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ARTICLE INFO ABSTRACT

Learning to predict threat depends on amygdala plasticity and does not require auditory cortex (ACX) when threat
predictors (conditioned stimuli, CS) are simple sine tones. However, ACX is required in rodents to learn from some
naturally occurring CS. Yet, the precise function of ACX, and whether it differs for different CS types, is unknown.
Here, we address how ACX encodes threat predictions during human fear conditioning using functional magnetic
resonance imaging (fMRI) with multivariate pattern analysis. As in previous rodent work, CS+ and CS- were
defined either by direction of frequency modulation (complex) or by frequency of pure tones (simple). In an
instructed non-reinforcement context, different sets of simple and complex sounds were always presented without
reinforcement (neutral sounds, NS). Threat encoding was measured by separation of fMRI response patterns
induced by CS+/CS-, or similar NS1/NS2 pairs. We found that fMRI patterns in Heschl's gyrus encoded threat
prediction over and above encoding the physical stimulus features also present in NS, i.e. CS+/CS- could be
separated better than NS1/NS2. This was the case both for simple and complex CS. Furthermore, cross-prediction
demonstrated that threat representations were similar for simple and complex CS, and thus unlikely to emerge
from stimulus-specific top-down, or learning-induced, receptive field plasticity. Searchlight analysis across the
entire ACX demonstrated further threat representations in a region including BA22 and BA42. However, in this
region, patterns were distinct for simple and complex sounds, and could thus potentially arise from receptive field
plasticity. Strikingly, across participants, individual size of Heschl's gyrus predicted strength of fear learning for
complex sounds. Overall, our findings suggest that ACX represents threat predictions, and that Heschl's gyrus
contains a threat representation that is invariant across physical stimulus categories.
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Introduction 1992a). However, for naturally occurring sounds such as

frequency-modulated sweeps, which contain multiple frequencies with a

Learning to predict threat from neutral precursors is crucial for sur-
vival in biological environments. Fear conditioning entails establishing
an association between such precursors (conditioned stimuli CS), and an
aversive event (unconditioned stimulus, US). Non-human animal
research has provided compelling evidence that this association is
formed within a subcortical fear learning network that encompasses the
amygdala as a key structure for storing CS/US associations (Campeau and
Davis, 1995; LeDoux, 2003). Although post-learning plastic receptive
field changes are observed in sensory cortices (Weinberger, 2007), syn-
aptic plasticity in the amygdala suffices to learn threat predictions from
pure sine tones with a single frequency. Indeed, sensory cortex lesions in
non-human animals leave fear acquisition intact (Romanski and LeDoux,

temporal pattern, there is evidence in rodents that ACX lesions impair
fear learning (Ohl et al., 1999; Peter et al., 2012). This could indicate that
sensory cortices, and specifically ACX, are required for some forms of
threat conditioning, thus conceptually expanding beyond a role of the
amygdala (Herry and Johansen, 2014). The precise function of ACX
during learning, however, remains elusive. In rodents, primary ACX (A1)
neurons are activated by non-auditory US via the basal forebrain (Peter
et al., 2012). There is a suggestion in rodents that during learning from
complex sounds, Al relays this US signal from basal forebrain to amyg-
dala (Letzkus et al., 2011). This information relay appears necessary for
learning from complex sounds as its disruption inhibits fear learning in
mice (Letzkus et al., 2011). For simple sounds this US relay has not been
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investigated. Taken together, these findings imply that at least for com-
plex sounds, CS and US information may converge in Al. This allows for a
possibility that threat predictions are encoded in Al over and above
threat prediction in the amygdala. The lack of direct connections be-
tween Al and amygdala (McDonald, 1998; Abivardi and Bach, 2017) as
well as the impact of higher auditory areas on auditory fear conditioning
with complex sounds (Ohl et al., 1999; Peter et al., 2012) suggest that
threat predictions are likely to be found in higher ACX subfields as well.

To investigate threat predictions during fear acquisition in humans,
we here focus on CS representations in ACX. Such representations have
been observed in rodents (Quirk et al., 1995) and humans (Haritha et al.,
2013) but it is not clear to what extent they differ between simple or
complex CS, and whether they are stimulus-specific. In humans, auditory
fear conditioning has only rarely been investigated (see Fullana et al.,
2016 for review). Here, we arbitrate between three possible functions of
ACX in CS processing (Fig. 1). First, ACX could send a compacted CS
identity signal to the amygdala, and separately relay the previously
demonstrated US signal, which are then paired within amygdala (hy-
pothesis 1). In this case, the CS response in the ACX would be unaffected
by CS/US coupling, i.e. it should merely reflect the physical stimulus
properties rather than threat predictions. ACX could also pair CS-US in-
formation within the same neural populations and form threat pre-
dictions. In this case, CS responses in ACX would depend on whether or
not a CS is coupled with US. Such predictions may be represented equally
for simple and complex CS (hypothesis 2), or only when learning from
complex sounds (hypothesis 3).

To distinguish these possibilities, we used high-resolution functional
magnetic resonance imaging (MRI) in humans, together with multivar-
iate pattern analysis (MVPA) to assess differences in information
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encoding (Kriegeskorte et al., 2006; Norman et al., 2006). Specifically,
we analysed to what extent CS+/CS- responses could be distinguished in
ACX. Crucially, CS+/CS- do not only differ by their threat association,
but also in physical features. Hence, we compared the distinction of CS+/
CS- responses from the distinction of similar sound pairs, NS1/NS2, that
only differed physically but were never paired with US. In a reinforce-
ment context, indicated by screen background colour, a complex sound
(CS+, Fig. 1) composed of four sweeps, co-terminated with an aversive
electrical shock in 50% of trials, while CS- was always presented alone. In
a neutral control context, two neutral sounds (NS1/NS2) with similar
temporal pattern but different principal frequency were always presented
alone. To analyse possible differences in threat encoding between com-
plex and simple sounds, we included another set of four simple (pure
sine) tones. Fear learning was confirmed by measuring anticipatory
sympathetic arousal, and was similar for simple and complex CS.
Crucially, we disregard all trials in which a US occurs because we cannot
disambiguate BOLD responses to CS and US in our fMRI approach.

Materials & methods
Participants

Eighteen healthy volunteers (ten female, mean age: 24.2 years, age
range 18-34) participated in the fMRI experiment and received monetary
compensation. All participants were right-handed with normal or cor-
rected to normal vision, had no structural brain abnormalities, and no
neurological or psychiatric history. Twenty different volunteers (11 fe-
male, mean age: 23.3, age range 18-28) participated in a control
experiment outside the MR scanner, in which we sought to confirm in
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Fig. 1. Hypothesis and methods. (a) In ACX, we tested three possibilities for CS encoding: (1) CS encoding represents their physical properties and is thus similar to encoding of never-
reinforced NS; this may be the same for simple and complex sounds, or different (as illustrated here). (2) CS encoding reflects threat predictions for simple and complex sounds alike, i.e.
the difference between CS and NS is the same for simple and complex sounds. (3) CS encoding represents threat only for complex but not simple sounds. An incidental button press task
controlled attention and sensory discrimination for all sound pairs. (b) Frequency-spectrograms of complex and simple sounds. We compared differential fear conditioning of frequency-

modulated sweeps (complex) with single sine tones (simple), (¢) Fear conditioning paradigm

during fMRI. Participants were presented with reinforced and non-reinforced sounds in

alternating order. They were instructed about the context (reinforced or non-reinforced) but not about the CS-US associations.
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more noise-free conditions that sound type had no impact on behavioural
fear learning. No participants were excluded. All participants gave
written informed consent. The experiment, including the form of taking
consent, was conducted in accordance with the Declaration of Helsinki
and was approved by the governmental ethics committee (KEK-ZH
2013-0258).

