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Searching for heavy fermion (HF) states in non–f-electron systems becomes an interesting issue, especially in the
presence of magnetism, and can help explain the physics of complex compounds. Using angle-resolved photo-
emission spectroscopy, scanning tunneling microscopy, physical properties measurements, and the first-principles
calculations, we observe the HF state in a 3d-electron van der Waals ferromagnet, Fe3GeTe2. Upon entering the
ferromagnetic state, a massive spectral weight transfer occurs, which results from the exchange splitting. Mean-
while, the Fermi surface volume and effective electronmass are both enhanced.When the temperature drops below
a characteristic temperature T*, heavy electrons gradually emergewith further enhanced effective electronmass. The
coexistence of ferromagnetism andHF state canbewell interpreted by the dual properties (itinerant and localized) of
3d electrons. This work expands the limit of ferromagnetic HF materials from f- to d-electron systems and illustrates
the positive correlation between ferromagnetism and HF state in the 3d-electron material, which is quite different
from the f-electron systems.
INTRODUCTION
Spins residing on a periodic lattice can exhibit peculiar behaviors when
they are coupled to other interactions. For example, when spins are ar-
ranged periodically, magnetically ordered states arise (1). When spins
scatter itinerant electrons within a Kondo scenario, Kondo singlet states
emerge (2). In f-electron heavy-fermion (HF) systems, the localized
f-spin is a necessary prerequisite for the appearance ofmagnetism and
HF state, which originate from the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction and Kondo effect, respectively. Whereas for 3d-
electron systems, the delocalization of d orbitals raises the question of
whether theHFbehavior andmagnetism could be achieved in the same
compound. Another imperative task is to understand the origin of the
effective electron mass enhancement observed in d- and f-electron
systems (3, 4). The driving forces of the enhancement are various, such
as electron correlations (5), Kondo effect (2) or electron-bosonic mode
coupling (6), and so on. Further investigation will be needed to under-
stand the mass enhancement in 3d-electron ferromagnets.

Recently, a van der Waals ferromagnet, Fe3GeTe2 (FGT), with a
Curie temperature ofTc = 230 Kwas synthesized (7, 8). The single-layer
FGT reveals a significant uniaxialmagnetocrystalline anisotropy energy
(9), which could be applied for magnetic storage media such as tap and
hard disks. Surprisingly, the value of the Sommerfeld coefficient of FGT
has reached 135mJ/(K2·mol) (7, 10–12), implying a large effective elec-
tron mass renormalization. However, theoretical calculations suggest
that the remarkablemass enhancement is beyond naive band renorma-
lizations (10, 11). By replacing Fe with Ni, the ferromagnetism of FGT
disappears, and the Sommerfeld coefficient reduces to 9 mJ/(K2·mol)
(10), implying correlations between ferromagnetism and electronmass.
The critical behavior of FGT is close to themean-fieldmodel, indicating
a long-range ferromagnetic (FM) interaction around the critical point
(13). Angle-resolved photoemission spectroscopy (ARPES) and
scanning tunneling microscopy/spectroscopy (STM/STS) are ideal
probes for resolving electronic structures in complex materials. In d- or
f-electron systems, the two techniques have revealed both themagnetism
and renormalizations of band dispersions, respectively (4, 5, 14, 15).
These capabilities make FGT a promising candidate for investigating
the relationship between effective electron mass and ferromagnetism.

Here, the coexistence of itinerant ferromagnetism and Kondo lattice
behavior is observed in FGT. Exchange splitting induces amassive spec-
tral weight transfer in the FM state revealed by ARPES. An additional
Fano resonance feature observed by STM and the coherent-incoherent
crossover exhibited in transport and magnetic measurements below a
characteristic temperature T* indicate the emergence of a Kondo lattice
behavior in FGT. Together with the first-principles calculations, the
coexistence of the two phenomena can be well interpreted by the du-
al properties of 3d electrons. This work illustrates the positive corre-
lation between ferromagnetism and Kondo lattice behavior in FGT
and needs further advances in theoretical approaches for 3d-electron
FM HF compounds.
RESULTS
Crystal and electronic structures
Figure 1 (A and B) depicts the schematic crystal structure of FGT. Its
most pronounced character is the layered Fe3Ge substructure sand-
wiched by two layers of Te atoms. The adjacent Te layers are connected
byweak vanderWaals interactions (7). Consequently, themost possible
termination is the layer of Te atoms. The high quality and orientation of
the as-grown facet of FGT are confirmed by the x-ray diffraction (XRD)
pattern in Fig. 1D. One termination is observed exclusively, except for
the few steps in Fig. 1E. The step height and nearest-neighbor atomic
distance in Fig. 1 (F andH) agreewell with the lattice parameters of FGT
(P63/mmc, a = 0.399 nm, c =1.63 nm) (7).

