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Abstract

In longitudinal studies, if the time-dependent covariates are affected by the past treatment, time-

dependent confounding may be present. For a time-to-event response, marginal structural Cox 

models (MSCMs) are frequently used to deal with such confounding. To avoid some of the 

problems of fitting MSCM, the sequential Cox approach has been suggested as an alternative. 

Although the estimation mechanisms are different, both approaches claim to estimate the causal 

effect of treatment by appropriately adjusting for time-dependent confounding. We carry out 

simulation studies to assess the suitability of the sequential Cox approach for analyzing time-to-

event data in the presence of a time-dependent covariate that may or may not be a time-dependent 

confounder. Results from these simulations revealed that the sequential Cox approach is not as 
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effective as MSCM in addressing the time-dependent confounding. The sequential Cox approach 

was also found to be inadequate in the presence of a time-dependent covariate. We propose a 

modified version of the sequential Cox approach that correctly estimates the treatment effect in 

both of the above scenarios. All approaches are applied to investigate the impact of beta-interferon 

treatment in delaying disability progression in the British Columbia Multiple Sclerosis cohort 

(1995 – 2008).

Keywords

bias (epidemiology); causality; confounding factors (epidemiology); epidemiologic methods; 
inverse probability weighting; longitudinal studies; models; survival analysis

1 Introduction

Longitudinal studies can include regular measurements of clinical symptoms and disease 

activity as covariates, and it is natural that the values may change over time. Since the 

predictive ability of baseline covariates may decrease over the follow-up time, consideration 

of the full history of these time-dependent covariates, rather than just the baseline covariates 

would be preferable1. However, if these covariates are affected by previous treatment and 

predicts the future treatment decision and future outcome conditional on the past treatment 

exposure, then such covariates are popularly known as “time-dependent confounders”2,3. If 

the causal effect of treatment is of interest, the estimated hazard ratio may be biased whether 

or not the time-dependent confounders are included as covariates in a time-dependent Cox 

model analysis2,4. In the presence of time-dependent confounding, marginal structural Cox 

models (MSCM) are frequently used to estimate the causal effect of a time-dependent 

treatment exposure5,6. Sometimes MSCM estimates are unstable due to use of variable 

inverse probability of treatment weights (IPTW)7–9. The sequential Cox approach has been 

proposed as an alternative to the MSCM approach9.

In a previous simulation study, we showed that a simplified implementation of the sequential 

Cox approach (considering only baseline covariate adjustment) performed well compared to 

a Cox proportional hazards model fit with time-dependent exposure while adjusting for 

baseline confounders10. To the best of our knowledge, no attempt has been made to explore 

the appropriateness of the sequential Cox approach in adjusting for the effect of time-

dependent confounding in a simulation setting.

To overcome the limitations of this approach revealed by our simulations, we also propose a 

modified version of the sequential Cox approach in this paper. The primary focus of this 

paper is to assess the performance of these sequential Cox approaches for dealing with a 

time-dependent confounder. A secondary aim of this paper is to examine how these methods 

perform in the presence of a time-dependent covariate which does not interact with the past 

treatment condition (i.e., is not a ‘time-dependent confounder’). To do this, we simulate 

survival data with time-dependent treatment exposure. Two different conditions are 

considered for simulation: (1) a time-dependent confounder is present, and (2) a time-

dependent covariate is present along with a baseline covariate. To assess their suitability in 

an application, we apply these methods to investigate the impact of time-varying beta-
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interferon treatment in delaying disability progression in subjects from the British Columbia 

Multiple Sclerosis (MS) database (1995–2008)11,12.

The remainder of the paper is organized as follows. In the next section, we describe the 

notation and design of the simulation study, the methods used to address time-dependent 

confounding, and the metrics used to evaluate their performances. Then we summarize the 

simulation and the MS data analysis results. The paper concludes with a discussion of the 

results, and the implications and limitations of the current study.

2 Methods

2.1 Notation

Consider a hypothetical longitudinal study consisting of n subjects (i = 1, 2, …, n). Let t0 = 0 

be the start of follow-up or the time of the baseline clinic visit. Baseline covariates L0 

(binary or continuous) are recorded at baseline. Follow-up continues until the time of failure 

T or the time of censoring TC. Let that, [tm, tm+1) constitutes the m-th interval (say, m-th 

month in the follow-up). At intervals m = 0, 1, 2, …, K, regular measurements of the binary 

treatment status Am (= 1 for treated and 0 otherwise) are recorded. Let Cm be the binary 

indicator of censoring (= 1 if censored due to dropout or artificial censoring and 0 

otherwise). Let ām = (a0, a1, …, am) be the observed realizations of the treatment history Ām 

up to interval m, and similarly, let l̄m and c̄m be the observed realizations of the covariate 

history L̄
m and the censoring history C̄

m up to interval m respectively. The binary indicator 

of failure by time tm+1 is defined as Ym+1 = I(T ≤ tm+1). As the sequential Cox approach 

does not allow for treatment discontinuation, we assume that the subjects may initiate 

treatment at most once and that they continue on the treatment thereafter until the end of 

their follow-up. Let treatment initiation occur at time TA.

