.3). See also Table S1

c
Calculated from parents only

d
Size determined from intersection of exome capture array intervals plus 100 bp interval padding (added during GATK processing) with RefSeq 

hg19 coding intervals

e
Target refers to entire Refseq hg19 coding regions (33,828,798 bp). Where applicable, sequencing metrics include ± 95% confidence intervals
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Table 3

Contribution of De Novo SNVs to TD Risk

Variant Type Theoretical rate per child (±95% CI)a
% of cases with mutation 
mediating risk (±95% CI)

% of mutations carrying risk 
(±95% CI)

Combined TD Cohort

TD Control

(N = 484) (N = 602)

Likely Gene 
Disrupting (LGD)

0.098 (0.067 – 0.13) 0.048 (0.028 – 0.067) 5.0% (1.3%–8.7%) 51.3% (13.7%–89.0%)

Damaging (LGD + 
Mis3)

0.51 (0.44 – 0.58) 0.39 (0.33 – 0.45) 11.6% (2.4%–20.8%) 22.9% (4.8%–41.0%)

To estimate the percentage of probands in whom a de novo variant is contributing to TD risk, we subtracted the theoretical rate, per exome, of de 
novo variants in controls from the theoretical rate in probands (Iossifov et al., 2014; Sanders et al., 2015). We predict that 5.0% (95% CI 1.3%–
8.7%) of cases have a de novo LGD variant and 11.6% (95% CI 2.4%–20.8%) of cases have a de novo damaging variant contributing TD risk. To 
estimate the fraction of observed proband de novo variants that contribute to TD risk, we divided the difference in theoretical rate by the theoretical 
rate in probands (Iossifov et al., 2014; Sanders et al., 2015). Based on this approach, we predict that 51.3% (95% CI 13.7%–89.0%) of de novo 
LGD and 22.9% (95% CI 4.8%–41.0%) of de novo damaging variants carry TD risk.

a
Theoretical rate per child was calculated per individual. Mean theoretical rate and 95% CI was then calculated per cohort based on individual rates 

(see STAR Methods and Table 2 for more details)
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