The observed Fermi surface (FS) contour consists of a circular-
shaped pocket (a), a hexagonal-shaped hole pocket (b) centered at
the G point, and an elliptical-shaped pocket (g) centered at the K point
in Fig. 2 (A and B). The band a and hole-like band b cross EF. Band q
extends to a higher binding energy (BE), andband e is located at a 500- to
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600-meV BE (Fig. 2C). When the light source becomes He I light, the
band a disappears, and another hole-like band emerges around the G
point in fig. S2. Around the K point in Fig. 2E, a nearly nondispersive
bandh is located at the 500-meVBE, indicating its localizednature. Band
g crosses EF and connects band h with a much weaker spectral weight.

Spectral weight transfer in the FM state
To trace the origin of the effective electron mass enhancement in FGT,
the temperature dependence of the electronic structure of band g is ex-
hibited in Fig. 3. Two-petalled band g evolves into waterfall-like bands
Zhang et al., Sci. Adv. 2018;4 : eaao6791 12 January 2018
below a 40-meV BE in Fig. 3B1. With the increase of temperature, the
two-petalled band weakens and totally disappears above 260 K. Mean-
while, spectral weight redistributions are observed with the increase of
temperature in Fig. 3C. (i) The peak centered at a 50-meV BE weakens.
(ii) The dip centered at a 200-meV BE starts to drain away. (iii) The
hump centered at a 500-meV BE has a lower intensity.

The quantitative analysis of the redistribution is shown in Fig. 3E.
Above Tc, the spectra do not exhibit significant changes. Below Tc, the
redistribution of the spectra deepens with the decrease of temperature.
Similar redistributions can be observed around the G point and other
momentum position in fig. S2, indicating that the spectral weight trans-
fer is independent of the details of band structures. For a FMmetal, the
exchange splitting follows the Stoner model, according to which the
splitting emerges below Tc (1, 14). The spectral weight transfer, which
is also observed in other ferromagnets [such asMnP and CoS2 (14, 16)]
to some extent, is a signature of the exchange splitting in FGT. For ex-
ample, the enhanced density of state (DOS) at a 500-meV BE and sup-
pressed DOS at a 200-meV BE in the FM state can be explained by the
calculations (10) that support the Stoner model.

We find that the onset temperature of the FM transition is slightly
higher than the bulk Tc in Fig. 3 (C and E). The spectral weight transfer
already happens just above Tc. Broken symmetry at the surface is likely
to influence the FM state due to the breakdown of the long-range FM
interaction (13) and may account for the slightly increased onset tran-
sition temperature relative to that of the bulk material. The phenomena
have already been observed in other magnetic materials, such as URu2Si2
(17) and MnP (14).

We extract the dispersion and peak width of band g near EF using
theMDC analysis shown in Fig. 3 (G andH). The dispersion at 260 K is
linear near EF. When the temperature decreases, the band dispersion
above a 40-meV BE bends to larger momentum values accompanied
by smaller group velocities. By performing a conventional analysis
(18), we fit straight lines in the dispersions between ±10 meV of EF in
Fig. 3G.We extract a quantity of nF(260 K)/nF(80 K) = 5.29 ± 0.95, where
nF(80 K) and nF(260 K) are group velocities of band g at 80 and 260 K,
respectively. Consequently, we deduce an effective electron mass
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Fig. 1. Crystal structure of FGT. (A) Side and (B) top views of the crystal structure of FGT. Inequivalent Fe sites are labeled as I and II, respectively. The most possible cleaving
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enhancement:m80 K/m260 K = nF(260 K)/nF(80 K) = 5.29. Furthermore, the
quantitative analyses of the width at EF and the position shift of MDC
peak of band g are shown in Fig. 3H. In the PM state, the position shift
and the width of the MDC peak stay immobile. In the FM state, the
width starts to decrease, and the position shift starts to increase monot-
onously. Themarked suppression of the peakwidth and enhancedDOS
near EF of band g indicate that the formation of a coherent state is below
Tc. Besides, the increase of peak position shift in the FM state reveals
that the enlarged FS volume and effective electron mass are directly
related to the PM-FM transition.

