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Unlocking data sets by calibrating populations
of models to data density: A study in atrial
electrophysiology

Brodie A. J. Lawson,1* Christopher C. Drovandi,1 Nicole Cusimano,2 Pamela Burrage,1

Blanca Rodriguez,3 Kevin Burrage1,3†
The understanding of complex physical or biological systems nearly always requires a characterization of the varia-
bility that underpins these processes. In addition, the data used to calibrate these models may also often exhibit con-
siderable variability. A recent approach to deal with these issues has been to calibrate populations of models (POMs),
multiple copies of a singlemathematicalmodel butwith different parameter values, in response to experimental data.
To date, this calibration has been largely limited to selectingmodels that produce outputs that fall within the ranges of
the data set, ignoring any trends thatmight be present in the data.We present here a novel and generalmethodology
for calibrating POMs to the distributions of a set ofmeasured values in a data set.Wedemonstrate our technique using
a data set from a cardiac electrophysiology study based on the differences in atrial action potential readings between
patients exhibiting sinus rhythm (SR) or chronic atrial fibrillation (cAF) and the Courtemanche-Ramirez-Nattel model
for human atrial action potentials. Not only does our approach accurately capture the variability inherent in the ex-
perimental population, but we also demonstrate how the POMs that it produces may be used to extract additional
information from the data used for calibration, including improved identification of the differences underlying strati-
fied data.We also showhowour approach allows different hypotheses regarding the variability in complex systems to
be quantitatively compared.
INTRODUCTION
Mathematical modeling is vital for the understanding of complex
phenomena, but the use of mathematical models requires careful spec-
ification of their parameter values against available data. In many appli-
cations, model predictions can vary sharply in response to even small
changes in the values of their parameters, and yet, experimental efforts
to determine these values are invariably associated with either some
kind of uncertainty or inherent variability underlying the processes that
are being measured. In biological and physiological contexts, for exam-
ple, not only are these uncertainties typically very large, but also the
values of representative parameters exhibit considerable variation be-
tween different members of a population due to differences in physiol-
ogy and genetics. Properly accounting for this variability using
mathematical models is critical to furthering understanding in these
fields (1).

With regard to uncertainty quantification, techniques such asMonte
Carlo sampling (2), polynomial chaos expansions (3), and Bayesian
approaches, including Gaussian processes (4), allow the impacts of un-
certainty in parameter values upon model outputs (predictions) to be
quantified, or parameter values and their uncertainties to be determined
in response to data collected for model outputs. However, each works
from the perspective of a single, immutable model with some fixed un-
certainties in its inputs and corresponding uncertainties in its outputs.
This approach becomes an issue when one wishes, for example, to de-
termine which features (parameter values) in a population predict dif-
ferent classes of outputs or to consider the impacts of changes to the
underlying model itself.
On the other hand, a very natural approach for modeling and
understanding the variability within populations is the recent technique
known as populations of models (POMs) (5–7). In this approach, a col-
lection of varying individuals is represented in kind by a collection of
individual models, with the idea that the collection of models exhibits
the same variability as the population being modeled. Although each
individualmodel typically differs only in termsof the values of its param-
eters, each remains a model in its own right, allowing subpopulations
within the POM to be identified and analyzed, and the underlying
model to be easily adjusted once a POM has been constructed. Some-
what related are genetic algorithms that use multiple copies of a model
with differing parameter values as their organisms (8), although there
the focus is on breeding a single model that best fits data for a single
individual, and not on characterizing variability in a population.

Here, ourmotivating application is that of cardiac electrophysiology,
although the POM technique has also been used in biomechanics (9)
and cholesterol pharmacology (10, 11) and is highly relevant to systems
biology in general (12). The action of the heart depends on the excitable,
highly nonlinear (13) nature of cardiac cells, which undergo a carefully
controlled process of ion uptake and release in response to electrical
stimulus. In addition to the temporary intake of Ca2+ ions that produces
the cellular contraction associated with the heartbeat, control of the
potential difference across the cell’s membrane also prevents it from be-
ing restimulated too quickly. The time course of the membrane
potential in response to stimulus is known as the action potential
(AP), and it is the AP or the important features of it (biomarkers) that
are commonly recorded in single-cell experiments.

POM research has been very active in this setting, inspired by devel-
opments in neuroscience (5, 6) and beginning with the sensitivity anal-
ysis studies of Sobie (14). An important advancement was then to
calibrate these POMs in response to experimental or clinical data so that
the models in these in silico populations generated outputs that were
physiologically reasonable (7). These calibrated POMs have been used
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to great effect, including suggesting modifications to existing models of
rabbit ventricular (15) and human atrial cells (16) required to reproduce
specific data; determining the electrophysiological properties that lead
to the dangerous phenomena of alternans (17, 18), repolarization ab-
normalities (19), and atrial fibrillation (20); and characterizing the
sources of the differing function of failing hearts (21). The technique
has also been used to explore the variable response of a population to
antiarrhythmic drug treatments (7, 22, 23), to the onset of ischemia in
rabbits (24), and to the effects of hypertrophic cardiomyopathy (25).
Most relevant to our work, calibrated POMs were used by Sánchez et al.
(26) to explore the differences between patients exhibiting sinus rhythm
(SR) or chronic atrial fibrillation (cAF).

To date, calibration of POMs has been achieved almost exclusively
by rejecting any trialedmodels that produce outputs that correspond to
measurable quantities falling outside the ranges of observations for
those same quantities in the data set (27). This prevents any obviously
unphysical models from being accepted into the population but does
not necessarily guarantee a good correspondence with the biomarkers’
distribution in the experimental data. Selection of models according to
the ranges of values observed in the data creates a feasible region that is
necessarily hyperrectangular, whereas the actual multidimensional
spread of experimental measurements may be a much more complex
shape. In addition, it may be desirable that the selected models not only
are feasible but also together exhibit key features of the distributions of
experimental data, such as regions of high or low density and correla-
tions between measured quantities. Of course, these considerations are
only relevant when there are sufficient data to reasonably estimate the
distributions of the measured quantities, and otherwise, range-based
calibration is highly appropriate. Two recent works in cardiac electro-
physiology did select parameter values by ensuring that the models
together exhibited appropriate mean and SD for the experimental mea-
sures of interest (28, 29), a step toward the distribution-driven calibra-
tion technique we introduce in this publication.
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We extend a recent statistically informed sampling technique for
POM construction (22), sequential Monte Carlo (SMC), to propose a
new method that produces POMs directly calibrated to data distribu-
tions. As compared to Latin hypercube sampling (LHS), the uniform
sampling approach typically used for range-based calibration (27),
SMC identifies regions of the parameter space that correspond to a
higher density of data and generates proportionally more samples in
these locations. It also allows the complexity of the sampling problem
to be introduced in a gradual fashion, relevant also when calibrating to
ranges (22). We demonstrate not only how our calibration technique
generates POMs that reproduce the distributions in experimental data
but also,more importantly, how this type of calibration allows addition-
al insights to be gained from these data. Specifically, we demonstrate
how biomarker data from myocytes taken from SR and cAF atria en-
code almost all of the differences in ion channel expression that char-
acterize the cAF pathology, but that distributions of the biomarkers
must be used for calibration to recover them. We also show that our
distribution-calibrated POMs serve as amethod for parameter selection
in response to data and as a tool to explore different hypotheses regard-
ing the sources and extent of variability in unobserved properties that
manifest experimentally observed variability. We finally conclude by
discussing our new approach, when and how it should be used, and
the implications for modeling and understanding variability in all its
manifestations, both within and outside of cardiac electrophysiology.
EXPERIMENTAL DATA AND MODEL CHOICE
The experimental data we use to demonstrate our techniques for data-
calibrated POMs were presented by Sánchez et al. (26) and consist of
biomarker valuesmeasured from recorded APs for 469 cells taken from
the right atrial appendages of 363 patients. These patients belonged
to either one of two groups, those exhibiting standard SR and those
exhibiting cAF. Thus, not only are there two data sets for which we
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Fig. 1. Experimental recordings of AP biomarkers show significant differences between SR and cAF. Pairwise scatterplots of each unique pair of biomarkers in the SR data
set (blue) and the cAF data set (red). Clear differences in how biomarker values are distributed between the two populations are seen, especially for the APD biomarkers. Overall,
the data exhibit a large amount of variability, highlighting the importance of characterizing this variability in understanding cardiac electrophysiology.
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demonstrate our calibration process, but also we are able to explore
how the in silico populations calibrated to the two data sets compare.
The large number of recordings in the data setmakes it particularly suited
to the idea of distributional calibration, because the distribution implied
by the data can be meaningfully estimated.