2.2 Analysis Approaches

Brief characteristics of the analysis approaches are shown in Table 1. We describe these 

methods in detail in the following sections using the notation defined above.

2.2.1 Cox Model with Time-dependent Treatment and Covariates—In the 

presence of baseline confounders L0 and time-dependent covariates Lm, one way to express 

the hazard function through the time-dependent Cox model is as follows:

(1)

where m is the visit index, λ0(m) is the unspecified baseline hazard function, ψ̃
1 is the log-

hazard ratio (log-HR) of the time-dependent treatment status (Am), ψ2 and ψ3 are the 

vectors of log-HRs for the baseline covariates L0 and the time-dependent covariates Lm, 

respectively.

2.2.2 Marginal Structural Cox Models—If the time-dependent covariate Lm is 

influenced by past exposure, i.e., if Lm is a time-dependent confounder, playing a dual role 
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as a confounder and an intermediate variable in the causal pathway between treatment and 

outcome, then ψ1 as estimated from equation (1) may be biased2 (i.e., may deviate from the 

target parameter ψ1; discussed in detail in Web-Appendix §A). Instead of using Lm as a 

covariate, the MSCM approach uses it to calculate IPTW that are person-time specific 

measures of the degree to which Lm confounds the treatment selection process.

Stabilized inverse probability of treatment and censoring (IPTC) weight, swm, can be 

obtained by multiplying stabilized IPTW, , by stabilized inverse probability of censoring 

weights (IPCW), , where

(2)

and

(3)

The weights swm are used in the time-dependent Cox model with hazard function modelled 

as follows to weight the contribution of each person-time observation so that the 

confounding due to Lm is removed:

(4)

where ψ1 is log-HR of the time-dependent treatment status (Am). Note that IPCW is used 

only if non-random censoring is present. When the numerators in equations (2) and (3) are 

replaced by 1, these become the unstabilized IPTC weights, wm. We used pooled logistic 

regression2,5 to estimate the IPTC weights. Estimation procedure details are included in 

Web-Appendix §B.

2.2.3 Sequential Cox Approach—Suppose that at least one subject initiates treatment in 

the m-th interval [tm, tm+1). We want to mimic a randomized clinical trial for each such 

interval. The mini-trial corresponding to the m-th interval (hereafter referred to as the m-th 

mini-trial) involves only subjects who have not previously received any treatment. Among 

the subjects at-risk at tm the subjects initiating treatment during the interval (tm < TA ≤ tm+1) 

are considered as the treated group, while the remaining subjects are considered as the 

control group. These control subjects are artificially censored at their times of later treatment 

initiation (TA > tm+1) to avoid confounding due to treatment. As these subjects are 

artificially censored, the analysis must be adjusted using IPCW.
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In the analysis, we adjust for the baseline confounders L0 measured at inclusion or baseline, 

the time-dependent covariates Lm measured at the start of the interval when patient started 

the treatment and the lagged covariates Lm−1 consisting of the lagged value measured at the 

previous interval of the treatment start. Adjustment of these covariate values should help to 

reduce bias in the estimation of the treatment effect from the m-th mini-trial data9. Let us 

denote L̃
m = (L0, Lm−1, Lm). Here, L0 includes the covariate values measured at baseline 

(i.e., time-static baseline covariates as well as the time-varying covariate or confounder 

value at time-point m = 0).

We assume that the different mini-trials may have different baseline hazard functions but all 

subjects in the same mini-trial have the same baseline hazard function. Under this 

assumption, use of a stratified Cox model is appropriate. Therefore, one way to model the 

hazard function for the m-th mini-trial is9:

(5)

where λ0m(j) is the unspecified baseline hazard function for stratum m, ψ`1 is log-HR of the 

time-dependent treatment status and ψ`2 is the vector of log-HRs for the time-dependent 

covariates Lm̃. This hazard function should be weighted by IPCW (equation (3)). It was 

suggested that the resulting estimate should bear a causal interpretation under the 

assumptions of no unmeasured confounders and correct model specification for the hazard 

ratio and the censoring weights9. We used Aalen’s additive regression model9,13 to estimate 

the IPCW.

We can fit a stratified Cox model to the combined data of all mini-trials (pseudo-data), 

stratified by the treatment initiation time. Inclusion of the same subject more than once 

invalidates the SE obtained from the stratified weighted Cox analysis. Computationally 

demanding resampling methods are suggested9,13 to obtain a correct SE. We used a robust 

(sandwich) estimate instead to save computational time similar to other simulation 

studies14,15. An illustrative data construction example is provided in Web-Appendix §C and 

the corresponding software implementation details are provided in Web-Appendix §D.