The evolution of band g as a function of temperature can be well
explained by exchange splitting. Exchange splitting separates spin-up
and spin-down channels of the electronic states and shifts the weakly
dispersive valence bands to EF in the FM state, which is highlighted
by the calculation results in Fig. 3G. Specific heat measurements show
Zhang et al., Sci. Adv. 2018;4 : eaao6791 12 January 2018
a large effective electron mass enhancement of ~m*/mb = 13.3 in FGT,
where mb is determined from density functional calculations or the
nonmagnetic reference material Ni3GeTe2 (7, 10, 11). The calculation
result allows an estimated effective mass of 2.61 mb due to correlation-
induced renormalization (10). Our observation of the ferromagnetism-
related renormalization in band g provides direct evidence of an effective
electron mass enhancement of ~5.29mb. However, it is still insufficient
to account for the total enhancement. More investigations should be
made to illustrate this issue.

Emergence of Fano lattice behavior
Because of the lack of information about the unoccupied states revealed
by ARPES, we perform STM to probe the total electronic structure
around EF. Two peaks can be observed in dI/dV spectra, whereas their
intensities are highly dependent on the locations in Fig. 4C. The Fermi
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level is located at the edge of peak B at 6 K, indicating an enhancement
of the DOS at EF. This consequently induces another effective electron
mass enhancement. In the dark area in Fig. 4 (A and B, points 1 to 3
and 8), the intensity of peak A (−50 meV) is much weaker than that of
peak B (+25meV), whereas in the bright area (points 4 to 7), the intensity
of peak A is comparable with that of peak B. The excitation at a 50-meV
BE is consistent with the peak near EF, as revealed by ARPES in Fig. 3C,
whichoriginates fromthePM-FMtransition.As the temperature is raised,
we find that the position of peak A is nearly unchanged, whereas peak B
rapidly broadens in Fig. 4D. The two peaks respond differently to tem-
perature and spatial locations (fig. S6), indicating their different origins.
The behavior of peak B is reminiscent of the Fano resonance peak in
Kondo systems (17). In a Kondo system, the Fano line shape naturally
occurs because of the presence of two interfering tunneling pathing from
theSTMtip, onedirectly into the itinerant electronsand theother indirectly
through the heavy quasi-particles. The Fano resonance line shape follows

dI=dVº
ðeþ qÞ2
1þ e2

; e ¼ eV � e0
G

ð1Þ
Zhang et al., Sci. Adv. 2018;4 : eaao6791 12 January 2018
Here, q reflects the quality of the ratio of probabilities between the two
tunneling paths, e0 is the energy location of the resonance, and G is the
resonance half width at the half maximum (HWHM).

We find that all the spectra around EF can be well fit with a combi-
nation of the Fano resonance peak and the Lorentzian peak in Fig. 4E.
The temperature dependence of HWHM of the Fano peak extracted
from the fitting is shown in Fig. 4F. Fortunately, the width of peak B
is nearly spatially independent, allowing us to extract a reliable HWHM
at different temperatures. Results for the single-channel spin one-half
Kondo impuritymodel (17, 19) in a Fermi liquid regime have been used
to describe the temperature dependence of HWHM

HWHM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpkBTÞ2 þ 2ðkBTKÞ2

q
ð2Þ

and to extract the value of the Kondo temperature of FGT (TK≈ 190 ±
20 K). The success of this model at describing the spectra indicates the
existence of a possible Kondo lattice behavior in FGT, which reveals
that localized spins reside on the periodic lattice at high temperature
and are coupled with itinerant electrons with reduced temperature. As
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the temperature is raised to 100 K, peak A is nearly unchanged,
whereas the Fermi level shifts to the minimum in the two-peak struc-
ture in Fig. 4D, implying the diminution of peak B and decreased ef-
fective electron mass. The Fano line shape and width evolution as a
function of the temperature of peak B agree well with the behaviors
of the Kondo peak in HF systems.