The biomarker values used to quantify the recorded APs are the AP
duration computed at 20, 50, and 90% repolarization (APD20, APD50,
and APD90, respectively), the AP amplitude (APA), resting membrane
potential (RMP), the membrane potential at 20% of APD90 (V20), and
the maximum upstroke velocity (dV/dtmax). More information regard-
ing the experimental conditions under which the data were collected is
available in the study of Sánchez et al. (26).

Figure 1 visualizes the spread of biomarker values for both SR and
cAFAPs. Clear differences in the distributions of SR and cAF biomarkers
are immediately apparent, and when the biomarkers are considered in-
dividually, all of them, except for dV/dtmax, show a statistically significant
difference (P < 0.001) between SR and cAF myocytes (26). It is thus rea-
sonable to expect that calibration of these two data sets will be indicative
of the differences that underlie the cAFpathology, as compared to SR.We
also note that the values of dV/dtmax range as high as 434 V/s, which is
much larger than the typical values of 150 to 300V/s for this biomarker in
atrial myocytes (30, 31).

To construct our in silico POMs, we selected the Courtemanche-
Ramirez-Nattel (CRN) model (32) following preliminary studies that
suggested that out of three potential models, it was most able to capture
biomarker values seen in the Sánchez et al. data set. A separate bench-
marking study also suggested that this model, despite being one of the
first developed for human atria, predicted APDs very well for data from
both SR and cAF patients (33). POMswere then constructed by allowing
the conductances of the model’s most important currents to vary (see
Materials and Methods for further details and justification). However,
as will be seen later, our approach initially struggled when attempting
to replicate the larger values of dV/dtmax in the data set and the relation-
ship between this biomarker and APA.Modifying the search parameters
to additionally include a time constant associated with the inward Na+

current, and allowing the conductance of this current to vary more signif-
icantly, allowed these features of the data set to be much better captured.

In addition, we later make use of data regarding ion channel remodel-
ing under cAF froma variety of individual studies. These data are used not
for calibration but solely to compare observations in the literature with
predictions from our calibrated POMs.
RESULTS
SMC significantly improves calibration of POMs to data
We used 2000 particles to initialize our SMC sampling process (see
Materials and Methods for details of the algorithm), obtaining POMs
composed of 1938 unique models for the SR data and 1931 unique
models for the cAF data. Using 10,000 trialed models generated using
LHS (10 samples with 1000 divisions in each parameter dimension)
produced 1319 accepted models for the SR data set and 1338 models
for the cAF data set after calibration to biomarker ranges. We note that
these numbers should not be compared as a measure of efficiency, be-
cause the SMC algorithm involvesmultiplemodel runs for each particle
and solves amore difficult sampling problem that takes the distributions
of the data into account.

For the SR data set, the SMC-calibrated POMs show a significantly
better degree of localization to data-dense regions in the biomarker
space when compared to POMs calibrated to biomarker ranges (Fig. 2).
Lawson et al., Sci. Adv. 2018;4 : e1701676 10 January 2018
Over the selected range of parameters, the CRNmodel tends to produce
APD90 and RMP values lower than most of the data and APA values
higher than most of the data, and so, these models are then overrepre-
sented in the LHS POM, which only rejects models that fall outside of
the range of the data. Our POM calibrated to data density using SMC
greatly reduces the impacts of this “model bias” and also captures very
well the extent of variance in the V20 values in the data set. However,
there are still clear discrepancies in the distributions for RMP and dV/
dtmax, especially the latter, where neither the distribution-calibrated nor
the range-calibrated POMs produce any models with dV/dtmax at the
upper end of the range in the data. We specifically address this issue
later in the paper. Figure 2B shows the constructed POMs and the data
in terms of each of the different pairs of biomarkers, making it clearer
how our SMC sampling approach is selecting models more concen-
trated in regions of higher data density. However, it is evident that a
further removal of some models of the population would improve the
concordance between POM and data, highlighting the importance of
our refinement process that we describe subsequently. The results for
the cAF data set are very similar (fig. S1).

Refinement via selection of optimal subpopulations
captures well the variability in data sets
To further improve the fit between constructed POMs and data, we in-
clude a second phase of our calibration process that selectively removes
models from the SMC-constructed POMs, which we term “refine-
ment.” Our easily approximated divergence measure, r, provides a
means for selecting this subpopulation using a simulated annealing-
type algorithm (see the “Further POM refinement” section inMaterials
and Methods).

For the SR data set, minimizing r produced a refined POM of 275
models with very good representation of variability in the data set (red
line in Fig. 3), with the marginal distributions of the biomarkers
matching verywell apart fromAPD20,APA, and dV/dtmax. The inability
of the calibration process to capture the distributions of these biomar-
kers is predominantly explained by the strong correlation in the model
between APA and dV/dtmax, as seen in Fig. 2B (third row, third col-
umn). This correlation inescapably ties these two biomarkers together
and prevents the refinement process from selecting models that are ap-
propriately spread across both at once.

The inability to disentangle dV/dtmax fromAPA in the model, along
with the model’s consistent underestimation of this biomarker as com-
pared to the data, motivates the use of a second divergence measure r̂
(see Materials and Methods) that reduces the emphasis on this bio-
marker in the calibration process. When a subpopulation that mini-
mizes r̂ is selected, the result is a POM composed of 327 models
that show slight improvements in themarginal distributions of the other
biomarkers and a more significant improvement in APD20 (blue line
in Fig. 3). As might be expected, the distribution of APA values is now
exceedingly well represented in the POM, because the algorithm’s ef-
forts to minimize the divergence from the maximum upstroke velocity
no longer hamper its ability to fit the distribution of the highly
correlated APA. Table S1 also shows how the key statistical properties
of the biomarker data are captured by our refined POM. Similarly, good
performance is also achieved by refined POMs calibrated to the cAF
data set (fig. S2 and table S1).

Figure 3B provides a visual demonstration of the two-phase calibra-
tion process, showing the selection of a subpopulation of SMC-selected
models that correspondswell to the density of data across the biomarker
space by minimizing r̂. Although a large proportion of models are
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Fig. 2. Calibration to biomarker distributions as opposed to their ranges reduces model bias. (A) Marginal distributions of the biomarkers in the SR data set (black) and
POMs calibrated to biomarker distributions using the SMC algorithm (blue) or calibrated to biomarker ranges using LHS (red). The natural logarithm of APD20 values is used to
better display their distribution. SMC for distributional calibration is seen to provide a significant improvement in agreementwith the data. (B) Pairwise scatterplots of each unique
pair of biomarkers in the SR data set (white) and the POMs constructed using SMC matched to distributions (blue) and LHS matched to ranges (red). The SMC-generated POM
demonstrates good localization to the dense regions in the data but requires further calibration. An obvious correlation between APA and dV/dtmax is exhibited by the model,
regardless of the sampling method used, but this correlation is not present in the data.
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rejected by this process (83% for the SR data set), larger POMs can be
generated as desired by using additional particles in the SMC algorithm
or by modifying the “energy” minimized in the refinement process so
that POMs of a larger size are encouraged. We also note that the im-
Lawson et al., Sci. Adv. 2018;4 : e1701676 10 January 2018
proved performance of calibrating to our modified divergence measure
r̂comes at little cost to the value of the original divergencemeasure r,
as shown by table S2. For this reason, we favor POMs calibrated by
minimizing r̂ in the remainder of this work.
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Our SMC sampling process with subsequent refinements has been
seen to successfully produce POMs that accurately reflect the distribu-
tions of outputs in the data for two (SR and cAF) data sets that show
significant variation between individual samples. This was achieved
using a strongly nonlinearmodel andmoderately high numbers of both
variable parameters and observed biomarkers. However, the issue that
our POMs show a strong correlation between the biomarkers dV/dtmax

andAPA remains, despite very little relationship between these two bio-
markers in the data. We now explore whether further variability in ad-
ditional parameters can explain this discrepancy.