2.2.4 Modified Sequential Cox Approach—As each of the mini-trials mimics a 

clinical trial, we propose to analyze the mini-trial data accordingly. Each mini-trial is created 

based on a particular month of treatment initiation. These treatment initiation months are 

considered as the new baselines (new time-0) for the corresponding mini-trials. Note that the 

time-fixed covariates measured at the original baseline (i.e., L0) are included in the analysis. 

For covariates that vary over time, we consider all the information from the new baseline to 

the study end-point to analyze the data, as we would do in a clinical trial setting. For 

example, time-varying covariate or confounder values collected at the interval of treatment 

start and onward (i.e., L⃗
m = (Lm, Lm+1, …, LK) for the m-th mini-trial) are included in the 

model for adjustment16. Unlike the original proposal9, we do not use any time-dependent 

confounder (or time-dependent covariate) values prior to the new baseline for adjustment. 

Therefore, the hazard function for the m-th mini-trial can be expressed as:
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(6)

where  is log-HR of the time-dependent treatment status and  is the vector of log-HRs 

for the time-dependent covariates L⃗
m. However, the process of creating the pseudo-

population remains the same. The proposed changes occur only in the analysis stage. 

Theoretically proving the equivalence of the target parameters  from equation (6) and ψ1 

from equation (4) is not easy, but we have provided a heuristic justification of such 

equivalence later based on a Monte Carlo experiment. In some context, additional 

techniques, such as, matching17,18 or use of propensity scores19 or adherence-adjustments16 

may be useful to make the subjects within a mini-trial more comparable, but those 

approaches are not considered here.

2.3 Design of Simulation

We adopt the data generation process of Young et al.20 to simulate survival times where 

time-dependent confounding is present. To simulate survival times with time-dependent 

covariates (none of which are time-dependent confounders), we adapt the permutation 

algorithm21. Descriptions of these algorithms are presented in Web-Appendices §E and §F 

respectively.

2.4 Simulation Specifications

In our Monte Carlo study, we generated N = 1, 000 datasets with n = 2, 500 subjects, each 

followed for up to m = 10 subsequent monthly visits for each setting under consideration. 

We set λ0 = 0.01 (on a monthly scale) to represent a rare disease condition and λ0 = 0.10 

(on a monthly scale) for a more frequent disease condition. We discuss a brief description of 

the two simulations under consideration in Table 2. Below we provide the detailed 

specifications of the simulation scenarios.

2.4.1 Simulation - I—In our implementation of the algorithm20, counterfactual failure 

time Ti0̄ ’s are sampled from an exponential distribution, with constant λ0 rate of monthly 

events throughout the follow-up. The binary time-dependent confounder, Lm, is modelled by 

the following covariates: a binary covariate I(T0̄ ≤ c), previous treatment status Am−1, and 

the lagged variable Lm−1:

(7)

with associated parameters β = (β0, β1, β2, β3) = (log(3/7), 2, log(1/2), log(3/2)), c = 30 and 

Ym = I(T ≤ tm). Here, the time-dependent covariate Lm is moderately affected by prior 

treatment Am−1 (β2 = log(1/2) = −0.3).

We model binary treatment status at each stage Am with the factors current symptom Lm, 

past symptom Lm−1, and previous treatment status Am−1 as
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(8)

with associated parameters α = (α0, α1, α2, α3) = (log(2/7), 1/2, 1/2, 10). Current treatment 

status Am is made heavily dependent on the previous treatment status Am−1 by setting a high 

parameter value (α3 = 10). That way, we emulate the situation where subjects switch to 

treatment at most once and keep on using the treatment without much interruption or 

discontinuation. The true causal effect parameter (i.e., treatment effect) is set to be ψ1 = 0.5 

(in equation (4)).

The equations (7) and (8) define Lm as a time-dependent confounder affected by prior 

treatment2. In particular, past treatment exposure status Am−1 affects the time-dependent 

confounder Lm, which then predicts future treatment exposure Am. Lm is also associated 

with the future failure status Ym+1 via I(T0 ≤ c). Here, T0 is the untreated counterfactual 

survival time and c is an arbitrary cut-point used to generate the binary variable I(T0 ≤ c). 

The value of c affects the degree of variability in the indicator variable I(T0 ≤ c)22. Without 

I(T0 ≤ c), there would not be any confounding in the exposure-outcome relationship. The 

confounding here arises via the path: Ym+1 ← I(T0 ≤ c) → Lm → Am. This indicator 

variable I(T0 ≤ c) therefore dictates the degree to which T0 affects Lm for a chosen value of 

c.

2.4.2 Simulation - II—We assume an exponential distribution for generating failure times 

T with constant λ0 = 0.01 rate of monthly events throughout the follow-up. A uniform 

distribution U(1, 60) months is assumed to generate censoring times TC; i.e., administrative 

censoring is set at 5 years of follow-up. Treatment initiation time TA is generated from a 

uniform distribution U(0, 10) (in months). Additionally, we consider sex as a baseline 

confounder in these data. A subject’s sex is generated based on a Bernoulli distribution 

where the probability of being male is 0.3. We also add one time-dependent confounder Lm, 

which could represent cumulative disease activity, for example, such that higher cumulative 

disease activity has a higher risk (a log-HR of ψ3 = log(1.5)). This time-dependent 

confounder Lm is generated based on a Bernoulli distribution where the probability of 

disease activity increment is 0.75, accumulating the disease activity over at most m = 10 

periods of time.