Recently, another FM–antiferromagnetic (AFM) transition has
been reported in FGT inside the FM state (20). However, the strength
of the signal of antiferromagnetism is fairly weak and is 60 times
smaller than that of its ferromagnetism. Besides, some electronic char-
acterizationmethods, such as resistivity, specific heat, and thermal con-
ductivity (7, 12)measurements, also fail to detect such a smallmagnetic
signal, indicating that theweak transition is electronic state–insensitive.
Consequently, we propose that the AFM transition cannot explain the
Fano-shaped peak in our STS data, which are totally reflections of
electronic states.

Although the Kondo lattice behavior is not the exclusive explanation
of the Fano resonance peak observed in the dI/dV curves, we could con-
firm that the enhanced Sommerfeld coefficient or effective electron
mass is highly related to the electronic contributions. Because STM
and ARPES are tools to characterize the electronic states, the situation
is quite different from some other layeredmagnetic compounds, such as
CrCl3, CrSiTe3, CrI3, and Mn3Si2Te6 (21–24). These compounds have
relatively large Sommerfeld coefficients but are electrically insulating,
demonstrating that the large Sommerfeld coefficients of those
compounds are independent of any charge carriers, probably related
to magnetic excitations. The electronic structure differences between
Zhang et al., Sci. Adv. 2018;4 : eaao6791 12 January 2018
FGTand the othermagnetic compoundsmentioned above indicate that
electronic excitations are responsible for the enhanced effective electron
mass in FGT and not themagnetic excitations observed in themagnetic
insulating compounds.

Coherent-incoherent crossover in the FM state
To further study the possible Kondo lattice behavior in FGT, we per-
form transport and magnetic measurements, as shown in Fig. 5. Except
for the PM-FM transition at 230 K, a coherent-incoherent crossover
at T* ~ 110 ± 20 and 150 ± 20 K is observed in resistivity and mag-
netic susceptibility curves in FGT, respectively. It should be mentioned
that the line shapes of the measured curves in the crossover regions
in Fig. 5 (A and B) are quite different from those at Tc, where the
curves show abrupt kink structures. It implies that the physics asso-
ciated with the crossover behavior is different from the PM-FM
transition. Nevertheless, since Fe deficiency has been observed in the
FGT single crystal (12), can this crossover behavior be a reflection of
the Fe-deficient parts of the crystal? Recently, an Fe-deficient FGT com-
pound, Fe2.9GeTe2, was synthesized and exhibits a Curie temperature of
178 K, which is largely suppressed compared with the transition tem-
perature of the stoichiometric compound. Except for the abrupt change
in the resistivity curve at 178 K, a crossover behavior has been observed
below 80 K (25). A similar crossover behavior could also be observed in
themagnetic susceptibility curve of the Fe-deficient FGT, except for the
marked change atTc (12). These phenomena indicate that the crossover
behavior is different from the FM-PM transition in an Fe-deficient
compound. The slopes of resistivity and magnetic susceptibility show
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significant changes below T*, similar to other d-electron HF systems,
such as AFe2As2, CaCu3Ir4O12, and LiV2O4 (3, 26, 27). We would like
to emphasize that these crossover behaviors have been widely observed
in f-electron HF materials and are related to the hybridization between
local moments and conduction electrons (28–32). The great similarity
to other d- and f-electron HFmaterials also strongly suggests a possible
Kondo scenario for FGT.