Design

The MRI experiment followed a repeated-measures 3-way factorial
design with the factors stimulus, context, and complexity. In a rein-
forcement context, participants were repeatedly presented with either
two simple or two complex stimuli (CS+, CS-). 50% of the CS+ co-
terminated with an unpleasant electric stimulation to the right wrist.
CS- were always presented alone. Participants were not instructed about
CS+/CS- contingencies with US. Additional simple and complex stimuli
(neutral stimuli, NS1/NS2) were presented in different blocks (non-
reinforcement context); participants were explicitly instructed that
stimuli in these blocks were never reinforced. In total, eight different
sounds were used. The behavioural control experiment used the rein-
forcement context only with 4 stimuli. For fMRI analysis, classification of
stimulus pairs per complexity/context combination was analysed, such
that our group-level statistical model used a 2 (context) x 2 (complexity)

factorial model on permutation-baseline corrected decoding
performance.
Stimuli

All sounds were monophone sine waves of 4 s duration. Simple
stimulus pairs had time-invariant frequencies of 100/200 Hz, or 400/
800 Hz. Complex sounds were composed of four 1 s repetitions of either
rising or falling frequency, from 100 to 200 Hz or 400-800 Hz, respec-
tively. Balanced across participants, CS were in the high octave and NS in
the low octave, or the vice versa. Within octaves, sweep direction
(complex) and pitch (simple) was balanced across participants. Loudness
of the sounds was set between 70 and 80 dB(A), and adapted for each
sound according to the equal-loudness contour by Fletcher-Munson
combined with an expert rating to match perceived loudness between
sounds. All stimuli were created in Matlab and converted to sound files
with the inbuilt wavwrite function. They were played with Cogent 2000
(Version 2000v1.25; www.vislab.ucl.ac.uk/Cogent) and delivered
binaurally using high-fidelity MR-compatible headphones (OPTIME 1,
MR Confon, Germany), or HD 518 headsets (Sennheiser, Wendemark-
Wennebostel, Germany) respectively in the control experiment.

US were unpleasant electric stimulations consisting of a 500 ms
duration, 5 Hz train of square pulses with 200 ps width, delivered via a
pin-cathode/ring-anode configuration attached to the dominant forearm.
Before the experiment, US intensity was set to a clearly discomforting
level by adapting current amplitudes. First, electric current was increased
from an undetectable intensity until the participant reported that stim-
ulation reached the pain threshold. Next, 14 shocks with a randomly set
intensity below the pain threshold were applied while the subject rated
discomfort on a 0% (no shock detected) to 100% (painful) scale. Finally,
the stimulation was set just below the pain threshold (mean + SD:
8.25 + 2.90 mA). After the experiment, participants re-evaluated shock
intensity for the same random shocks as before the experiment. In both
experiments, participants reported reduced intensity of the US during re-
evaluation (fMRI experiment: t;7 = 4.73, p < 0.001, control experiment:
t10 = 4.69, p < 0.001).

Experimental task

After the participant was situated in the MRI scanner, all stimuli were
introduced in a training session without reinforcement. This session
allowed the subject to familiarize with the button-press task. Each sound
was played twice while the sound/button press mapping was displayed
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on screen. Participants were tasked to press one of two buttons operated
with index and middle finger. Specifically, they were instructed to press
one finger for both a rising sound and for a high pitched sound, both in
the high octave and in the low octave. Conversely, they pressed the other
button for falling and for low pitched sounds in both octaves. This
mapping was balanced across subjects such that all possible mappings
were used equally often. The acquisition phase was structured into mini-
blocks; within each mini-block only 1 stimulus pair occurred, with either
stimulus in the pair corresponding to a different finger.

Threat acquisition

In the acquisition phase, CS and NS occurred in different contexts,
indicated by background colour (yellow or purple). Background colour/
context association was balanced across participants. The fMRI experi-
ment consisted of 8 blocks, each separated into 2 miniblocks of 12 trials
in pseudo-randomized order. In each miniblock, a pair of either complex
or simple stimuli occurred. Miniblocks with complex and simple sounds
of the same context were presented in alternating order (balanced over
participants), followed by two miniblocks of the other context. This
procedure resulted in overall 24 trials for each of 8 stimuli across the
entire experiment. The inter-trial interval (ITI) was drawn from either 7,
9 or 11 s, which resulted in an average duration of 332 s per block. Trial
order and timing was optimized for fMRI analysis by maximizing the
variance in the contrast CS+/CS- of simulated time series (Ulmer and
Jansen, 2013).

Participants were explicitly instructed about different contexts but
not about the CS-US coupling. They were informed that US occurrence
could depend on the CS identity but not on their response. Their task was
to quickly press a key during each sound, according to the previously
trained mapping. Wrong button presses or reaction times exceeding 3 s
were signalled after CS termination by a change in the fixation cross. All
participants were able to correctly identify 90-100% of the stimuli dur-
ing the experiment. In a generalised linear mixed effects model, accuracy
(hit rate) was higher (Fy, 3384 = 7.88; p = 0.005) for simple (97.67%)
than complex sounds (95.98%). There was no impact of stimulus or
context, or interaction of any factor. Reaction times are shown in Table 1.

fMRI data acquisition

Data were recorded in a 3 T (Philips Achieva, Best, The Netherlands)
whole body MRI scanner. Anatomical images were acquired using two
high-resolution T1-weighted scans, which were averaged off-line (field of
view, 255 x 255 x 180 mm; matrix, 336 x 334; 237 sagittal slices with
thickness). Functional images during fear acquisition were recorded
using a 1.5 mm isotropic resolution, T2*-weighted echo-planar pulse
(EPI) sequence (TR, 2.5 s; echo time, 30 ms; flip angle, 85°; in-plane
resolution, 216 x 216 mm; matrix, 144 x 144; 30 interleaved slices
with thickness 1.5 mm). Susceptibility artefacts in the amygdala were

Table 1
Reaction time statistics. Note that participants were not incentivised to respond quickly and
had 3 s time to make a response.

Estimated marginal means (SD)in ~ CS- CS+ NS1 NS2

ms

Simple 820 (52) 839(52) 872(52) 901 (52)

Complex 1058 1032 1087 1171
(52) (52) (52) (52)

Linear mixed effects model df F p

CS 1, 3276 4.23 0.040

Complexity 1, 3276 320.58 <0.001

CS x Complexity 1, 3276 <1 n.s.

Context 1, 3276 29.97 <0.001

CS x Context 1, 3276 5.21 <0.025

Complexity x Context 1, 3276 1.09 n.s.