The permutation algorithm21 is used to generate survival data where binary treatment Am is 

time-dependent but the confounder L0 is fixed at its baseline value. Arbitrarily, the effect 

parameters for treatment and sex on the survival outcome are set such that the treatment has 

a harmful effect (a log-HR of ψ1 = 0.5) and males are at a lower risk than females (a log-HR 

of ψ2 = −0.7).

2.5 Performance Metrics

We assessed the performance of the various approaches by the following measures:
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•
: The average difference between the true and N = 1, 

000 estimated parameters (log-HR).

•
 where 

• Model-based SE: The average of N = 1, 000 estimated standard errors of the 

estimated causal effect.

• Coverage probabilities of model-based nominal 95% CIs: Proportion of N = 1, 

000 datasets in which the true parameter is contained in the nominal 95% CI.

The above quantities were defined in terms of MSCM parameter ψ1 from equation (4). In 

order to define the same measures from other analysis approaches under consideration, we 

assumed that the true target parameters (defined in equations (1), (4) and (6) respectively) 

are the same for all approaches, e.g., . A heuristic justification of such 

assumption of equivalence is provided at the section ‘Marginal versus Conditional 

Interpretations’.

3 Simulation Results

3.1 Description of the Simulated Data

To describe the data obtained from the simulation settings under the rare event condition, we 

generated datasets with a larger number of subjects (25, 000) with up to 10 subsequent visits 

from each simulation algorithm. The characteristics of the treated, untreated and partially 

treated groups, their failure rates and average number of visits are listed in Table 3.

3.2 Rare Event Condition

We present the results from the rare event condition (λ0 = 0.01 in a monthly time-scale) in 

the two simulation settings.

3.2.1 Results From Simulation-I—Results from simulation-I are reported in Table 4. 

MSCM with treatment status (Am) is fitted to validate the data generating algorithm. The 

corresponding stabilized weights are generated based on the relationship between treatment 

status (Am) and the time-dependent confounder Lm. The level of bias is negligible compared 

to other approaches under consideration and the average coverage probability of the model-

based nominal 95% CIs is 0.942. These results are now considered as the ideal for 

comparison purposes for this simulation setting. The time-dependent Cox models provide 

biased estimates (assuming ψ̃
1 = ψ1 = 0.5) in the presence of this time-dependent 

confounder. The average coverage probability of the model-based nominal 95% CIs for the 

method is very low. The bias of sequential Cox analysis is comparable to that with the time-

dependent Cox analysis, while the corresponding effect estimates are considerably more 

variable. The properties of the modified sequential Cox approach, on the other hand, are 

comparable to that of MSCM. The corresponding average coverage probability of the 

model-based nominal 95% CIs for the method is comparable to that with MSCM.
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3.2.2 Results From Simulation-II—Results from simulation-II are reported in Table 5. 

The time-dependent Cox model with treatment status (Am), baseline covariate (L0) and time-

dependent covariate (Lm) is fitted to validate the data generating permutation algorithm. The 

level of bias is negligible and the average coverage probability of the model-based nominal 

95% CIs is 0.952. These results are considered as the ideal for comparison purposes for this 

simulation setting. When the sequential Cox approach is used in this simulation setting, we 

observe some bias. We apply MSCM with Lm treated as a time-dependent confounder, even 

though Lm is only a time-dependent covariate that is not affected by the past treatment. The 

corresponding bias is negligible and the average coverage probability of the model-based 

nominal 95% CIs is 0.952. As Lm is not a time-dependent confounder in this simulation, the 

similarity between the estimates obtained from MSCM and the time-dependent Cox model 

is not surprising. The properties of the modified sequential Cox approach are again 

comparable to MSCM with reasonable average coverage probability of the model-based 

nominal 95% CIs.

3.3 Marginal versus Conditional Interpretations

We need to take into account the different interpretations of the target quantities (ψ̃
1, ψ1 and 

 from equations (1), (4) and (6) respectively) being estimated by the three approaches 

under consideration. The clinical context should dictate whether the target parameter should 

bear a marginal or conditional interpretation. Conditional interpretations are generally useful 

in deciding personalized drug choices, whereas marginal interpretations may be more useful 

in making generalized policy decisions for a heterogeneous group of patients15.

The modified sequential Cox approach and its proposed modification emulate a sequence of 

conditionally randomized treatment assignments. This is done by first reorganizing the 

observed data and then stratifying the combined data based on the month of treatment 

initiation, conditioning on the pre-treatment covariate values. The estimated  from a 

modified sequential Cox approach (as well as estimated ψ`1 from a sequential Cox 

approach), therefore, bears a conditional interpretation9,13, as does the estimated log-hazard 

ratio ψ̃
1 from a time-dependent Cox model23,24.