Variability in Na+ ion channel inactivation further explains
the trends in upstroke velocity
The upstroke portion of the AP is controlled primarily by the inward
sodium current INa, and so, we focus our exploration of additional var-
iability on this current. One hypothesis is that variation in the time con-
stant of the “h” gate, which controls the initial inactivation of INa, could
explain the lack of correlation betweenupstroke velocity andAPA in the
data, yet implicit in the calibrated POMs. If the rate at which INa
switches off during the upstroke is varied, then this serves to decouple
these two biomarkers. For example, a fast upstroke need not necessarily
also lead to a highAPA if INa deactivatesmore quickly. Variability in the
rate of this inactivation has been experimentally observed in human
atrial myocytes (34).

Introducing a scaling parameter for this time constant, th(scale), we
performed a new calibration, with this additional parameter allowed
to vary ±100% along with the channel conductances. In addition, we
increased the range of gNa so that it could take values up to +300%
to give theCRNmodel the best chance at realizing the very high upstroke
velocities seen in the data set. Refinement for this studyminimized r, not
r̂, because our goal is to specifically explore whether the distribution of
dV/dtmax in the data can be captured by our calibration process.

The new distribution-calibrated POMs show less correlation be-
tween dV/dtmax and APA, although the two biomarkers still remain
more strongly correlated than in the data. The result is best demon-
strated for the cAF data set, shown in Fig. 4A. Furthermore, the
marginal distribution of dV/dtmax is significantly improved (Fig. 4B),
with little lost in the fit to distributions of the other biomarkers (table
S2). The results for SR are very similar (fig. S3). This suggests that var-
iance in the inactivation rate of INa may be an important contributor to
the variability seen in AP upstrokes in the data.

Distributional calibration produces POMs that capture
important data features
Previous POM studies in cardiac electrophysiology have been almost
entirely limited to varying only ion channel conductances, given their
established importance to variability in cardiomyocyte behavior (27).
This reflects the large variation of ion channel numbers across individ-
ual myocytes. Furthermore, there are less clear mechanisms for
incorporating the variability associated with additional parameters
controlling the time and voltage dependencies in ion channel activa-
tion/inactivation. For these reasons, we return to the original POMs
where the only variable parameters are the channel conductances,
and refinement is performed by minimizing r̂, reducing the emphasis
on dV/dtmax. We now investigate how these distribution-calibrated
POMs can be used to inform cardiac electrophysiology and hence dem-
onstrate the advantages offered by our calibration technique.

We begin by directly considering the most important output of the
populations of CRNmodels that we have produced, the APs, shown in
Lawson et al., Sci. Adv. 2018;4 : e1701676 10 January 2018
Fig. 5. Significant differences between the SR and cAF populations are
immediately observed. SR APs demonstrate an initial period of very
rapid repolarization after the AP peak, and then an extended plateau
phase before gradual repolarization back to the resting potential. In
contrast, cAF APs show much less significant initial repolarization,
but their lack of any significant plateau phase and overall faster re-
polarizationproduces significantly lowerAPDs (andhence a decreased
refractory period).

These features are well known to be associated with cAF, which is
characterized by far more triangular APs that lack a noticeable plateau
phase and return to resting potential more rapidly than APs in healthy
SR (35). The morphological differences between SR and cAF APs are
seen in the data, with the rapid repolarization followed by plateau in
the SR population implied by very small APD20 values and larger
APD50 values, whereas the AP triangulation in the cAF population is
seen in larger APD20 but smaller APD50 values. Calibrating to distribu-
tions naturally takes these features of the data into account, successfully
selecting models that predict the appropriate morphologies. When ca-
librating to ranges for this data set, the models selected do successfully
produce APs that show the reducedAPD as associated with cAF but are
less successful in predicting the accompanying differences in AP mor-
phology [see fig. S4 and figures 2 and 3 in the study of Sánchez et al.
(26)].We note that previous studies have created additional biomarkers
that can be expressed in terms of the original biomarkers, such as mea-
sures of triangulation based on combinations of differentAPDvalues, to
allow more effective calibration by capturing these additional features
(21). However, our method does not depend on identifying the impor-
tant trends in data or on designing additional outputs to capture them,
making it generally applicable.

Accurate prediction of the specific shapes of the APs for SR and cAF
patients is important because it suggests that the differential actions of
the many ionic currents that together produce the AP are being well
captured by the POMs calibrated to distributions. This is critical when
it comes to using these POMs for further analysis, such as considering
the response of the different members of the population to drug treat-
ments that act on specific membrane currents (7, 22) or identifying the
differences in underlying electrophysiology that characterize the two
populations. We demonstrate these aspects in the following subsection.

Distributional calibration produces POMs that capture key
atrial electrophysiological aspects
Impacts of cAF-induced remodeling
We have constructed POMs calibrated to the SR and cAF data sets by
varying the relative strengths of the different currents that contribute to
the human atrial AP, and thus, any significant differences in parameter
values selected for the two data sets suggest that changes in these cur-
rents produce the modified APs associated with the cAF pathology.
Electrical remodeling of atrial myocytes that changes the densities of
their different ion channels is a well-known feature of cAF and contrib-
utes to the persistence of the condition (36). Dobrev and Ravens (37)
provide a review of the experimental evidence for the changes in current
density associated with cAF, although further remodeling has since
been experimentally identified (31).

Sánchez et al. (26) also compared the POMs generated for the CRN
model and the models of Maleckar et al. (38) and Grandi et al. (39)
when calibrated to the ranges of the SR and the cAF data by varying
the six currents identified as most important to AP properties. They
identified a statistically significant up-regulation of IK1 in all three
models, with changes in other currents found to be model-dependent.
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In the case of the CRNmodel, Sánchez et al. also found statistically sig-
nificant decreases in ICaL and Ito in accordance with experimental ob-
servation (36). However, the observed decreases in Ito and ICaL were
quite small, and the POMs constructed failed to identify IKur as a signif-
icantly down-regulated current in cAF. Furthermore, INaCa showed a
statistically significant decrease, despite Na+/Ca2+ exchanger action be-
ing known to increase in cAF-afflicted atria (40).

In contrast, our POMs calibrated to data density showmany signif-
icant differences in current strengths between SR and cAF populations
(Fig. 6) and do very well at identifying the currents that are known to be
remodeled in response to cAF (Table 1). The distribution-calibrated
POMs correctly identify the primary changes in current activity that
characterize cAF (decreased Ito, IKur, and ICaL and increased IK1), and,
in the case of Ito and IKur, also do very well in identifying the specific
extent of these changes. Our POMs also correctly identify the up-
regulation of INaCa and its extent and only miss the up-regulation of
IKs. Although up-regulation of IKs in cAF has been experimentally
Fig. 5. Distributional calibration captures the morphological differences be-
tween SR and cAF atrial APs. Atrial APs produced by simulation of the populations
of CRN models calibrated to biomarker data for patients exhibiting SR (blue) and cAF
(red). In addition, the averageof all traces for the SR (solid) and atrial fibrillation (dashed)
populations is displayed. The increase in AP triangulation and reduced refractory pe-
riod associated with cAF is demonstrated, especially by the averaged traces.
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Fig. 4. Further variance in INa improves the realization of dV/dtmax values in the cAF data set. (A) Pairwise scatterplot of APA and dV/dtmax values in the cAF data set (white)
and those acceptedbydistribution-calibrated POMsminimizing r (red). Allowing variance in the time constant significantly reduces the correlationbetween these twobiomarkers
in the POM, better realizing the spread of the data. (B) Marginal distribution of dV/dtmax values in the cAF data set (black) and the calibrated POMs varying only current con-
ductances (red) or with additional variance in INa conductance and inactivation time (blue). This additional variance allows our calibrated POM to almost capture the marginal
distribution of dV/dtmax values, where the original POM fails.
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shown to be very strong (+100%) (41), the rather minor role that this
current plays in normal repolarization makes any changes in it much
less significant and thus difficult to detect through biomarker record-
ings. Last, our POMs suggest that the net change in atrial SERCA
function (Ca2+ uptake) under cAF is a decrease, interesting in light of
the combination of positive and negative impacts on SERCA function
that have been observed experimentally (42, 43). Our prediction of a net
decrease agrees with the modification used by Grandi et al. (39) to re-
present the cAF case in their AP model.