CS x Complexity x Context 1, 3276 3.83 0.050
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reduced by a slice tilt of 45° and negative phase-encoding polarity
(Weiskopf et al., 2006). At the beginning of each experiment, we ac-
quired BO field maps (TE, 4.1 and 7.1 ms; TR, 698 ms; matrix size,
80 x 80) using 64 slices covering the whole head.

fMRI analysis

Pre-processing of EPI data was performed using standard procedures
in statistical parametric mapping (SPM12; Wellcome Trust Centre for
Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm/
software/spm). Images were corrected for geometric distortions caused
by susceptibility-induced field inhomogeneities. A combined approach
was used which corrects for both static distortions and changes in these
distortions due to head motion (Andersson et al., 2001; Hutton et al.,
2002). The static distortions were calculated for each subject from a BO
field map that was processed using the FieldMap toolbox as implemented
in SPM12. Using these parameters, echo-planar images were then real-
igned and unwarped, a procedure that allows the measured static dis-
tortions to be included in the estimation of distortion changes associated
with head motion. Motion correction parameters were visually checked
for sudden movements; no participant moved more than 4 mm into any
direction and all participants were retained for further analysis. Slice
time correction was performed to correct for differences in acquisition
time of individual brain slices (Sladky et al., 2011). Images were then
coregistered to the individual's anatomical T1 image using a 12-param-
eter affine transformation. For mass-univariate analysis, images were
transformed to MNI space based on SPM12 segmentation of T1 images
(Ashburner and Friston, 2005). Group-space images were smoothed with
an 8 mm FWHM Gaussian kernel. In contrast, MVPA was done in un-
smoothed native-space images.

After pre-processing, we estimated trial-by-trial BOLD responses to CS
and NS. To this end, we used a general linear model (GLM) that contained
one regressor per trial, constructed by convolving a 3.5 s boxcar function
per event with a canonical hemodynamic response function. This pro-
cedure has been shown appropriate to estimate single-trial BOLD re-
sponses at the given inter-trial-interval (method LS-A in Mumford et al.,
2012). The US was modelled as a separate regressor across all trials. The
resulting design matrix also contained a standard 128 s high-pass filter
and motion estimates as covariates of no interest. BOLD responses from
reinforced trials were not further analysed in line with previous work
(Bach et al., 2011), since conditioned and unconditioned response may
overlap on these trials, and residual artefacts from increased motion
during US presentation may render estimation of responses imprecise.

Region of interest definition

Our primary analysis focused on Heschl's gyrus (HG) which contains
Al and parts of A2 (Costa et al., 2011). We then expanded our field of
view to include the entire ACX, and therefore ran a searchlight analysis
within an anatomically defined mask that included the entire superior
temporal gyrus, temporal plane, HG and probabilistically defined Al.
Anatomical T1 scans were transformed to standard space using the
SPM12 segmentation-based non-linear warp to obtain deformation pa-
rameters from MNI to native space (Ashburner and Friston, 2005). Using
these parameters, region of interest definitions provided in MNI space by
the toolbox Automated Anatomic Labeling (AAL) (Tzourio-Mazoyer
et al., 2002) were transformed to individual native space. HG and
amygdalae comprised our a priori regions of interest (ROI). We addi-
tionally did a searchlight analysis within a mask comprising HG, the AAL
definition of STG (which includes temporal plane), and a probabilisti-
cally defined mask of A1 (Morosan et al., 2001). This mask was created
from the probabilistic A1 mask as provided in the SPM Anatomy toolbox
(Eickhoff et al., 2005), thresholded at p = 0.31, resulting in a cluster with
a spatial extent similar to a morphometric definition of Al (Arta-
cho-Pérula et al., 2004). ACX was analysed separately for each hemi-
sphere because representation of frequency-modulated sounds has been
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reported to be lateralised (Warren et al., 2005; Lee et al., 2011). To
investigate a relationship of HG size with learning, we used the number
of voxels in the warped (native-space) bilateral HG after correcting for
overall brain volume, by regressing out the number of voxels of the entire
gray matter mask.

Multivariate image analysis

We used the SPM12 function spm_searchlight to extract BOLD esti-
mates from our regions of interest and passed them to a support vector
machine (LibSVM) (Chang and Lin, 2011) for classification within each
task condition.

First, BOLD response estimates for each voxel were independently z-
scored across all trials to avoid numeric instability in the MVPA. We then
used a three-fold cross-validation scheme in which the SVM is trained on
two thirds of data (24 stimuli per task condition) and evaluated on the
remaining data (12 stimuli per task condition), i.e. every third trial
served as test data. In the reinforced context, there were twice as many
CS- than CS+, which makes a binomial test unsuitable for assessing
above-chance classification. This is why we estimated chance accuracy
through permutations by repeating the classification 1000 times with
randomly assigned stimulus labels (Bach et al., 2011). Next, the esti-
mated chance performance for each comparison was subtracted from the
classification accuracy obtained from using correct labels. This procedure
was performed separately for CS trials from complex and simple sounds
in the reinforcement context. The same approach was used for the clas-
sification of NS1 vs. NS2, separately for complex and simple NS. How-
ever, different from the reinforcement context, all trials were usable for
fMRI analysis, since no electric stimulation was delivered. To render the
classification procedures between contexts comparable in terms of bias
and power, we discarded a random subset of 50% samples from one
neutral condition before MVPA. Since this process might result in a bias
introduced by the selection of discarded NS, we repeated this procedure
for each subject 100 times per permutation and averaged the result.

Cross-prediction was performed similarly, by training a classifier on
the CS+/CS- distinction for all 36 simple sounds in the reinforcement
context, and testing it on CS+/CS- distinction for complex sounds, and
vice versa. Because simple and complex CS+ or CS- were matched in
terms of the required key press, we also analysed cross-prediction of NS
sounds that required the same key press, i.e. predicting left/right-
response complex NS from left/right-response simple NS and vice-versa.

Our analysis focused on differences in information content, and
pattern similarity in cross-prediction. Difference in information content
can be positive or negative. Also, cross-classification performance can
theoretically be below zero if two sets of patterns are systematically more
dissimilar than expected by chance. This is different from a more com-
mon situation in which the existence of information (which can in theory
not be negative) is assessed with MVPA. In this situation, the interpre-
tation of standard statistical tests has been challenged (Allefeld et al.,
2016), but this is not the case in the present study.

Searchlight analysis (Kriegeskorte et al., 2006) was done for each
participant with a 10 mm moving searchlight for CS classification within
each condition, using the SPM function spm_searchlight. Voxel-wise re-
sults were written into 3D images and analysed on the group level.

SCR analysis

Skin conductance was recorded as described previously (Bach et al.,
2010a,b; Staib et al., 2015) on thenar/hypothenar of the non-dominant
hand. In the MRI scanner, we used a Biopac MP150 data acquisition
system coupled to a GSR-100C signal amplifier (BIOPAC Systems, Inc.
Camino Goleta, CA) at 1000 Hz sampling frequency. For the control
experiment outside the MRI, we used an integrated SCR coupler/ampli-
fier (LabLinc V71-23, Coulbourn) and AD converter (DI-149/Windaq,
Dataq) at 200 Hz sampling rate. Fear learning was assessed through
model-based estimation of anticipatory sympathetic arousal (Bach et al.,
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2010a; Staib et al., 2015) using the Matlab toolbox PsPM 3.0 (http://
pspm.sourceforge.net/). For each trial, the most likely cognitive input
that caused the observed skin conductance is estimated as the amplitude
of a sudomotor nerve burst in a time window of 0-3.5 s after CS onset,
using a canonical SCR response function (Bach et al., 2010b), and settings
optimized to assess fear learning (Staib et al., 2015). For each participant,
trial-wise estimates across all conditions were centred on their mean and
divided by their standard deviation, and subsequently averaged within
conditions. Data sets of two participants were excluded from analysis due
to artefacts during SCR measurement.