In contrast, MSCM estimates the log-hazard ratio ψ1 between two counterfactual scenarios: 

all subjects are treated at a given time versus none of the same subjects are treated at that 

time. The target quantity of interest ψ1 estimated from MSCM is the causal effect of the 

treatment. Assuming the MSCM assumptions hold, this quantity should match the estimated 

treatment effect from a randomized clinical trial25,26. In that sense, the MSCM approach 

mimics randomized clinical trial data setting by appropriately weighting observational data. 

As the corresponding outcome or hazard model does not condition on any time-dependent 

covariates that affect future treatment, the log-hazard ratio estimated from a MSCM is a 

marginal or population-averaged quantity27. It is possible to extend the MSCM by 

incorporating baseline covariates in the hazard model28. When we use stabilized weights in a 

MSCM, the treatment effect is marginal with respect to the time-dependent confounders, but 

conditional with respect the baseline covariates11,29,30.
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Comparing the MSCM target parameter estimate with any conditional treatment effect 

estimate (from time-dependent Cox model approach: which is considered as the standard for 

comparison in simulation - II) is not straightforward when noncollapsible measures, such as 

HR or OR, are employed30–34. Establishing the equivalence of the target parameters (log-

hazard ratios ψ̃
1, ψ1 and  from equations (1), (4) and (6) respectively) from the 

approaches under consideration may not be easy. However, the difference between the 

conditional and marginal parameters is expected to be negligible when the event rate in the 

time-intervals under consideration is small14,33. In our simulations, the event rate was 1% in 

each month-interval. In this scenario, noncollapsibility of the HRs should not have any 

noticeable impact on the findings. We performed the following numerical experiment to 

support this proposition14,15. We generated a very large cohort (n = 100, 000) under the 

simulation - II settings. As expected, the time-dependent Cox model and MSCM yield 

almost identical values of the treatment effect estimates (log-hazard ratio of 

versus ψ̂
1 = 0.5091). This further provides some evidence that non-collapsibility of the HR 

does not affect our simulation - II findings.

Similarly, we performed another Monte Carlo experiment for the simulation – I setting with 

N = 100 larger cohorts (n = 100, 000) to investigate whether  and ψ1 quantities estimated 

via the modified sequential Cox and MSCM respectively (which is considered as the 

standard for comparison in simulation - I) differed systematically in the settings we 

investigated. Both approaches produce very similar values of the treatment effect estimates 

on average (see Table 6). For this setting, this shows that the target parameters for these two 

approaches are not materially different. To check the adequacy of the sample size n = 2, 500 

chosen in our original simulation – I, this study is also repeated for other cohort sizes n = 5, 

000, 10, 000 and 50, 000 (see Table 6). The results look very similar, and expectedly the SDs 

are decreasing with increment of sample sizes.

3.4 When More Events are Available

The trends in the bias from the more frequent event condition (λ0 = 0.1 in a monthly time-

scale) are similar compared to those in the rare event condition (see Web-Tables H.1–H.2). 

As expected, the standard errors are much less than in the corresponding analyses when 

failure rates are rare. Bias is slightly lower in some cases. One noticeable difference is 

observed in simulation setting - I: in the presence of the time-dependent confounder, when 

the failure rate is more frequent, the bias of the time-dependent Cox and MSCM approaches 

is reduced to minimal levels, whereas considerable bias is still apparent with the sequential 

Cox approach. On the other hand, the average coverage probability of the model-based 

nominal 95% CIs from the time-dependent Cox approach is smaller than that of MSCM. The 

modified sequential Cox approach estimates are still associated with good statistical 

properties.

4 Application in Multiple Sclerosis

We apply these methodologies to the British Columbia (BC) MS cohort data (1995–2008)11. 

The dataset was used in previous studies11,12,35–38 to estimate the effect of β-IFN on time to 

irreversible disability outcomes. As before, irreversible progression of disability is measured 
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by sustained expanded disability status scale (EDSS) 6 which is confirmed after at least 150 

days, with all subsequent EDSS scores being 6 or greater. Web-Appendix §G describes the 

baseline characteristics, eligibility and exclusion criteria of the MS cohort.

Potential baseline confounders L0 include age, sex, disease duration and EDSS score. Also, 

we consider the cumulative number of relapses in the previous 2 years (hereafter called 

‘cumulative relapses’) as a time-dependent confounder Lm
11. Once the subjects initiate β-

IFN, we assume they continue taking the drug without any discontinuation until they 

develop the outcome or are censored, as is assumed in our simulations and previous 

pharmacoepidemiologic studies9,13,39. As found in the previous study11 using this cohort, 

we consider the MSCM estimates to be ideal in this time-dependent confounding context. 

Results are reported in Table 7.