When we compared the SR and cAF POMs constructed using LHS
calibrated to biomarker ranges, the results were similar to those seen in
the Sánchez et al. study, although our POMs allowed more currents to
vary in strength. Listed in Table 1 and visualized in fig. S5, the range-
calibrated POMs underestimate the decreases in Ito and especially IKur
and donot identify ICaL as an important current in electrical remodeling
under cAF. INaCa is also suggested to be down-regulated and small, but
significant differences in IKr and INaK are identified despite these not
agreeing with experimental evidence.

Whatwe have seen is that, surprisingly, theAP biomarker data alone
are enough to quantify most of the impacts on ion channel conduct-
ances caused by electrical remodeling under cAF. However, to success-
fully extract this information from the data set using POMs, it was
required that we make use of the full amount of information contained
within the data by calibrating to the distributions of these biomarker
values. Our calibration technique thus serves as a means of detecting
more subtle differences between multiple data sets (or stratified data),
and the calibrated POMs that reflect these differences may then inform
what changes in model parameters underlie them.
Response to antiarrhythmic treatment
Arrhythmias in the heart are typically treated by drugs that block spe-
cific ion channels, reducing the impact of the corresponding current(s)
on the AP. A common target is the rapid component of the delayed K+

rectifier current (IKr), which activates comparatively late in the AP and
is a primary contributor to repolarization in this phase. Reducing flow
due to this current hence prolongs theAP and can restore SR in patients
with cAF (44). IKr was also the current chosen to explore the differential
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Table 1. Experimentally observed changes in current density associated
with cAF are well predicted by POMs calibrated to distributions. Changes
in median current activities between the POMs calibrated to either the distri-
butions or the ranges of the SR and cAF data sets, as compared with experi-
mentally observed (Exp.) measurements of changes in current densities
associated with this pathology. Experimental figures are taken from the spe-
cified references and rounded to the closest 10% to reflect the general un-
certainty in their measurements and, in some cases, represent the combined
result of multiple studies. The “↔” symbol indicates no significant change
observed (P ≥ 0.01 from the Mann-Whitney U test for POMs). Distribution-
calibrated POMs detect more of the differences in current densities that
underlie the cAF pathology, correlating well with experimentally observed
changes in the greatest majority of current densities.
Parameter
 Exp.
 POMs (distributions)
 POMs (ranges)
gNa
 ↕* (66)
 +11%
 ↔
gto
 ~−70% (37)
 −85%
 −51%
gKur
 ~−50% (37)
 −40%
 −6%
gKr
 ↔† (31)
 ↔
 +10%
gKs
 ~+100% (41)
 ↔
 ↔
gK1
 ~+100% (37)
 +29%
 +33%
gCaL
 ~−70% (37, 67)
 −36%
 ↔
INaK(max)
 ↔ (68)
 ↔
 +10%
INaCa(max)
 ~+40% (40)
 +41%
 −18%
Iup(max)
 ↕‡ (42, 43)
 −39%
 ↔
krel
 ↕§ (42)
 ↔
 ↔
*Peak INa current is reduced, but sustained INa increased. †Decreases in
mRNA levels have been observed (37), but no direct experimental evidence
for change in cAF has yet been provided. ‡Ca2+ uptake is reduced by de-
creased Serca2a levels but increased by enhanced phosphorylation of SERCA
inhibitors. §Ca2+ release is increased but in a “leaky” fashion not necessar-
ily best represented by changes to krel in the CRN model.
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response of a variable population to drug treatment using POMs in a
previous study (7).

In our POMs calibrated to the SR and cAF data sets, the cAFmodels
show significantly larger IKr that also activates slightly earlier (Fig. 7A),
contributing to the more rapid repolarization and lack of a plateau
phase in the cAF APs. However, the maximum conductance of the
channel, gKr, shows no significant difference between SR and cAF
POMs (Table 1). This indicates that the increase in IKr activity is symp-
tomatic of the changed AP morphology in cAF, which impacts the
voltage-dependent gating behavior of these ion channels.

We explore IKr block via drug treatment by first pacing themodels in
the cAF POM until steady state (see Materials and Methods), then re-
ducing gKr by 50%, and repeating the full stimulus protocol. In corre-
spondence with the observed effects of these drug treatments, the APDs
of almost allmodels (95%) are restored to values associatedwith healthy
SR (Fig. 7B). This demonstrates the ability of our calibration to AP
biomarker measurements to produce models that exhibit appropri-
ate behaviors even in situations outside of those to which they were ca-
Lawson et al., Sci. Adv. 2018;4 : e1701676 10 January 2018
librated. However, there are a small number of models that predict
decreased APD in response to treatment, as shown by the post–drug
block APs (gold) that fall to the left of the untreated cAF APs (red),
as well as a fewmodels that repolarize to unrealistically high resting po-
tentials (>–60mV). One advantage of the POM framework is that these
models that show unexpected behavior can be directly examined to de-
termine the underlying causes, potentially identifying risk factors for
these adverse reactions.

The models that repolarize extremely rapidly following treatment
with IKr blocker are seen to be associated with very small values of gNaK,
and thus, the unexpected behavior of thesemodels likely stems from the
selection of values for this parameter, which are too small to be physi-
ologically realistic. This is a risk of choosing such a large (±100%) extent
of variation of our parameter values, furthermotivating our exploration
of a lower extent of variability in the following section. Nevertheless,
these models do identify a potential risk factor for the use of IKr-
blocking treatments, namely, that insufficient INaK activity can result
in dangerous further reduction of the refractory period. Reduced INaK
Fig. 7. Calibration to distributions produces models that respond appropriately to antiarrhythmic treatment via IKr block. (A) Traces of the rapid component of the
delayed rectifier K+ current for the models calibrated to the SR data set (blue, solid) and the cAF data set (red, dashed). The cAF population demonstrates an almost twofold
increase in the activity of this current. (B) APs after treatment by 50% IKr block (gold) show significant AP prolongation compared to the samemodels without IKr block (red). This is
also demonstrated by the averaged traces for both (black lines: treated, solid; untreated cAF, dashed). The restoration of atrial refractoriness in patients with cAF is demonstrated.
9 of 18



SC I ENCE ADVANCES | R E S EARCH ART I C L E
under IKr block conditions has also been implicated as a risk factor for
repolarization abnormality in a population of human ventricular
models (19). In this case, examining the current activity in the low-gNaK
models reveals significant Na+ ion accumulation that occurs due to the
reduced action of INaK, which is further hampered by the reduced ex-
pulsion of K+ ions through IKr. This then triggers extreme currents out-
ward through the Na+/Ca2+ exchanger, resulting in the extra-rapid
repolarization that is observed.

The models repolarizing to resting potentials that are unrealistically
high are seen to be associatedwith incomplete deactivation of the L-type
calcium channels and lower values of gK1, resulting in an imbalance of
inward and outward current in the unexcited cell that gradually pushes
up its membrane potential at rest. Eventually, an alternative steady state
is reached where the elevated resting potential largely prevents the cell’s
sodium channels from opening and the AP is severely disrupted.
Parameter values that lead to this behavior will never be selected by
the calibration process, because their APA and RMP values fall outside
of the data. However, when outward current due to IKr is reduced by
drug treatment and the balance of ion flow is changed, a few of the
models then fail to achieve correct homeostatic balance and instead
end up at this alternative steady state. The questions of whether other
APmodels also predict these alternative steady states and whether drug
treatments can cause individual atrial cells to develop disrupted
balances of ion flow at rest (compensated for by their neighbors) are
beyond the scope of this paper.