Statistical analysis

Statistical analysis was performed in R 3.3.1 (www.r-project.org)
using linear mixed effects models in package nlme 3.1-128 (Pinheiro and
Bates, 2006). Single-trial estimated aSA were analysed in a 2 (CS) x 2
(complexity) model for the control group and in a 2 (CS) x 2 (context) x 2
(complexity) model for the fMRI group. Condition-wise MVPA results -
i.e. permutation-corrected performance of the CS+/CS- classification -
were analysed in a 2 (context) x 2 (complexity) x 2 (hemisphere) model
for HG and in a 2 (context) x 2 (complexity) model for all other areas.
Cross-prediction results were analysed in a 2 (context) x 2 (direction of
cross-prediction) model. All models contained random subject intercepts.
Post-hoc contrasts of significant findings were conservatively analysed
with Wilcoxon tests, thus accounting for a smaller number of data points.
Image-based statistical tests were done using SPM group level analysis
with family-wise error correction for multiple comparison at a
voxel-inclusion threshold of p < 0.001, using a random-field theory based
approach as implemented in SPM (Worsley et al., 1992). All results are
reported at p < 0.05 corrected within the ROI mask. Notably, for this
combination of voxel-inclusion threshold and p-value, this approach has
been shown to suitably control the false positive rate (Eklund et al.,
2016). For mass-univariate analysis, we examined the planned contrasts
(CS+ > CS-) > (NS1 > NS2) [analogous to the main effect of context in
MVPA], (CS+ > CS-) > (NS1 > NS2) complex, (CS+ > CS-) > (NS1 > NS2)
simple, (CS+ > CS-), (CS+ > CS-) complex, (CS+ > CS-) simple,
(NS1 > NS2), (NS1 > NS2) complex, and (NS1 > NS2) simple.

Results
Fear acquisition is similar for complex and simple sounds

We confirmed that participants learned an association between CS
and US, by comparing anticipatory sympathetic arousal between CS+,
CS-, and NS (Fig. 2, Table 2). In a behavioural experiment outside the
MRI, with presumably higher signal-to-noise ratio, participants showed
fear learning - i.e. higher CS+ than CS- responses - for simple and com-
plex sounds alike (post-hoc Wilcoxon test, simple: p = 0.008; complex:

Control experiment
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Table 2
Linear mixed effects model on anticipatory arousal during fear learning.
Control sample fMRI sample
(outside fMRI)
df F P df F P
(@] 1, 523  <0.0001 1, 9.0 0.0028
1897 2665
Complexity 1, <1 n. s. 1, 6.9 0.0084
1897 2665
CS x Complexity 1, <1 ns. 1, 4.2 0.0410
1897 2665
Context 1, 408.6  <0.0001
2665
CS x Context 1, 21.1 <0.0001
2665
Complexity x Context 1, 1.3 n. s
2665
CS x Complexity x 1, 6.0 0.0147
Context 2665

p = 0.002). For participants in the MRI scanner, we observed fear
learning in the reinforcement context (CS x context interaction), but this
was modulated by complexity with greater CS+/CS- difference for simple
sounds. Nevertheless, post-hoc tests demonstrated fear learning both for
simple (p = 0.002) and for complex reinforced sounds (p = 0.044).

Threat encoding in HG

Next, we investigated the encoding of threat information in HG. To
this end, we analysed for each context and complexity level whether
BOLD patterns to CS+/CS-, or pairs of NS, could be distinguished with a
cross-validated SVM. Separation of NS quantified the representation of
physical stimulus features, and any increase over and above this bench-
mark in the reinforced context indicates a representation of threat
associated with the CS+.

Classification performance is shown here as increase above chance.
For all conditions, chance levels of the SVM were between 59 and 61%,
determined by 1000 random CS label permutations. Chance levels
deviate from 50% due to different number of CS labels. Across all con-
ditions, classification performance above chance was in a similar range as
in previous work on fear conditioning (Bach et al., 2011), and decision
making (Soon et al., 2013). We compared decoding performances in
these four conditions (CS+/CS-, NS1/NS2) in a linear mixed-effects
model with the factors context, complexity, and hemisphere
(Fig. 3, Table 3).

We found a significantly better classification for CS+/CS- than for the
physically similar NS1/NS2 (main effect of context) in HG (Fig. 3,
Table 3). Classification was better for simple than complex sounds. There
was no interaction between these two factors, and no effect involving
hemisphere. These findings suggest that threat information of the CS was

FMRI experiment
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Fig. 2. Anticipatory sympathetic arousal estimated from SCR, normalized across trials within each participant (error bars show group-level SEM). Trials where a US was presented are
excluded from analysis; (a) fear learning outside the MR scanner and (b) during fMRI acquisition. Results indicate fear learning for CS (purple) and no differences in arousal for the non-

reinforced context (yellow).


http://pspm.sourceforge.net/
http://pspm.sourceforge.net/
http://www.r-project.org

M. Staib, D.R. Bach

o N b~ O

Neurolmage 166 (2018) 276-284

—

Classification
performance (%)

'
N

CS
complex

e

NS

o r=0.55 (p = 0.027)

2.6 3 34
Volume Heschl's gyrus [ml]

Cs
simple

NS

Fear learning strength

Fig. 3. MVPA results. Error bars show standard error of the mean (SEM). (a) Regions of interest based on an anatomical atlas were HG and amygdala (not shown). (b) In HG, decoding of
CS+/CS- was higher than for pairs of NS. Results are collapsed across hemispheres. (¢) HG size predicts fear learning for complex sounds.

Table 3
Linear mixed effects model on permutation-corrected MVPA performance for classification
of CS+/CS—.

Effect Heschl's gyrus Amygdala
df F p df F P

Context 1, 216  <0.0001 1, 15.0  0.0003
119 51

Complexity 1, 6.4 0.0128 1, 5.2 0.0271
119 51

Complexity x Context 1, 1.8 n. s. 1, 6.3 0.0150
119 51

Hemisphere 1, <1 n.s.
119

Hemisphere x Context 1, <1 ns.
119

Hemisphere x Complexity 1, <1 n. s.
119

Hemisphere x Complexity x 1, <1 n.s.

Context 119

encoded in HG over and above physical stimulus information also present
in NS and both for complex and for simple sounds, thus confirming hy-
pothesis 2. This result prompted us to ask, is threat prediction encoded in
a similar way for similar and complex sounds? To answer this question,
we used cross-classification, i.e. we asked whether the identity (CS+/CS-
) of simple CS could be predicted from a model trained on complex CS,
and vice versa. Because motor response was the same for simple and
complex CS+, and for simple and complex CS-, respectively, we con-
trasted CS cross-classification with cross-classification of simple and
complex NS that required the same key press. We found that cross-
classification performance was significantly higher for CS than for NS

(F1, 110 = 7.1, p = 0.0087). For CS, averaged cross-classification perfor-
mance was 1.9% above chance (one-sided Wilcoxon test: p = 0.034),
while it was 1.1% below chance for NS (n.s.). These findings suggest that
threat encoding had a similar pattern for simple and complex CS+.