The IPCWs in the modified sequential Cox approach are less variable than the IPWs in 

MSCM. IPCWs are estimated separately for each mini-trial9. When they are estimated from 

the aggregated dataset instead8, or when IPCWs were estimated via pooled logistic 

regression models2,5,39, the HR estimates are very similar (see Web-Appendix §I). No 

matter how they are constructed, the IPCWs from the mini-trials are well-behaved, i.e., the 

averages are close to one and they have low variability (most are within the range of 0.9 to 

1.1 and the distributions are unimodal and symmetric; see Web-Figures I.1 and I.2).

5 Discussion

In observational studies, the estimation of a treatment effect is challenging in the absence of 

randomization. In longitudinal studies, additional complexity arises in the presence of time-

dependent confounding. MSCMs are popularly used to deal with this problem in the survival 

analysis setting. MSCMs handle time-dependent confounding by re-weighting the data in 

such a way that the confounding effect of the time-dependent confounder is removed. Then 

adjusting for the baseline confounders (but not the time-dependent confounder) in the re-

weighted pseudo-population is adequate to obtain the counterfactual or causal effect of the 

treatment under the identifiability conditions8,28. Sometimes, the MSCM estimates may be 

unstable due to use of IPTWs and an alternate analysis or view of the data may be helpful.

The sequential Cox approach was proposed as an alternative method to the MSCMs for 

estimation of the treatment effect from complex observational data settings where the 

treatment is time-dependent and censoring may be non-random9. This approach restructures 

the data in such a way that a sequence of subsets of data (mini-trials) are created based on 

intervals of treatment initiation. Aggregation of all the mini-trial data produces the pseudo-

population. In this pseudo-population, subjects initiating treatment at each interval are 

compared to those who do not initiate treatment, conditional on covariates at respective 

intervals as well as baseline covariates. Although IPTWs are avoided in the sequential Cox 

approach, IPCWs are still required. These weights are less variable and more stable than 

IPTWs7,9 and appropriately handle the artificial censoring at later treatment start dates. We 

proposed a modified version of this approach that deal with analyses differently than the 

original proposal.
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The treatment effect that is estimated from a MSCM is a marginal estimate as it is obtained 

by averaging over subjects with different hazards. This estimate does not condition on the 

time-dependent confounder. Rather the time-dependent confounder plays a role in creating 

weights for the MSCM model fitting. These weights are used to create the pseudo-data 

which is free from time-dependent confounding and mimics a clinical trial situation. 

Similarly, the sequential Cox approach contrasts subjects within mini-trials, where each 

mini-trial includes subjects who did and did not initiate the treatment. Controlling for 

current values of the time-dependent covariates as well as baseline confounders should make 

the treated subjects conditionally exchangeable with control subjects at the time of treatment 

initiation. Within each mini-trial, treatment assignment could be considered as random 

among the comparable subjects.

While the MSCM approach provides a marginal estimate of the treatment effect, the 

sequential Cox approach and its modified version provide conditional estimates. Both 

approaches are equipped to adjust for baseline confounders. Although the mechanisms and 

interpretations behind the sequential Cox approach and MSCM are different, both claim to 

achieve the same goal of estimating the causal effect of treatment in the presence of time-

dependent confounders. Generally marginal and conditional estimates may not be directly 

comparable due to non-collapsibility9,15. By examining whether these quantities differed 

systematically in the settings investigated, we showed that the use of non-collapsible 

measure has not been an issue in the specific simulation settings we considered.

To the best of our knowledge, ours is the first study to use simulation studies to investigate 

the characteristics of a sequential Cox approach that has been suggested as being suitable in 

the context of time-dependent confounding. The first simulation setting (simulation-I) deals 

with the situation where the time-dependent covariate is affected by the prior treatment (i.e., 

is a time-dependent confounder). When a time-dependent confounder is present, MSCM is 

known to be an appropriate method and hence results from this method are used as the 

standard for comparison in this simulation setting. In this simulation process, we generate 

data such that the time-dependent confounder dictates the treatment assignment in the 

following periods. Among the subjects selected for a mini-trial based on those initiating 

treatment or at risk in a given period, only current (and lagged) values of the time-dependent 

covariates are used as adjustments in the sequential Cox approach. We proposed a modified 

version of sequential Cox approach, based on controlling for the time-dependent variable 

(confounder or covariate) values after the treatment initiation. We investigated via simulation 

whether such adjustments are sufficient. In the second setting (simulation-II), we have a 

baseline covariate and a time-dependent covariate. As the time-dependent Cox model is 

appropriate for simulation setting II, we use these results as the standard for comparison.

Previously, the sequential Cox approach was shown to work very well in comparison to the 

time-dependent Cox approach in the absence of any time-varying covariate or confounder10. 

However, we do not find the sequential Cox approach to be as effective as MSCM when a 

time-dependent confounder is present (simulation-I) or even when a time-dependent 

covariate which is not a time-dependent confounder is present (simulation-II). The 

sequential Cox approach does not seem to remove the effects of time-dependent 

confounding adequately, especially when the event rate is small. Based on our simulation 
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findings, when we need to consider time-dependent confounders in order to adequately 

model a disease process, we recommend the use of the MSCM approach or the modified 

sequential Cox approach, as both are capable of producing estimates of the treatment effect 

that are close to the MSCM target parameter ψ1.