The drug block case study can thus be seen as a means of further
calibrating the generated POMs by testing the ability of all of themodels
selected to continue predicting reasonable AP curves when subject to
established treatments. This is important given the tendency for cur-
rents to compensate for one another, resulting in model behaviors that
only becomemanifest subject to this type of further interrogation. In the
previous study of Britton et al. (7), albeit using a different AP model,
calibrating to biomarkers recorded for multiple different pacing fre-
quencies was seen to be sufficient for avoiding the selection of models
that exhibit unphysical responses to drug block.
Parameter selection in response to variable data
For buildingormodifyingAPmodels, experimental recordings of current
actions and the APs themselves are, of course, essential for the appropri-
ate selection of parameter values.However, the variability present in these
recordingsmakes the selection ofmodel parameters in response to exper-
imental data difficult. Typically, these recordings are averaged, providing
single traces for currents andAPs that can then be calibrated to by inspec-
tion or with curve-fitting algorithms. However, this ignores a lot of
informationpresent in the full data set and can raise thequestionofwhich
parameter values to use when AP models are known to permit multiple
sets of parameter values that all lead to an equivalent AP trace (45).

POMs calibrated successfully to data density represent a set of
models that all correspond in a sense to some portion of the data. Thus,
the entirety of the data is reflected in the selection of parameter values
across a distribution-calibrated POM, providing a potentially more
robust means of selecting an individual set of parameter values for an
AP model in response to that data. This is achieved by averaging in the
space of parameter values, as opposed to in the space of measured out-
puts. In the case of this work, the set of parameter values selected for
both the SR and cAF POMs has a rather regular distribution (no obvi-
ous bimodal behavior or obvious correlation structures; see fig. S6), and
so, we consider each variable parameter individually and take the
median of its value across all models in the POM, producing two mod-
ified CRN models, one each for the SR and cAF data sets.
Lawson et al., Sci. Adv. 2018;4 : e1701676 10 January 2018
Figure 8A compares our “median”CRNmodels to the baseline CRN
model and the baseline CRN model modified for cAF using the exper-
imentally informed adjustments to its parameters listed in Table 1. The
original CRN model is seen to significantly underestimate the RMP,
predicting a value of −85.7 mV for SR, as compared to −73.8 mV for
themeanof the SRdata (−88.7mVversus−78.4mV for cAF). TheAPD
is similarly underestimated, especially in the case of cAF, where the orig-
inal CRN model (with cAF-adjusted parameters) predicts an APD90 of
only 121 ms, as compared to a mean value of 216 ms in the data. In
contrast, our median CRN models for SR and cAF do much better at
reflecting the values for these biomarkers seen in this particular data set
(RMP, −74.7 mV for SR and −78.4 mV for cAF; APD90, 335 ms for SR
and 223 ms for cAF).

These differences are explained by the parameter values selected for
our POMs, which featuredmanymodels withmuch lower values of gK1
and increased values of gKr, as compared to the original published values
for the CRN model. These are both late-stage repolarization currents
and so can somewhat compensate for one another in terms of APD,
but IK1 is a much more significant controller of RMP. Thus, its reduc-
tion is necessary to allow the CRN model (which, as stated, tended to
underestimate RMP) to produce APs that corresponded with the data.
As a result of the specific balance of these two currents, APD90 values
were also increased.

The increased importance of IKr predicted by our median CRN
model (for both SR and cAF) alsomakes itmore predictive of the effects
of drug block of this current. Figure 8B compares our median model
with the original CRN model, where it can be seen that our calibrated
model demonstrates a restoration of APD to SR levels, whereas the orig-
inal CRN model shows very little APD prolongation at all. In cAF, the
original CRN model predicts a further decrease in relevance of IKr for
repolarization (46), whereas the models selected for our calibrated po-
pulations show an increasedmagnitude of this current in cAF (Fig. 7A).
This agrees with the known efficacy of treatments targeting this current
for the restoration of healthy SR in patients with cAF (44).

The ability of our median model to capture well the results of drug
block treatment, despite no data regarding drug block used in the cal-
ibration process, leads us to suggest that our technique not only allows
the selection of parameter values that better match provided data but
also can result in models that are more generally predictive. This is of
particular importance in fields such as cardiac electrophysiology, where
very different sets of parameter values can produce very similar APs and
further measures may be necessary to differentiate between these
multiple sets of parameter values.

Distributional calibration can inform the extent of variability
in parameter values
Calibrating to distributions means that the variability in a supplied data
set can be expected to be explicitly captured by constructed POMs, so
long as the model across the specified parameter space is capable of gen-
erating outputs that match the data. This means that by using divergence
measures, such as r and r̂, the differential ability of various parameter
spaces to capture variable data with POMs can be considered. The most
obvious application of this technique is to explore the level of variability in
parameter values needed to explain the data.

Our studies on the Sánchez et al. data set have used a large variation
in ion channel conductance values (±100%), following previous studies
(7, 17, 26). Working with such a variation in parameter values carries
the risk of selecting extreme values that are not physiologically sound
(for example, values close to − 100% that essentially switch off an entire
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current), and there is some suggestion that a level of variability, suchas±30%,
is more appropriate for cardiac ion channel conductances (26, 27, 47).
We therefore seek to answer the question of whether 30% variability
sufficiently explains the variation in the data set we calibrated to.

To select the most relevant portion of the parameter space, we take
parameter values ± 30%around the values selected for themedianCRN
models in the previous section. Applying our SMC sampling algorithm
and subsequent refinement, we obtained 254 models calibrated to the
SR data set and 215models calibrated to the cAF data set, theminimum
allowable number of models in both cases. Neither of these POMs suc-
ceeded in fully capturing the variability in the data set, resulting in
divergence measures that compare unfavorably to those obtained using
Lawson et al., Sci. Adv. 2018;4 : e1701676 10 January 2018
the full ±100% variation in cell properties (table S2). Examination of the
marginal distributions of the biomarkers for the SR ±30% POM reveals
that it does successfully capture the general distributions of the data but
fails to show the same extent of variance (Fig. 9). Similar results are also
seen for the cAF ±30% POM (fig. S7).

Furthermore, the secondary mode in the distribution of SR APD50

values is completely unrepresented by the POM constructed with re-
duced variability. This peak most likely corresponds to cells that re-
polarize more than 50% during the phase of immediate repolarization,
driven primarily by the rapidly activated outward currents Ito and IKur.
This results in a cluster of very small APD50 values that are separate
from most of the cells, which only reach 50% repolarization after the
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plateau phase. General underestimation of biomarker variability in the
POM could potentially be explained by measurement error associated
with the biomarker data, but the inability to produce models that pop-
ulate this peak implies that additional variance in cell properties, at least
those relevant to Ito and/or IKur, is required to produce models that ex-
hibit sufficient early repolarization. Coupled with the general
underestimation of biomarker variance in the POM, these results cer-
tainly imply that additional variability in ion channel conductances be-
yond ±30% underlies the variability in biomarkers that is seen in these
data sets.
DISCUSSION
Population-based modeling is a powerful technique for allowing deter-
ministicmathematicalmodels to explore and characterize the variability
inherent in complex systems (1). This includes the use of multiple re-
gression techniques performed on synthetic populations (14, 48, 49)
and, when data are explicitly available, calibrated POMs (27). Previous-
ly, calibration of POMs has typically been performed by ensuring that
all relevant model outputs fall within the ranges of the data (7, 24, 26).
Although this is a perfectly reasonable approach, especially when a low
number of experimental samples are available, it does ignore other
information inherent in the data and does not strictly guarantee that
the models selected will produce outputs that correspond to those seen
in the data. Our presented calibration technique estimates the under-
lying distribution of outputs represented by the data and calibrates to
this distribution using a combination of SMC (22) and a simulated
annealing-type algorithm.

Wehave demonstrated the efficacy of our technique on a pair of data
sets from cardiac electrophysiology, a field that has seen a great deal of
POM research following the pioneering studies of Prinz et al. (5) and
Marder and Taylor (6) in neuroscience. The data used were composed
of biomarker values collected for atrial myocytes from hearts exhibiting
healthy SR or the cAF pathology (26), offering two sets of data to test the
Lawson et al., Sci. Adv. 2018;4 : e1701676 10 January 2018
calibration technique and the opportunity to compare the models
selected to represent healthy and afflicted hearts. The use of SMC to
sample according to the distribution of data was found to improve
the correspondence betweenPOMsand experimental observations over
LHS matched to ranges, but the approximate nature of the technique
left room for further improvement. A subsequent refinement technique
to select optimal subpopulations of the SMC-constructed POMs was
able to produce in silico populations that reflected extremely well the
variability inherent in the data distributions.