Up to here we constrained ourselves to analysing HG. To investigate
threat representations within the entire ACX, we performed a searchlight
analysis with a moving 10 mm radius searchlight, and analysed the t-
contrast CS > NS. This revealed a cluster in ACX, for which CS classifi-
cation was stronger than NS classification (Fig. 4, peak t = 4.52, peak
coordinates 65, -8, 8 in MNI space, volume 1.499 cm®). The cluster
stretched from Brodmann area 22 (superior temporal area) to 42 (pos-
terior transverse temporal area) of the right hemisphere and included
around 10% of HG voxels. Post-hoc analysis of this cluster revealed a
significantly better decoding for simple than complex sounds (F;,
51 = 13.72, p < 0.001) but no complexity x context interaction (Fy,
51 < 1), just as in HG (i.e. threat encoding was not specific for simple or
complex sounds). However, different from our results in HG, cross-
classification performance was similar for CS and NS, i. e. the specific
fMRI pattern distinguishing CS + over and above NS1/2 was not similar
between simple and complex sounds. Notably, this searchlight analysis
revealed no cluster for the interaction context x complexity, and provided
thus no evidence for hypothesis 3.

To explore a causal relationship between ACX anatomy and fear
learning, we analysed the relation between HG volume and CS+/CS-
difference in aSA. Strikingly, estimated anatomical size of bilateral HG
predicted strength of fear learning for complex sounds, even when con-
trolling for total brain volume in the regression (r = 0.55, p = 0.027;
Fig. 3c). Such association was not observed for simple sounds, or for
amygdala volume.

Right temporal cortex (flattened)

Fig. 4. Searchlight results in entire ACX, encompassing HG, STG including temporal plane, and probabilistically defined Al. (a) Significant cluster of classification accuracy CS > NS (red).
(b) View on flattened right temporal cortex. The cluster extends from Brodmann area (BA) 42 to BA 22.
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Threat encoding in amygdala

The amygdala is crucial for storing threat associations with simple
sounds, and also for eliciting fear responses across various CS types.
Unsurprisingly, we found threat encoding - i.e. greater CS than NS sep-
aration - across both sound types (Table 2). However, this main effect was
modulated by complexity (interaction CS x complexity, Table 2): threat
encoding was stronger for complex (p = .001) than for simple (p = 0.20)
stimulus pairs. This difference was mainly driven by asymmetric NS
encoding: simple NS were better separated than complex NS (p = 0.002)
while simple and complex CS were similarly decoded (p = 0.90). Finally,
cross-classification demonstrated that simple and complex CS represen-
tations were more similar than simple and complex NS representations,
suggesting to some degree a similar threat encoding across sound types,
as in HG (Fq, 51 = 4.4, p = 0.0410).

Mass-univariate results

To exclude that our MVPA results were dominated by more wide-
spread directional differences in BOLD activity between conditions, we
performed a mass-univariate analysis. None of the planned contrasts
showed a significant result, when correcting for multiple comparison
either within the ACX ROI, or within the entire brain.

Discussion

In this study, we address the functional significance of ACX for fear
learning from simple and complex CS, using fMRI in humans combined
with MVPA. First, we demonstrate that HG encodes a threat prediction
during CS presentation over and above encoding physical properties of
the CS, both for simple and for complex auditory stimuli. Using cross-
classification, we then show that threat encoding is significantly
similar between simple and complex CS. HG includes A1 but also parts of
secondary ACX. Next, searchlight analysis within the entire ACX reveals
an extended region that also encodes a threat prediction. In this region,
however, we found no evidence for similarity of threat encoding asso-
ciated with simple and complex sounds.

Our result that human ACX encodes a threat prediction from CS ex-
tends a previous suggestion that Al relays US information to amygdala
when learning from complex sounds (Letzkus et al., 2011). We suggest
that ACX additionally encodes threat prediction from CS before a US
occurs. However, although ACX is not required to form threat predictions
from simple sounds in rodents, this threat encoding occurs for simple as
well as complex sounds - to a comparable extent and in HG also with a
similar pattern. Interestingly, we found threat representations in an HG
region of interest, but searchlight analysis within ACX including HG
revealed a threat-encoding cluster that only encompassed 10% of HG
voxels. This may suggest that either threat representations within HG are
rather circumscribed, or that the localisation of threat representations
within HG is heterogeneous across participants and thus does not impact
on searchlight analysis. Such variability could arise either from func-
tional heterogeneity, or from to anatomical variability of auditory areas
within HG. HG mainly consists of Al (core) and A2 (belt) areas (Gal-
aburda and Sanides, 1980). In the present study, it was not possible to
distinguish representations these subregions, which is generally difficult
based on anatomical information alone (Brugge et al., 2008; Moerel
et al., 2012; Wasserthal et al., 2014; Brewer and Barton, 2016). Further
fMRI studies using additional functional information, or ECoG re-
cordings, may help resolve the question where precisely these threat
representations are localised in terms of functional ACX subfields.

Our multivariate fMRI approach can reveal differential information
encoding in neural populations at subvoxel resolution (Kriegeskorte
et al., 2006; Norman et al., 2006). It is more challenging to precisely
identify the neural populations with fMRI that carry this information.
One possibility is that our results relate to early changes in excitatory/
inhibitory dysbalance which are induced by US signals received from
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Nucleus basalis (Froemke et al., 2007) and ultimately - within hours -
lead to post-learning receptive field plasticity in Al (Schreiner and Pol-
ley, 2014). Such plasticity has been demonstrated for simple sounds in
rodents (Bakin and Weinberger, 1990; Edeline and Weinberger, 1993;
Suga and Ma, 2003; Ji and Suga, 2007), and humans (Thiel et al., 2002a,
b; Brockelmann et al., 2011; Kluge et al., 2011), but is not required for
fear learning in rodents (Romanski and LeDoux, 1992b). However, our
results are unlikely to directly reflect this receptive field retuning. First,
receptive field plasticity does not commence before 20 min after start of
fear learning and is only complete after some hours (Froemke et al., 2007;
Schreiner and Polley, 2014). Secondly, it only occurs for neurons tuned to
CS that are paired with the US - and these are different for simple and
complex CS in our study. However, we show by cross-classification that
threat encoding for simple and complex sounds in HG overlaps. This is
difficult to explain with receptive field retuning. We would tentatively
suggest that our results in HG reflect a more global CS+ induced response
early during learning, induced by the local convergence of CS and US
representations. We note that the early stages of CS responses during
conditioning are only incompletely understood in non-human species
(Schreiner and Polley, 2014).

An alternative explanation for our findings is that CS+ detection by
amygdala induces resource prioritisation (e. g. Bach et al., 2015),
including selective attention to CS+ in sensory areas. This raises the
question whether a CS+/CS- differentiation can be explained by
top-down selective attention alone. Crucially, selective attention is
thought to alter spectrotemporal receptive fields in Al to improve
detection of the attended stimulus and thus induces changes similar to
post-learning receptive field plasticity (Fritz et al., 2010). Indeed, human
fMRI studies have shown that the attended stimulus can be decoded from
patterns of BOLD signals in auditory areas which implies that these
patterns are very specific to the attended-to stimulus (Riecke et al.,
2017). In contrast, here we find that not only are simple and complex
CS+ responses unspecific, cross-classification shows they can even be
significantly decoded from one another. This makes it unlikely that
top-down attention accounts for the increased CS+/CS- differentiation
in HG.