We apply the methods under consideration to estimate the effect of β-IFN on disease 

progression. The modified sequential Cox approach produces effect estimate similar to 

MSCM. A sensitivity analysis of the sequential Cox approach without using IPC weights 

yielded very similar results, implying little impact of artificial censoring due to later 

treatment initiation.

The focus for the sequential Cox approach and its modified version is on recreating the 

covariate process at each treatment start using the mini-trial approach7. Such focused and 

detailed scrutiny could yield insights about the data which may be hard to extract using a 

MSCM approach. For example, the data associated with a given mini-trial can be extracted 

and separated quite easily from the combined mini-trial data (pseudo-population), it is 

straightforward to compare the effects of early versus late treatment initiation. It is also 

possible to estimate the treatment effect for patients with a specific level of a time-dependent 

covariate at treatment initiation. Variance estimation is a challenge in the sequential Cox and 

similar methods15. To account for possible multiple entry of the same control subjects in 

different mini-trials, we used a robust (sandwich) estimator. In our simulation studies, the 

average standard errors are slightly lower than the empirical standard deviations in most 

cases for the sequential Cox approach. However, for the modified version, these estimates 

are very close. For more accurate estimate of the standard errors, bootstrap or jackknife 

estimates could be used9,13. Unlike our simulation settings, if the time-dependent covariates 

are very strongly affected by the prior treatment, further adjustments16–19 may be necessary. 

Using the same simulation scheme used in this study, future studies could assess the 

adequacy of the sequential Cox approaches and other similar methods17,27,40,41 under such 

extreme setting.

Similar to other simulation studies, we investigated a few possible scenarios. However, the 

assumptions underlying our data simulation are consistent with patterns typical in 

observational survival studies where associated covariates are measured regularly. For more 

complex disease scenarios where an investigator may wish to assess different treatment 

strategies (i.e., switching between therapies) over the course of time, our assumption of no 

discontinuations or interruptions in the treatment is restrictive and may not be suitable8. 

Further simulation studies are required to assess the effect on the precision of the estimates 

when varying the sample size of the simulated data as well as the number of simulated 

datasets generated from the algorithms considered in this study42. Future research could 

focus on analytical derivation of the effect estimates from the sequential Cox approach and 

its modified version in an effort to theoretically justify the proposed analysis roadmap.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Description of the Cox models used in the approaches under consideration.

Approach Stratified Time-dependent covariate history Weight adjusted

TD-Cox No Full No

MSCM No Full Yes, IPTC#

Sequential Cox‡ Yes Up to the new baseline† Yes, IPC§

Modified Sequential Cox‡ Yes New baseline and afterwards†† Yes, IPC§

TD-Cox, Cox model with time-dependent exposure; MSCM, Marginal structural Cox model; IPT, Inverse probability of treatment; IPC, Inverse 
probability of censoring; IPTC, Inverse probability of treatment and censoring.

†
For the sequential Cox approach, covariate values are collected at three time points for each mini-trial: at baseline, at the interval of treatment start 

and at the previous interval (the lagged value): L̃m = (L0, Lm−1, Lm). Here, time-fixed covariates collected at the original baseline (i.e., L0) are 

included in the analysis.

††
For the modified sequential Cox approach, the time-dependent covariate values are collected at the new baseline and then at subsequent intervals 

(i.e., L⃗m = (Lm, Lm+1, …, LK)). Time-fixed covariates collected at the original baseline (i.e., L0) are also included in the analysis.

‡
Robust (sandwich) estimate is used to obtain SEs.

#
Pooled logistic regression is used to estimate the IPTC weights.

§
Aalen’s additive regression model is used to estimate the IPCW.
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Table 2

Two simulation settings under consideration.

Simulation - I Simulation - II

Algorithm 20 21

Time-varying treatment Yes Yes

Baseline covariate No Yes

Time-varying covariate No Yes

Time-varying confounder Yes No
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Table 3

Characteristics of the simulation settings under consideration.

Rates Simulation-I Simulation-II

Failure 0.143 0.084

Always treated 0.261 0.051

Never treated 0.046 0.150

Partially treated 0.692 0.799

Discontinuation 0.001† -

Mean visits 9.367 8.943

†
Simulation-I allows a few exceptions (19 out of 25, 000) where there are discontinuations. However, the proportion of discontinuation in the 

simulation-I dataset is negligible (0.00076) and we do not expect any noticeable impact in the results due to this small number of exceptions.
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Table 4

Comparison of the analytical approaches to adjust for time-dependent confounding from simulation-I (one 

time-dependent confounder and time-dependent treatment exposure) of 1, 000 datasets, each containing 2, 500 

subjects followed for up to 10 time-intervals.