Our demonstration of our calibration technique operated from the
assumption that variations in the ion channel conductances were capa-
ble of explaining the variability seen in experimental studies, consistent
with previous works in the POM literature (27). However, under this
assumption, we found that the POMs produced by our calibration tech-
nique could not match the distribution of dV/dtmax values as well as
other biomarkers, especially the relationship between this biomarker
and APA. To further address this issue, we considered the effects of
incorporating further variability into the behavior of INa. We did this
by introducing an additional variable parameter, namely, the time con-
stant of the gating variable that controls the initial inactivation of this
current. This further improved the concordance between the data and
our calibrated POMs in terms of these biomarkers, although this could
not completely capture the nature of their relationship. This suggests
that variance in INa inactivation rates may contribute a not insignificant
portion of the variability seen in the overall excitation behavior of atrial
myocytes but is insufficient to wholly explain it. Moreover, it demon-
strates that the inability of our original calibrated POMs to capture the
dV/dtmax distribution is most likely the result of our assumptions re-
garding the sources of variability in the problem being too restrictive
and not due to any issue with the calibration process itself. This shows
how our calibration technique can be seen as a tool for investigating dif-
ferent assumptions regarding where variability lies in a complex system
or the relative importance of variability in the different components that
make up these systems.
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Our approach generates models that predict very well the morphol-
ogies of different types of APs associated with SR or cAF. The cAF
models also demonstrate a more realistic response to antiarrhythmic
treatment [AP prolongation in response to IKr block (44)], as compared
to the original CRN model. These benefits remained even when the
population of models was averaged to produce a single model, demon-
strating the efficacy of the technique for the more general problem of
selecting parameter values in response to variable data. Taking into ac-
count the variability in data in this fashion, as opposed to simply aver-
aging it and fitting parameters to the result, is of particular importance
when a system (and its associated mathematical model) is complex,
such as in our example of cardiac electrophysiology, where the ability
of currents to compensate for one another allows highly similar APs to
be produced by very different balances of constituent currents (7, 50).

Furthermore, calibration that takes more of the features of data into
account may be able to resolve more subtle differences between data
sets, making it a powerful approach for identifying the potential caus-
ative factors that produce these differences. We have demonstrated this
usage of our technique by calibrating POMs to a pair of AP biomarker
data sets. Although these biomarkers summarize the characteristic
features of the AP, they do not provide much in the way of direct
information regarding the activities of the different currents that con-
stitute the AP. Nevertheless, using only these biomarker data (but only
by calibrating to distributions), we found that our resultant POMs for
SR and cAF were unexpectedly good at identifying the changes in ion
channel activity that characterize the cAF pathology. This was validated
by comparison with a suite of studies in the literature specifically quan-
tifying the effects of electrical remodeling on individual currents in cAF
(31, 37). Differences in the uptake of Ca2+ by the sarcoplasmic reticulum
were also identified, despite this being an internal current that does not
directly contribute to the AP (32). We suspect that the contribution of
the internal calcium dynamics to the current through the Na+/Ca2+ ex-
changer allows them to be partially identified, even when calibrating
only to AP biomarkers, but this point requires further investigation be-
yond the scope of this paper.

With the ability of our distribution-calibrated POMs to identify the
trends inmodel parameters that underpin specific sets of observable data,
we suggest that POMs calibrated by our technique could also be used to
identify differences in underlying behavior that explain, for example,
pathological conditions that are less understood and not limited to car-
diac electrophysiology. This same thought also extends to improved iden-
tification of any differences that underlie artificial stratifications of a data
set (for example, differences in physiology that correspond to factors such
as gender or age) (51, 52).

When constructing POMswithout experimental evidence for the ex-
tent of variability in parameters, the choice of parameter space to sample
is open. Our primary study used a large space of parameter values
(±100%) to give the model the best opportunity to simultaneously fit
the twodifferent sets of data andhence demonstrate our technique.How-
ever, we also considered the effects of choosing a smaller parameter space
(±30%) (21, 26, 47), attaining results that imply that ±30% variance in
primary current conductances is insufficient to explain the experimental
data, and thus that further variation in these cell properties or others is
expected. This sort of exploration into appropriate levels of variability is
particularly important in fields such as cardiac electrophysiology, where
the variable cell properties are difficult to directly measure and the extent
of variability is not well established (53). This analysis requires the ability
to calibrate POMs to distributions so that the comparisons between
parameter spaces of different sizes are unaffected by model bias.
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There are several circumstances under which our calibration process
might fail ormight be considered inappropriate. First, calibrating to dis-
tributions requires sufficient data in the data set to form a reasonable
approximation to the underlying distribution. When the sample size is
insufficient compared to the variance to suggest a specific distribution
with any real confidence, obviously distributional calibration is in-
appropriate and calibration based on range statistics is very reasonable.
However, even in these cases, a benefit can potentially be gained by en-
forcing that data are spread evenly across its range, although we have
not investigated this in this paper. Second, successful calibration can
only be achieved when the model used to construct POMs is capable
of producing outputs that correspond to the range of values seen in
the data. This depends strongly on the variability assumed to be present
in the model, as we have seen here with the inability to capture the
distribution of dV/dtmax values when varying only ion channel conduc-
tances. However, this does demonstrate the usefulness in considering
the distribution of the data and how well-constructed POMs fit to it
using measures such as r, in that it suggests when assumptions regard-
ing variability (or even the models themselves) might need to be recon-
sidered. The varying ability of different models or patterns of variability
to successfully produce POMs calibrated to a given data set also serves
as a means of comparing and benchmarking them. Last, the reliance
upon a transformed target density in the SMC algorithmmight potentially
cause it to select models that do not accurately capture the distribution of
outputs in thedata, althoughonour test problem, themethodhasbeen seen
to perform very well. In the worst case, “naive” POMs composed of large
numbers of models can be constructed by sampling the search space
uniformly (suchas throughLHS) and then refinedbyour simulated anneal-
ing process to select the subpopulation of these that best matches the data.

In conclusion, our presented calibration technique allows data sets
to be thoroughly mined to produce informative and predictive POMs
that capture the variability between individualmembers of a population.
The benefits of successfully accounting for this variability are well
established (1). We have shown how our technique allows different as-
sumptions regarding the sources (and extents) of variability in a system
to be explored, even when some sources of this variability are indirect
or have not been experimentally quantified. We have also demonstrated
how calibrating specifically to data distributions allowsmuch better differ-
entiation between multiple sets of data, shedding light on the changes in
underlying properties that explain differences in higher-level observables
that can be experimentally measured. In this case, differences in AP bio-
markers proved sufficient for predicting most of the changes in ion
channel activity that characterize the cAF pathology but only when cali-
brating to the distributions of these biomarkers. Finally, we also demon-
strated how the models selected by our calibration technique not only
agree with the data used for calibration but also are more generally pre-
dictive, as shown in this case by amuchbetter representationof the SRand
cAF morphologies, and the effects of antiarrhythmic treatment. We re-
commend our technique for any systems where variability is expected
to be present, a mathematical model is available, and there are sufficient
data to make calibration to distributions feasible.
MATERIALS AND METHODS
Atrial AP model
The CRN model uses 21 coupled ordinary differential equations to
simulate, among other things, the activation and inactivation of nine
different sarcolemmal ion channels, as well as the actions of the sarco-
lemmalCa2+ pump,Na+/K+ pump, and theNa+/Ca2+ exchanger, which
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all contribute to the flow of ions in or out of an atrial cell and thus to the
changes in membrane potential that create the AP. Ion channels are
modeled using a Hodgkin-Huxley–type formulation (54), with combi-
nations of gating variables representing the presence/absence of activa-
tors/inhibitors that determine channel availability. Ca2+ uptake into the
network sarcoplasmic reticulum, release from the junctional sarcoplas-
mic reticulum, and the transfer (active or leak) between these two com-
partments are also represented. For full details of the model, including
the specific forms of each of its differential equations, see the study of
Courtemanche et al. (32).