Taken together, this suggests that our results in HG cannot be
explained by post-consolidation receptive field remapping (behaviour-
ally relating to learning-induced selective attention) or top-down selec-
tive attention. Furthermore, mass-univariate results show no evidence for
global differences in ACX activation as could for example be caused by
differential global attention. Thus, our MVPA findings are more likely to
stem from a threat encoding mechanism, possibly based on local CS/US
convergence. Threat encoding in higher ACX was dissimilar for simple
and complex CS and could thus potentially reflect receptive field plas-
ticity although we note that such mechanisms are more thoroughly un-
derstood in A1 than other ACX areas (Schreiner and Polley, 2014), and an
interpretation of our searchlight results thus remains speculative.

Interestingly, we also observed that estimated HG size predicted
behavioural learning indices for complex sounds, lending credence to a
causal role of HG in threat learning from complex sounds. Notably, we
inferred HG volume from cortex normalisation rather than volumetri-
cally measure HG. Hence, this finding should be replicated in a volu-
metric or voxel-based morphometeric approach, and possibly in a
larger sample.

Our results in the amygdala confirm and extend previous human
findings. Synaptic plasticity in amygdala is crucial for fear learning
(Clugnet and LeDoux, 1990; Quirk et al., 1995; Blair, 2001). While rodent
electrophysiology provides clear evidence that CS+ and CS- responses
differ, human fMRI studies have often not reported such differences, as
apparent in large meta-analyses (Sehlmeyer et al., 2009; Mechias et al.,
2010; Fullana et al., 2016), possibly due to the sparse and interleaved
arrangement of neurons responding to CS+ and CS- (Reijmers et al.,
2007; Tovote et al., 2015). Multivariate fMRI studies from different
laboratories and with two different approaches have provided evidence
that CS+ and CS- are encoded differently (Bach et al., 2011; Visser et al.,
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2011) and that such threat encoding increases over time (Bach et al.,
2011). In line with these findings, we observed that both complex and
simple CS+/CS- were represented by distinct patterns. Interestingly, this
pattern difference was to some extent shared by simple and complex
sounds. Complex neutral sounds were not differentially encoded in the
amygdala while simple neutral sound pairs showed distinct patterns as
well. This lead to a significant CS decoding effect over and above NS only
for complex sounds. However, threat encoding is a well-established
phenomenon in the amygdala. The non-significant difference between
simple CS and simple NS may thus imply that classification performance
stemming from encoding of stimulus features (in NS) and from threat
encoding (additionally present in CS) is subadditive in the amygdala.
Such subadditivity could also apply to HG where the difference between
CS and NS was at least descriptively dominated by decoding differences
for complex sounds.

Notably, neither amygdala nor HG appears to distinguish neutral
complex sounds; yet can apparently encode threat predictions. Thus, it
appears that the common representation of CS+/CS- in these areas across
complexities is independent from the acoustic features of the sounds and
instead is associated with propagation of threat-information to the
extended fear-learning network; the ensuing associations may well be
created in higher auditory or polymodal regions. Stimulus-independent
threat predictions are in line with our initial hypothesis 2 and
constrain possible models of amygdala/ACX interactions. The current
study could not provide insights into the differential roles of amygdala
and ACX in forming threat associations. The relatively low number of
trials per condition precluded analysing the trajectory of threat pre-
dictions in these areas. More specifically tuned experimental designs
might shed light on this question, and electrophysiological methods
could help elucidate the intra-trial communication of threat predictions
across areas.

In the current study, we focused on threat predictions; however, we
cannot disentangle whether our findings are specific to this situation or
would also occur for other salient stimuli, or even associative learning of
non-salient events. Previous work has highlighted early primary sensory
cortex responses to reward predictors (Bach et al., 2017), and these
representations have not directly been compared to threat predictors.

Since we excluded all US trials from our analysis, and given the low
time resolution of fMRI, we cannot exclude that CS offset responses
contribute to our findings. However, a differential offset response to CS-
and CS+ must be the consequence of threat predictions such that even in
this case, our results highlight ACX threat predictions.

Conclusion

In summary, we demonstrate a novel pattern of CS-induced threat
encoding in HG and higher ACX. HG encoding is similar for simple and
complex sounds, making an origin in top-down or post-learning selective
(stimulus-specific) attention less likely. Rodent research has suggested
that a direct path from thalamus to amygdala, bypassing ACX, is suffi-
cient for acquiring a threat association if sounds are composed of single
sine tones, but that Al is required for complex sounds. Our results indi-
cate that in both cases, threat information from CS is encoded in HG and
higher ACX. Our findings strengthen a network perspective on fear
acquisition including sensory cortices in humans, encouraging the use of
multivariate methods to discover the role of key brain areas in learning
environments and shed new light on early processing stages associated
with memory formation.

Funding
This work was funded by the Swiss National Science Foundation

[320030_149586/1]. The Wellcome Trust Centre for Neuroimaging is
supported by a core grant from the Wellcome Trust [091593/Z/10/Z].

283

Neurolmage 166 (2018) 276-284

Acknowledgements

We thank Giuseppe Castegnetti, Saurabh Khemka, Christoph Korn,
and Athina Tzovara, for discussions and help with data acquisition, and
Jakob Heinzle for commenting on a first draft of the manuscript. D.R.B.
conceived the research. M.S. and D.R.B. designed the experiment. M.S.
conducted the experiment. M.S. and D.R.B. analysed the data and wrote
the paper. The authors declare no competing financial interest.

References

Abivardi, A., Bach, D.R., 2017. Deconstructing white matter connectivity of human
amygdala nuclei with thalamus and cortex subdivisions in vivo. Hum. Brain Mapp.
38, 3927-3940.

Allefeld, C., Gorgen, K., Haynes, J.-D., 2016. Valid population inference for information-
based imaging: from the second-level t-test to prevalence inference. Neurolmage 141,
378-392.

Andersson, J.L.R., Hutton, C., Ashburner, J., Turner, R., Friston, K., 2001. Modeling
geometric deformations in EPI time series. Neurolmage 13, 903-919.

Artacho-Pérula, E., Arbizu, J., Arroyo-Jimenez, M. del M., Marcos, P., Martinez-
Marcos, A., Blaizot, X., Insausti, R., 2004. Quantitative estimation of the primary
auditory cortex in human brains. Brain Res. 1008, 20-28.

Ashburner, J., Friston, K.J., 2005. Unified segmentation. Neurolmage 26, 839-851.

Bach, D.R., Daunizeau, J., Friston, K.J., Dolan, R.J., 2010a. Dynamic causal modelling of
anticipatory skin conductance responses. Biol. Psychol. 85, 163-170.

Bach, D.R., Flandin, G., Friston, K.J., Dolan, R.J., 2010b. Modelling event-related skin
conductance responses. Int. J. Psychophysiol. 75, 349-356.

Bach, D.R., Hurlemann, R., Dolan, R.J., 2015. Impaired threat prioritisation after selective
bilateral amygdala lesions. Cortex 63, 206-213.

Bach, D.R., Symmonds, M., Barnes, G., Dolan, R.J., 2017. Whole-brain neural dynamics of
probabilistic reward prediction. J. Neurosci. 37, 3789-3798.

Bach, D.R., Weiskopf, N., Dolan, R.J., 2011. A stable sparse fear memory trace in human
amygdala. J. Neurosci. 31, 9383-9389.

Bakin, J.S., Weinberger, N.M., 1990. Classical conditioning induces CS-specific receptive
field plasticity in the auditory cortex of the Guinea pig. Brain Res. 536, 271-286.