In the FGT compound, the coherent temperature T* is different
from the Kondo temperature TK≈ 190 ± 20 K, which is extracted from
the fitting of the Fano resonance peak. The separation of the two tem-
peratures is widely observed in 4f- or 5f-electron materials, such as
CeCoIn5, URu2Si2, and USb2 (17, 33–35). On the other hand, in HF
systems, a scaling behavior is observed as follows (36)

g ≈
Rlog2
TK

≈
10000
TK

½mJ=ðK2⋅molÞ� ð3Þ

where g is the Sommerfeld coefficient. For FGT, because there are three
Fe atoms per formula unit, g is about 135/3 = 45mJ/(K2·mol Fe), andwe
can obtain the calculated Kondo temperature TK ≈ 222 K, which is in
excellent agreement with our experimental value. All these results fur-
ther qualify the FGT compound as a d-electron HF system.

Being in the Kondo regime implies that the atoms must host, at
least, a localized d-electron level whose magnetic moment is screened
by conduction electrons. The last piece of the puzzle is the origin of the
localized spins in FGT. For example, one pronounced characteristic of
the electronic structure of FGT is the nearly nondispersive band h,
which is confirmed by ARPES measurements in Fig. 2E and calcula-
tion results in Fig. 5 (C andD). The dispersion of band h is reminiscent
of the f0 state located at a 2-eV BE in 4f-electron systems (37), which
would act as local moments in HF materials. The hybridization be-
tween localized h band and conduction band is distinct in Fig. 5D. Ex-
cept for band h, the hybridization between other weakly dispersive
bands and the strongly dispersive band near EF is also observed in
the lower panel in Fig. 5D, which could induce a hybridization gap
and enhance the effective electron mass of FGT. The similar hybrid-
ization has been widely observed in f-electron HF systems (33). Fur-
thermore, the Rhodes-Wohlfarth ratio of FGT also indicates an FGT
compound lying in the region between localized and itinerant ferro-
magnetism (7, 12, 38, 39). Exchange splitting plays a significant role
for the formation of the Kondo lattice behavior in FGT. Exchange
splitting separates the spin-up and spin-down channels of electronic
states and shifts the weakly dispersive bands to EF, providing a plat-
form for the hybridization between localized state and itinerant state
near EF. The calculation results provide a direct vision of how heavy
electrons emerge in an itinerant ferromagnet.
DISCUSSION
The flat band observed by ARPES in Fig. 2E demonstrates that when
plentiful electrons are restricted in a small area, strong electronic corre-
lations occur. According to the calculations of Zhu et al. (10), the
strength of the Hubbard interactions in FGT is about U = 5 to 5.5 eV,
which is similar to the values of other HF systems. For example, the
strength of Hubbard interactions in a d-electron HF compound
KFe2As2 is about U = 5 eV (40). The value in a classical f-electron HF
compound CeIn3 is U = 6.2 eV (41). The similar environment of the
d- or f-local orbitals provides a platform for the formation of the simi-
lar properties, such as the HF state. Although the calculations merged
Zhang et al., Sci. Adv. 2018;4 : eaao6791 12 January 2018
with the single-site dynamical mean-field theory produce the mag-
netic moment nearly the same with the experimental value, the elec-
tron mass enhancement cannot be fully explained in these calculations
(10). This indicates the existence of other interactions in this compound,
except for the electronic correlations. Considering the existence of local-
ized electrons, the suitable Hubbard interactions, the Fano line shape
STS curves, the crossover behaviors in the transport andmagneticmea-
surements, and the direct observation of hybridization between dif-
ferent bands in the calculations, we propose that the Kondo lattice
behavior is present at low temperature in FGT.

To date, neither the local scenario nor the itinerant scenario is suf-
ficient to account for the coexistence of itinerant ferromagnetism and
Kondo lattice behavior in FGT. Both of them should be taken into ac-
count, which is somehow similar to the situations in f-electron systems
(42). The coexistence between the Kondo lattice behavior and FMorder
has already been observed in f-electron systems, such as UTe (43), CePt
(44), CeSix (45), CeAgSb2 (46), URu2−xRexSi2 (47), UGe2 (48), URhGe
(49), and so on. However, the coherent temperature is usually higher
than the Curie temperature in those materials, opposite to FGT. The
relatively high Curie temperature in FGT may result from the higher
degree of delocalization of the 3d states than f states (50). On the other
hand, the magnetism of f-electron HF systems mainly results from the
RKKY interaction. The Kondo effect and RKKY interaction exhibit
clear anticorrelation (51). For FGT, the Kondo lattice behavior is highly
related to its ferromagnetism. It deserves to bementioned that theKondo
effect has already been observed in 3d-electron FM atomic contacts
(Fe, Co, andNi). The nanoscale size of the samples is a dominant factor
for the formation of local moment and decrease of the FM coupling
with neighboring atoms (52). Kondo lattice behavior in a 3d-electron
bulk ferromagnet presents a brand new issue.