We simulated the CRN model using MATLAB’s ode15s routine,
with a maximum step size of Dt = 1 ms. Biomarkers were measured
from output V(t) curves after discarding any APs that failed to excite
above −30 mV, failed to repolarize to a value of RMP + 0.1 APA, or ex-
hibited spontaneous depolarizations (judged as subsequent peaks after
repolarization to the aforementioned value). Following Sánchez et al.,
themodel was paced until it reached steady state (≤1% change in all state
variables) and then 90more times, using a stimulus of 2ms of −2210 pA,
approximately twice the diastolic threshold for the basemodel. Tempera-
ture and external ion concentrations were adjusted to match the experi-
mental conditions (T = 309.65 K, [Na+]o = 149.42 mM, [K+]o = 4.5 mM,
[Ca2+]o = 1.8mM).No other parameters weremodified from their values
in the originally published version of the model.

The process of simulating the CRNmodel (with input parameters q)
and the subsequent calculation of biomarkers from the resulting AP are
denoted byM, and the output biomarkers are denoted by y, such that

y ¼ MðqÞ ð1Þ

Populations of CRN models
POMs were constructed here by varying a set of inputs to the CRN
model, namely, the current densities of the fast Na+ current, the five
outward K+ currents (transit outward, ultra-rapid delayed rectifier, ra-
pid and slow delayed rectifiers, and the inward rectifier), the L-type in-
ward Ca2+ current, the Na+/K+ pump andNa+/Ca2+ exchanger, and the
maximal rates of uptake and release of Ca2+ inside the cell by the sar-
coplasmic reticulum. Following the notation used in the original CRN
paper, the set of inputs is here denoted q = (gNa, gto, gKur, gKr, gKs, gK1,
gCaL, INaK(max), INaCa(max), Iup(max), krel), where g is the maximal conduc-
tances of the different currents, I(max) is the maximal actions of pumps
and exchangers, and krel is the conductance of the ryanodine receptors
that release Ca2+ from the sarcoplasmic reticulum. These were the same
currents varied byMuszkiewicz et al. (16) in their construction of POMs
for human atria. Sánchez et al.’s study (26) varied only the six currents
they identified as having a significant impact on biomarker values (55)
and thus did not include gNa, gKr, gKs, Iup(max), or krel.

Following Sánchez et al., POMs were constructed using a search
space of ±100% from the base parameter values for the CRN model.
However, whereas their work selected trial points using the sampling
method underlying Fourier amplitude sensitivity testing (56) and then
rejected those that did not produce APs with biomarkers falling within
experimentally observed ranges, we used the method described subse-
quently to produce POMs that not only corresponded to the spread of
the experimental data but also reproduced its distributional features.

Biomarker joint distribution estimation
Distributional calibration first requires estimating the distribution rep-
resented by the data, p(y). This was achieved here bymultivariate kernel
density estimation, which creates a smooth distribution by summing
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over a series of multivariate Gaussians centered at each of the N indi-
vidual data points

pðyÞ≈ 1

detðHÞ�1=2Nð2pÞ�Nb=2
∑
N

i¼1
e�1=2ðy�~y iÞTH�1 ðy�~y i Þ ð2Þ

where Nb is the number of biomarkers (seven in this case), ỹi are the
individual points of biomarker data, and H is the bandwidth matrix, a
parameter of the density estimator that controls the extent and direction
of smoothing.When the distribution to be estimated is normalwith unit
variance, the optimal bandwidth can be shown (57) to be

hopt ¼ 4
NðNb þ 2Þ

� � 2
Nbþ4

ð3Þ

which motivates a choice of bandwidth matrix

Hij ¼ hopt s2i if i ¼ j
¼ 0 if i ≠ j

ð4Þ

Thus, the extent of smoothing is weighted in each dimension in
terms of the variance in that biomarker observed in the data set, but
correlations between biomarkers are ignored in the choice of H. Note
that the estimated density itself still attempts to account for dependen-
cies between biomarkers. The choice to use a diagonal bandwidth
matrix tends to be sufficient in practice (58).

Another alternative to multivariate kernel density estimation is to
approximate p(y) by combining the marginal distributions of each bio-
marker with aGaussian copula to approximate their interdependencies.
However, for the atrial data sets we use to demonstrate our calibration
technique, this approach was found to be less effective and so is not dis-
cussed further here.

APD20 readings in the SR data set were predominantly clustered at
low values but with a considerable range. To improve the performance
of the kernel density estimation (recalling that the bandwidth was
selected as optimal for normally distributed data), the APD20 values
were first logarithmically transformed to make their distribution more
regular before use in Eq. 2.

SMC for POM calibration to distributions
Constructing a population of q values that exhibits the estimated
distribution p(y) is not trivial, given the complex relationship between
the two encoded by Eq. 1. We defined g(q) to be a probability density
over the space q and the population distribution of the model output
MðqÞwhen q is drawn according to this distributionwe denote h(y|g(q)),
with the vertical bar | denoting conditioning. That is, h(y|g(q)) is the
density of MðqÞ when q ~ g(q)

hðyjgðqÞÞ ¼ lim
Dy→0

1

∏Nb

k¼1Dbk

∫MðqÞ∈ðy;yþDyÞgðqÞdq ð5Þ

where Dy ¼ ðDb1 ;…;DbNb
Þ. Our problem is thus recast as finding the

distribution g(q) that produces h(y|g(q)) that is as close as possible to p(y).
The models sampled according to this optimal g(q) will then exhibit
outputs that reproduce the estimated distribution of outputs in the data.
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If the “closeness” of h(y|g(q)) and p(y) is measured in terms of
the Kullback-Leibler divergence between the two distributions, the
problem is an optimization problem

g*ðqÞ ¼ arg min
gðqÞ

∫yln
hðyjgðqÞÞ

pðyÞ
� �

hðy gðqÞÞdyj ð6Þ

The standard method for solving this type of problem is to follow a
variational Bayes (VB) type of approach. VB is commonly used to pro-
duce parametric approximations of posterior distributions in Bayesian
statistics [(59), chap. 11]. Applying VB to our problem would involve
specifying some parametric distribution for g(q)≡g(q|f), where f are
the parameters of the distribution. For example, if a multivariate
normal distribution was adopted for g, f would consist of a mean
vector and covariance matrix. Using VB, Eq. 6 then reduces to finding
the optimal parameters f* ¼ arg minf f ðfÞ, with the integral in Eq. 6
approximated by Monte Carlo integration taking K independent
draws from g(q|f)

∫yln
hðyjgðqjfÞÞ

pðyÞ
� �

hðyjgðqjfÞÞdy ≈ 1
K
∑
K

k¼1
ln ĥðykjgðqjfÞÞ

pðykÞ
� �

¼ f ðfÞ ð7Þ

where yk ¼ MðqkÞ and qk ~ g(q|f) for k = 1,…, K. For a particular f,
an estimate of h(y|g(q|f)), which we denote as ĥðykjgðqjfÞÞ, could be
obtained using a kernel density estimate as in Eq. 2 based on the set of
simulated biomarker values fykgKk¼1. There are several reasons why we
did not adopt this approach: First, it requires us to specify a parametric
form for g(q); second, evaluating f(f) is very expensive because it in-
volves solving the model K times; and last, f will be high-dimensional,
leading to a difficult optimization problem.

Instead, we used an approach that is more pragmatic and effective in
this application. First, we determined a collection of q values (or
models) that produced biomarker values y that have relatively high den-
sity with respect to the data density p(y). Then, we removed models
from this collection in an iterative fashion so that the distribution of
corresponding biomarker values that remained was even closer to p(y)
(see the next section).

For the first step, we used SMC (60), following the use of the tech-
nique to construct POMs calibrated to ranges in data (22). This tech-
nique begins with a set of N particles and traverses them through a
sequence of probability distributions by iteratively applying importance
sampling, resampling, and move steps. We achieved this behavior by
sampling from the sequence of distributions hðqÞºpðMðqÞÞg , with
g ∈ [0,1]. It can immediately be seen that g = 0 corresponds to the
uniform distribution, which is very easy to sample if we specify some
lower and upper limits for each component of q, and that g =
1 corresponds to a distribution proportional to pðMðqÞÞ, which is po-
tentially difficult to sample. Successively incrementing g after each re-
sample and move step until g reaches 1 allows the complexity of the
sampling problem to be introduced gradually. An important aspect of
SMC is that it does not require the distributions in the sequence to be
properly normalized. The full SMC algorithm is laid out in the Supple-
mentary Materials.