Approach Bias SD se Coverage Probability

TD-Cox§ 0.438 0.168 0.169 0.251

Sequential Cox#, † 0.451 0.280 0.267 0.636

Modified Sequential Cox*,@ 0.015 0.221 0.222 0.956

MSCM‡ 0.029 0.201 0.205 0.942

TD-Cox, Cox model with time-dependent exposure; MSCM, Marginal structural Cox model.

§
Includes the time-dependent confounder Lm as a covariate. In the presence of a time-dependent confounder, the time-dependent Cox model is not 

appropriate but the results are retained for comparison purposes.

#
Adjusts for L̃m.

†
For the stabilized IPCWs, the numerator model adjusts for Am, while the denominator model adjusts for Am and L̃m via Aalen’s additive 

regression.

*
Adjusts for lagged values of Am, the time-dependent confounder L⃗m, and lagged values of L⃗m. Note that, baseline covariates are not present in 

this setting.

@
For the stabilized IPCWs, the numerator model adjusts for Am, while the denominator model adjusts for Am, L⃗m and lagged values of L⃗m via 

Aalen’s additive regression.

‡
The stabilized IPTW numerator model adjusts for time index and lagged values of Am, while the denominator model additionally adjusts for 

current and lagged values of Lm to predict future treatment status via pooled logistic models.
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Table 5

Comparison of the analytical approaches to adjust for time-dependent covariate from simulation-II (one 

baseline covariate, one time-dependent covariate and time-dependent treatment exposure) of 1, 000 datasets, 

each containing 2, 500 subjects followed for up to 10 time-intervals.

Approach Bias SD se Coverage Probability

TD-Cox§ 0.000 0.164 0.162 0.952

Sequential Cox#, † 0.271 0.189 0.184 0.688

Modified Sequential Cox*, @ −0.022 0.231 0.234 0.961

MSCM±, ‡ −0.001 0.163 0.162 0.952

TD-Cox, Cox model with time-dependent exposure; MSCM, Marginal structural Cox model.

§
The baseline covariate L0 and time-dependent covariate Lm are included.

#
Adjusts for L0 and L̃m.

†
In the stabilized IPCW model, the numerator model adjusts for Am and L0, while the denominator model adjusts for Am, L0 and L̃m via Aalen’s 

additive model.

*
Adjusts for baseline covariates L0, lagged values of Am, the time-dependent confounder L⃗m, and lagged values of L⃗m.

@
For the stabilized IPCWs, the numerator model adjusts for Am and baseline variable L0, while the denominator model adjusts for L0, Am, L⃗m 

and lagged values of L⃗m via Aalen’s additive regression.

±
Adjusts for only L0.

‡
For the stabilized IPTWs, the numerator model adjusts for the time index, L0 and lagged values of Am, while the denominator model additionally 

adjusts for current and lagged values of Lm to predict future treatment status via pooled logistic models.
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Table 6

Series of Monte Carlo studies for the simulation – I setting, each simulation with larger cohorts.

Approach Bias (SD) from N = 100 cohorts

Cohort size (n) n = 5,000 n = 10,000 n = 50,000 n = 100,000

MSCM 0.013 (0.150) 0.007 (0.107) 0.011 (0.049) 0.003 (0.033)

Modified Sequential Cox 0.011 (0.157) 0.003 (0.100) 0.004 (0.048) −0.001 (0.037)
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Table 7

Summary of the estimated parameters from the multiple sclerosis (MS) patients’ data from British Columbia, 

Canada (1995–2008).

Approach 95% CI

Weights

Average (SD) range

TD-Cox§ 1.29 0.23 0.91 – 1.82

Sequential Cox#, † 1.23 0.32 0.74 – 2.07 1.00 ( 0.01 ) 0.74 – 1.63

Modified Sequential Cox*, @ 1.36 0.26 0.93 – 1.99 1.00 ( 0.01 ) 0.92 – 1.24

MSCM±, ‡ 1.31 0.23 0.92 – 1.84 1.00 ( 0.06 ) 0.37 – 1.60

TD-Cox, Cox model with time-dependent exposure.

§
Adjusts for baseline covariates L0 (sex, EDSS score, age and disease duration), and for the time-dependent confounder Lm ‘cumulative relapses’.

#
Adjusts for L0, Am and L̃m.

†
The stabilized IPCW numerator model adjusts for Am and L0, while the denominator model additionally adjusts for Lm and lagged values of Lm 

via Aalen’s additive model.

*
Adjusts for baseline covariates L0, lagged values of Am, the time-dependent confounder L⃗m and lagged values of L⃗m.

@
For the stabilized IPCWs, the numerator model adjusts for Am and baseline variable L0, while the denominator model adjusts for L0, Am, L⃗m 

and lagged values of L⃗m via Aalen’s additive regression.

±
Adjusts for the potential baseline confounders L0.

‡
The stabilized IPTW numerator model adjusts for a restricted cubic spline of the follow-up time-index, baseline confounders L0 and lagged values 

of Am to predict future treatment status. The denominator model additionally adjusts for the current and lagged values of cumulative relapses (Lm) 

via the pooled logistic models.
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