In summary, we perform ARPES, STM, transport, magnetic mea-
surements, and the first-principles calculations to illustrate the
electronic structure of the van der Waals ferromagnet FGT. The co-
existence of itinerant ferromagnetism and Kondo lattice behavior is ob-
served in this 3d-electron material. The ferromagnetism leads to a
massive spectral weight transfer revealed by ARPES. The Kondo lattice
behavior is confirmed by the Fano resonance feature revealed by STM,
coherent-incoherent crossover by transport and magnetic measure-
ments, and the calculation results. The dual nature of 3d electrons plays
a significant role in the coexistence of the two phenomena. This work
expands the limit of FMHFmaterials from f- to d-electron systems and
clarifies the underlying coexistence of magnetism and Kondo lattice
physics in 3d-electron bulk materials.
MATERIALS AND METHODS
Sample growth and characterization
High-quality single crystals of FGT were grown by the chemical
transport method, with iodine as the transport agent (7). The chem-
ical compositions of the single crystals were determined by energy-
dispersive x-ray spectroscopy. XRD measurements were performed
on a PANalytical X’Pert Pro diffractometer (Cu Ka radiation). The
resistivity and dc magnetizationmeasurements were performed with
the Quantum Design Physical Property Measurement System.

STM measurements
STM experiments were performed with a low-temperature ultrahigh
vacuum system. The FGT crystals were cleaved in the preparation
chamber with pressure better than 5 × 10−11 mbar at 77 K and then
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immediately transferred to the STM scanning stage cooled at 6 K with
pressure better than 1 × 10−11 mbar. A tungsten tip was used for the
STM measurements. Before each measurement, the tip was treated
and calibrated carefully with Cu(111) surface. After eachmeasurement,
the tip was recheckedwith Cu(111) surface to exclude the tip states. The
dI/dV spectra were acquired by the standard lock-in technique.

ARPES measurements
ARPES experiments with p-polarized (21.2-eV He Ia) light were per-
formed at the National Synchrotron Radiation Laboratory in Hefei,
China (with a home-built ARPES) using a VG ARUPS 10 (VG Scienta
R4000) electron analyzer. The overall energy and momentum resolu-
tionswere 30 (10)meV and 0.012 (0.006)Å−1, respectively. The samples
were cleaved in situ along the (001) plane andmeasured under ultrahigh
vacuumbetter than 8 × 10−11mbar. A freshly evaporated gold sample in
electrical contact with the FGT sample was served to calibrate EF. The
surfaces of FGT were very stable and showed no signs of degradation
over 24 hours.

First-principles calculations
The electronic structures of Te-terminated FGT for FM phase and PM
phases were calculated with the projector-augmented wave method, as
implemented in theVienna ab initio simulation packagewithin the local
density approximation. The Ceperley-Alder functional was used to de-
scribe the exchange correlation potential, and the cutoff energy of plane
wave was 700 eV. TheMonkhorst-Pack grid was chosen as 18 × 18 × 2.
The total energy was converged to 10−5 eV. The calculated average
magnetic moment per Fe atom of FGT was 1.454 mB, within the range
of experimental values (7, 8, 10).
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/1/eaao6791/DC1
fig. S1. Hysteresis loop for H parallel to the c axis at 2 K.
fig. S2. Spectral weight transfer at other momentum locations.
fig. S3. Enlarged Fermi surface volume in the FM state.
fig. S4. Spatial-resolved low-energy dI/dV spectra at different temperatures.
fig. S5. Band structures of Te-terminated FGT in the PM state.
fig. S6. The positive correlation between ferromagnetism and Kondo lattice behavior.
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