The algorithm requires the use of traditional Markov chain Monte
Carlo (MCMC) (61) steps to find unique locations for particles after
each resampling step, and the particlesmust still represent samples from
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the current target distribution. This is achieved using the Metropolis-
Hastings algorithm, which, in our setup, accepted or rejected any pro-
posed particle moves according to

PrðacceptÞ ¼ min 1;
½pðMðqnewÞÞ�gJ ðqoldjqnewÞ
½pðMðqoldÞÞ�gJ ðqnewjqoldÞ

� �
ð8Þ

where J is the jumping distribution that generates proposed moves of
particles and, in our case, does not depend on the previous particle lo-
cation [that is, J ðqnew qoldÞ ¼ J ðqnewj Þ]. The jumping distribution
used is a Gaussian mixture model built for a regularized version of
the current of locations of all particles after a resampling step (see the
“SMCalgorithm” section in the SupplementaryMaterials). The number
of MCMC steps performed after each resampling step was chosen
adaptively (62).

The output of the SMC algorithm is a collection of samples fqigNi¼1
from a distribution proportional to pðMðqÞÞ. We note that the cor-
responding collection of output values fyigNi¼1, where yi ¼ MðqiÞ, is
not a sample from the distribution of interest, p(y). The reason for this is
that we have not accounted for the nonlinear transformation, y ¼
MðqÞ, to correctly convert the target distribution over the output space
to the corresponding target distribution over the parameter space. How-
ever, given the fact that the transformationy ¼ MðqÞ is not analytic and
not a one-to-one function, we suggest that it is not tractable to properly
account for it, and itmay not even be possible to find a distribution over
q that leads to a distribution of biomarker values consistent with p(y).

Nonetheless, we found that this approach led to a collection of pa-
rameter values that generated biomarker values with relatively high
density under p(y). We used this collection as the starting point for
our subsequent refinement process.

As an alternative to SMC, an MCMC approach could also be used
directly to produce samples from a distribution proportional to
pðMðqÞÞ using the same density (Eq. 2) and acceptance algorithm
(Eq. 8) with g = 1.We used amodern state-of-the-art MCMC sampler,
DiffeRential Evolution Adaptive Metropolis (DREAM) (63), to verify
our SMC algorithm and found that the two produced comparable
results in terms of the distribution of the values of q produced. The
primary benefit of the SMCalgorithm,when it came to the construction
of our initial POM, was that the output of the algorithm is a set of
unique samples from the distribution almost the same size as the num-
ber of particles,N, which was specified by the user. In contrast, MCMC
approaches must be run an indefinite amount of time until the chain
has been judged to have converged, producing a long chain of samples
of initially unknown length. Moreover, these chains contain many re-
peated samples, and filtering out these repeats will also destroy the
desired distribution.

Further POM refinement
The approximate nature of the SMC calibration process encouraged
further refinement of the constructed POMs to fully capture the statis-
tical distributions seen in the data. This was achieved by selecting a sub-
set of the population such that the new smaller set of models better
exhibited the biomarker distributions seen in the data. To do this, first,
a quantitative measure of how well a POM captured the distributions
observed in the data was constructed.We used the Jensen-Shannon dis-
tance (JSD), a symmetric and finite version of the Kullback-Leibler
divergence that remains ameasure of the “distance”between twoprobability
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distributions. By labeling the two distributions p(y) and q(y), the JSD
is given by

JSD ¼ 1
2
∫ypðyÞln

pðyÞ
1
2 pðyÞ þ 1

2 qðyÞ
� �

dy þ
�

1
2
∫yqðyÞln

y
1
2 pðyÞ þ 1

2 qðyÞ
� �

dy�1=2 ð9Þ

with the square root used to make the divergence measure a metric (64).
When the data are high-dimensional (sayN≥ 5), the “full” JSD be-

tween themultivariate joint distributions of the observations in the data
set and those generated by a given POM is difficult to calculate accu-
rately. Therefore, we instead used the distances between the marginal
distributions for each of the biomarkers, JSDi, along with the distances
between the bivariate distributions between all possible pairs of obser-
vation variables, JSDij, to create amatrix, the normof which serves as an
approximate measure of fit, namely

r ¼ jjPjj2 ð10Þ

Pij ¼ JSDi for i ¼ j

¼ JSDij for i ≠ j ði; j ¼ 1;…;NBÞ

The measure r takes into account how well the individual distribu-
tions of each observed variable are represented by a POM, along with
some measure of how well it captures the dependency between these
variables. We note that this is not necessarily the best measure of fit
but uses more easily calculated divergences to produce a single value,
allowing the use of the technique described below. JSD values used
in the calculation of r, as integrals, were approximated using standard
Riemann integration.

Our refinement process seeks to minimize r using a supplied POM.
Here, we used POMs selected using SMC to improve fit with the data,
although we note that POMs constructed using typical Monte Carlo
sampling techniques (such as LHS and calibrated to the ranges of the
data) could also be used as starting points for our refinement procedure.
Minimization was achieved by trialing removal of individual models
from the population (or reintroduction of removed models) and then
accepting or rejecting them according to the Metropolis probability

PrðacceptÞ ¼ e�Dr=T ð11Þ

where Dr is the change in the overall divergence measure (Eq. 10) asso-
ciatedwith the trialed removal/reintroduction andT is a parameter of the
process that controls the likelihood of accepting unfavorable trial updates.
This approach is very similar to the approach of simulated annealing (65),
althoughwe use a fixed value ofT= 0.2 instead of gradually decreasing it.
Every 1000 trial steps,we judgedwhether the choice of subpopulationwas
wandering too far away from the optimum by checking if r was more
than 1% larger than the current best r value found and, if so, restarted
the process back to the configuration corresponding to the best r value.

The only additional condition we used was that the size of the sub-
population of models could not fall below the number of data points,
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ensuring that the resulting population did not become small enough to
losemeaning. If a larger population ofmodels is desired, r (representing
the energy of the system that isminimized over the course of the anneal-
ing process) can be replaced by a new expression in Eq. 11 that penalizes
both higher values of r and small numbers of models in the population.

We saw (see Results) that the data for one biomarker, namely, the
maximum upstroke velocity, took values not predicted by the CRN
model in the search space, and strong correlations exhibited by the
model were not seen in the data. This made it appealing to de-emphasize
the contributions of this biomarker to the POM refinement process.
This was achieved by creating a second divergence measure, r̂, that is
the two-norm of a modified version of the performance matrix P,
with the row and column corresponding to the maximum upstroke
velocity overwritten with zeroes, except for the diagonal element.
Minimizing r̂ instead allowed the distributions of the other biomarkers
to be better fit by the refinement process, at the cost of producing POMs
that did not strongly reflect the distribution of maximum upstroke
velocities in the data. Given that we expected the maximum upstroke
velocity to be the biomarker most subject to experimental measure-
ment error in the data, we considered this a reasonable decision.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/1/e1701676/DC1
table S1. Summary statistics for the SR and cAF data sets are well recovered by the calibrated
POMs.
table S2. SMC with subsequent refinement produces POMs with very low divergence from the
distributions in the data.
fig. S1. Calibration to biomarker distributions, as opposed to their ranges, significantly reduces
model bias for the cAF data set.
fig. S2. Variability in the cAF data set is captured by a population of CRN models with varying
current densities.
fig. S3. Further variance in INa improves the realization of dV/dtmax values in the SR data set.
fig. S4. Calibration to ranges fails to capture the morphological differences between SR and
cAF atrial APs.
fig. S5. Calibrating to data ranges does not identify all changes in ionic behavior associated
with the cAF pathology.
fig. S6. The distributions of parameter values selected for the SR and cAF POMs are distinct but
regular.
fig. S7. Variation of ±30% in current densities underestimates biomarker variance in the cAF
data set.
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