Blair, H.T., 2001. Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear
conditioning. Learn Mem. 8, 229-242.

Brewer, A.A., Barton, B., 2016. Maps of the auditory cortex. Annu. Rev. Neurosci. 39,
385-407.

Brockelmann, A.-K., Steinberg, C., Elling, L., Zwanzger, P., Pantev, C., Junghofer, M.,
2011. Emotion-associated tones attract enhanced attention at early auditory
processing: magnetoencephalographic correlates. J. Neurosci. 31, 7801-7810.

Brugge, J.F., Volkov, L.O., Oya, H., Kawasaki, H., Reale, R.A., Fenoy, A.,

Steinschneider, M., Howard, M.A., 2008. Functional localization of auditory cortical
fields of human: click-train stimulation. Hear Res. 238, 12-24.

Campeau, S., Davis, M., 1995. Involvement of subcortical and cortical afferents to the
lateral nucleus of the amygdala in fear conditioning measured with fear-potentiated
startle in rats trained concurrently with auditory and visual conditioned stimuli.

J. Neurosci. 15, 2312-2327.

Chang, C.-C., Lin, C.-J., 2011. LIBSVM: a library for support vector machines. ACM Trans.
Intell. Syst. Technol. 2, 27:1-27:27.

Clugnet, M.-C., LeDoux, J.E., 1990. Synaptic plasticity in fear conditioning circuits:
induction of LTP in the lateral nucleus of the amygdala by stimulation of the medial
geniculate body. J. Neurosci. 10, 2818-2824.

Costa, S.D., Zwaag, W van der, Marques, J.P., Frackowiak, R.S.J., Clarke, S., Saenz, M.,
2011. Human primary auditory cortex follows the shape of Heschl's gyrus.

J. Neurosci. 31, 14067-14075.

Edeline, J.-M., Weinberger, N.M., 1993. Receptive field plasticity in the auditory cortex
during frequency discrimination training: selective retuning independent of task
difficulty. Behav. Neurosci. 107, 82.

Eickhoff, S.B., Stephan, K.E., Mohlberg, H., Grefkes, C., Fink, G.R., Amunts, K., Zilles, K.,
2005. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and
functional imaging data. Neurolmage 25, 1325-1335.

Eklund, A., Nichols, T.E., Knutsson, H., 2016. Cluster failure: why fMRI inferences for
spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. 113,
7900-7905.

Fritz, J.B., David, S.V., Radtke-Schuller, S., Yin, P., Shamma, S.A., 2010. Adaptive,
behaviorally gated, persistent encoding of task-relevant auditory information in
ferret frontal cortex. Nat. Neurosci. 13, 1011-1019.

Froemke, R.C., Merzenich, M.M., Schreiner, C.E., 2007. A synaptic memory trace for
cortical receptive field plasticity. Nature 450, 425-429.

Fullana, M.A., Harrison, B.J., Soriano-Mas, C., Vervliet, B., Cardoner, N., Avila-Parcet, A.,
Radua, J., 2016. Neural signatures of human fear conditioning: an updated and
extended meta-analysis of fMRI studies. Mol. Psychiatry 21, 500-508.

Galaburda, A., Sanides, F., 1980. Cytoarchitectonic organization of the human auditory
cortex. J. Comp. Neurol. 190, 597-610.

Haritha, A.T., Wood, K.H., Hoef, L.W.V., Knight, D.C., 2013. Human trace fear
conditioning: right-lateralized cortical activity supports trace-interval processes.
Cogn. Affect Behav. Neurosci. 13, 225-237.

Herry, C., Johansen, J.P., 2014. Encoding of fear learning and memory in distributed
neuronal circuits. Nat. Neurosci. 17, 1644-1654.

Hutton, C., Bork, A., Josephs, O., Deichmann, R., Ashburner, J., Turner, R., 2002. Image
distortion correction in fMRI: a quantitative evaluation. NeuroImage 16, 217-240.


http://refhub.elsevier.com/S1053-8119(17)30916-3/sref1
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref1
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref1
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref1
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref2
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref2
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref2
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref2
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref2
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref3
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref3
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref3
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref4
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref4
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref4
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref4
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref4
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref5
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref5
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref6
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref6
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref6
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref7
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref7
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref7
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref8
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref8
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref8
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref9
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref9
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref9
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref10
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref10
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref10
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref11
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref11
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref11
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref12
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref12
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref12
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref13
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref13
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref13
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref14
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref14
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref14
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref14
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref15
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref15
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref15
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref15
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref16
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref16
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref16
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref16
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref16
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref17
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref17
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref17
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref18
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref18
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref18
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref18
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref19
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref19
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref19
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref19
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref20
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref20
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref20
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref21
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref21
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref21
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref21
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref22
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref22
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref22
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref22
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref23
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref23
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref23
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref23
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref24
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref24
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref24
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref25
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref25
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref25
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref25
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref25
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref26
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref26
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref26
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref27
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref27
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref27
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref27
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref28
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref28
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref28
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref29
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref29
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref29

M. Staib, D.R. Bach

Ji, W., Suga, N., 2007. Serotonergic modulation of plasticity of the auditory cortex
elicited by fear conditioning. J. Neurosci. 27, 4910-4918.

Kluge, C., Bauer, M., Leff, A.P., Heinze, H.-J., Dolan, R.J., Driver, J., 2011. Plasticity of
human auditory-evoked fields induced by shock conditioning and contingency
reversal. Proc. Natl. Acad. Sci. 108, 12545-12550.

Kriegeskorte, N., Goebel, R., Bandettini, P., 2006. Information-based functional brain
mapping. Proc. Natl. Acad. Sci. U. S. A. 103, 3863-3868.

LeDoux, J.E., 2003. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155-184.

Lee, Y.-S., Janata, P., Frost, C., Hanke, M., Granger, R., 2011. Investigation of melodic
contour processing in the brain using multivariate pattern-based fMRI. Neurolmage
57, 293-300.

Letzkus, J.J., Wolff, S.B.E., Meyer, E.M.M., Tovote, P., Courtin, J., Herry, C., Liithi, A.,
2011. A disinhibitory microcircuit for associative fear learning in the auditory cortex.
Nature 480, 331-335.

McDonald, A.J., 1998. Cortical pathways to the mammalian amygdala. Prog. Neurobiol.
55, 257-332.

Mechias, M.-L., Etkin, A., Kalisch, R., 2010. A meta-analysis of instructed fear studies:
implications for conscious appraisal of threat. Neurolmage 49, 1760-1768.

Moerel, M., De Martino, F., Formisano, E., 2012. Processing of natural sounds in human
auditory cortex: tonotopy, spectral tuning, and relation to voice sensitivity.

J. Neurosci. 32, 14205-14216.

Morosan, P., Rademacher, J., Schleicher, A., Amunts, K., Schormann, T., Zilles, K., 2001.
Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a
spatial reference system. Neurolmage 13, 684-701.

Mumford, J.A., Turner, B.O., Ashby, F.G., Poldrack, R.A., 2012. Deconvolving BOLD
activation in event-related designs for multivoxel pattern classification analyses.
Neuroimage 59, 2636-2643.

Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V., 2006. Beyond mind-reading: multi-
voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10, 424-430.

Ohl, F.W., Wetzel, W., Wagner, T., Rech, A., Scheich, H., 1999. Bilateral ablation of
auditory cortex in Mongolian gerbil affects discrimination of frequency modulated
tones but not of pure tones. Learn Mem. 6, 347-362.

Peter, M., Scheuch, H., Burkard, T.R., Tinter, J., Wernle, T., Rumpel, S., 2012. Induction
of immediate early genes in the mouse auditory cortex after auditory cued fear
conditioning to complex sounds. Genes Brain Behav. 11, 314-324.

Pinheiro, J., Bates, D., 2006. Mixed-Effects Models in S and S-PLUS. Springer Science &
Business Media.

Quirk, G.J., Repa, J.C., LeDoux, J.E., 1995. Fear conditioning enhances short-latency
auditory responses of lateral amygdala neurons: parallel recordings in the freely
behaving rat. Neuron 15, 1029-1039.

Reijmers, L.G., Perkins, B.L., Matsuo, N., Mayford, M., 2007. Localization of a stable
neural correlate of associative memory. Science 317, 1230-1233.

Riecke, L., Peters, J.C., Valente, G., Kemper, V.G., Formisano, E., Sorger, B., 2017.
Frequency-selective attention in auditory scenes recruits frequency representations
throughout human superior temporal cortex. Cereb. Cortex 27, 3002-3014.

284

Neurolmage 166 (2018) 276-284

Romanski, L.M., LeDoux, J.E., 1992a. Equipotentiality of thalamo-amygdala and thalamo-
cortico-amygdala circuits in auditory fear conditioning. J. Neurosci. 12, 4501-4509.

Romanski, L.M., LeDoux, J.E., 1992b. Bilateral destruction of neocortical and perirhinal
projection targets of the acoustic thalamus does not disrupt auditory fear
conditioning. Neurosci. Lett. 142, 228-232.

Schreiner, C.E., Polley, D.B., 2014. Auditory map plasticity: diversity in causes and
consequences. Curr. Opin. Neurobiol. Neural Maps 24, 143-156.

Sehlmeyer, C., Schoning, S., Zwitserlood, P., Pfleiderer, B., Kircher, T., Arolt, V.,
Konrad, C., 2009. Human fear conditioning and extinction in neuroimaging: a
systematic review. PLoS One 4, e5865.

Sladky, R., Friston, K.J., Trostl, J., Cunnington, R., Moser, E., Windischberger, C., 2011.
Slice-timing effects and their correction in functional MRI. Neurolmage 58, 588-594.

Soon, C.S., He, A.H., Bode, S., Haynes, J.-D., 2013. Predicting free choices for abstract
intentions. Proc. Natl. Acad. Sci. 110, 6217-6222.

Staib, M., Castegnetti, G., Bach, D.R., 2015. Optimising a model-based approach to
inferring fear learning from skin conductance responses. J. Neurosci. Methods 255,
131-138.

Suga, N., Ma, X., 2003. Multiparametric corticofugal modulation and plasticity in the
auditory system. Nat. Rev. Neurosci. 4, 783-794.

Thiel, C.M., Bentley, P., Dolan, R.J., 2002a. Effects of cholinergic enhancement on
conditioning-related responses in human auditory cortex. Eur. J. Neurosci. 16,
2199-2206.

Thiel, C.M., Friston, K.J., Dolan, R.J., 2002b. Cholinergic modulation of experience-
dependent plasticity in human auditory cortex. Neuron 35, 567-574.

Tovote, P., Fadok, J.P., Liithi, A., 2015. Neuronal circuits for fear and anxiety. Nat. Rev.
Neurosci. 16, 317-331.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N.,
Mazoyer, B., Joliot, M., 2002. Automated anatomical labeling of activations in SPM
using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
NeuroImage 15, 273-289.

Ulmer, S., Jansen, O. (Eds.), 2013. fMRI. Springer Berlin Heidelberg, Berlin, Heidelberg.

Visser, R.M., Scholte, H.S., Kindt, M., 2011. Associative learning increases trial-by-trial
similarity of BOLD-MRI patterns. J. Neurosci. 31, 12021-12028.

Warren, J.D., Jennings, A.R., Griffiths, T.D., 2005. Analysis of the spectral envelope of
sounds by the human brain. Neurolmage 24, 1052-1057.

Wasserthal, C., Brechmann, A., Stadler, J., Fischl, B., Engel, K., 2014. Localizing the
human primary auditory cortex in vivo using structural MRI. Neurolmage 93,
237-251.

Weinberger, N.M., 2007. Associative representational plasticity in the auditory cortex: a
synthesis of two disciplines. Learn Mem. 14, 1-16.

Weiskopf, N., Hutton, C., Josephs, O., Deichmann, R., 2006. Optimal EPI parameters for
reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at
3 T and 1.5 T. Neurolmage 33, 493-504.

Worsley, K.J., Evans, A.C., Marrett, S., Neelin, P., 1992. A three-dimensional statistical
analysis for CBF activation studies in human brain. J. Cereb. Blood Flow. Metab. 12,
900-918.


http://refhub.elsevier.com/S1053-8119(17)30916-3/sref30
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref30
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref30
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref31
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref31
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref31
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref31
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref32
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref32
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref32
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref33
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref33
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref34
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref34
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref34
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref34
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref35
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref35
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref35
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref35
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref36
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref36
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref36
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref37
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref37
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref37
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref38
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref38
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref38
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref38
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref39
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref39
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref39
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref39
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref40
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref40
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref40
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref40
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref41
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref41
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref41
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref42
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref42
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref42
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref42
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref43
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref43
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref43
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref43
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref44
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref44
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref45
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref45
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref45
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref45
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref46
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref46
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref46
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref47
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref47
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref47
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref47
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref48
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref48
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref48
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref49
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref49
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref49
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref49
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref50
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref50
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref50
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref51
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref51
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref51
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref51
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref52
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref52
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref52
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref52
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref53
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref53
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref53
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref54
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref54
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref54
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref54
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref55
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref55
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref55
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref56
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref56
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref56
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref56
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref57
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref57
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref57
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref58
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref58
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref58
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref59
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref59
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref59
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref59
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref59
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref60
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref61
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref61
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref61
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref62
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref62
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref62
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref63
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref63
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref63
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref63
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref64
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref64
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref64
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref65
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref65
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref65
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref65
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref66
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref66
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref66
http://refhub.elsevier.com/S1053-8119(17)30916-3/sref66

	Stimulus-invariant auditory cortex threat encoding during fear conditioning with simple and complex sounds
	Introduction
	Materials & methods
	Participants
	Design
	Stimuli
	Experimental task
	Threat acquisition
	fMRI data acquisition
	fMRI analysis
	Region of interest definition
	Multivariate image analysis
	SCR analysis
	Statistical analysis

	Results
	Fear acquisition is similar for complex and simple sounds
	Threat encoding in HG
	Threat encoding in amygdala
	Mass-univariate results

	Discussion
	Conclusion
	Funding
	Acknowledgements
	References


