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Abstract: Drug abuse disorders refer to a set of related negative health implications associated with compulsive 
drug seeking and use. Because almost all addictive drugs act on the brain, many of them cause neurological im-
pairments after long-term abuse. Neuropathological studies have revealed a widespread impairment of the cellular 
elements. As the key components to limit the damage of neural cells, CNS immune system is also found affected by 
these drugs, directly or indirectly. It has been shown that drugs of abuse alter neuroimmune gene expression and 
signaling. Growing studies on neuroimmune factors further demonstrate their indispensable role in drugs-induced 
neurotoxicity. As an important proinflammatory intracellular receptor, inflammasome is activated in many neuro-
degenerative diseases in response to a broad range of damage-associated molecular patterns (DAMPs) signals. 
In the cases of drug abuse, especially in those with comorbid of HIV infection and sustained pain, inflammasome 
activation significantly promotes the neuroinflammation-associated toxicities. To understand inflammasome in drug-
associated neurotoxic activity, we reviewed the role played by inflammasome in drug abuse-induced microglial neu-
rotoxicity and evaluated the potential of imflammasone as a therapeutic target for drug abuse disorders based on 
recent development of various selective small-molecular inflammasome inhibitors.
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An overview of inflammasome in the central 
nervous system

In a healthy central nervous system (CNS), due 
to the physical isolation of blood brain barrier 
(BBB), the peripheral immune cell infiltration 
and free passage of blood molecules are highly 
restricted [1-4]. For this reason, the CNS resi-
dent innate immune system is primarily 
response to invading pathogens and/or tissue 
damage [5]. Increasing attention has in recent 
years focused on Nod-like receptors (NLRs),  
an cytoplasmic pattern recognition receptor 
(PRRs) that is responsible for processing and 
release of IL-1β and IL-18 [6]. Up to now, 22 
members of NLRs have been found in human 
and 34 in mice, which can be divided into four 
subfamilies based on their different N-terminal 
regions (NLRA, NLRB, NLRC, and NLRP) [7, 8]. 
As important cytosolic sensors, the NLRs  
are responsible for the reorganization of patho-
gen-associated molecular patterns (PAMPs) 
and damage-associated molecular patterns 
(DAMPs) [9]. 

Many studies have been carried out to deter-
mine the roles of NLRs in neuropathogenesis. 
The subfamily NLRPs (1, 3, 10, 12) have been 
shown to be associated with the development 
of neurodegenerative diseases including multi-
ple sclerosis (MS), Alzheimer’s disease (AD) and 
Parkinson’s disease (PD). Kong et al analyzed 
the database of an RNA-sequencing transcrip-
tome and splicing database on the expression 
levels of NLRs in brain neural cells and they 
found among all cell types in the brain express-
ing NLRs, the NLRP3 is primarily expressed in 
the microglia [8]. As drug abuse-induced inflam-
masome activation is primarily medicated by 
NLRP3, this review focuses on the role of 
NLRP3 in microglia. 

The NLRP3 inflammasomes are multimeric pro-
tein complexes composed of cytosolic sensor 
NLRP3, bridge protein apoptosis-associated 
speck-like protein containing a CARD (ASC), and 
cysteine protease caspase-1 [10]. In response 
to stimuli, NLRP3 will recruit the ASC protein 
and serve as caspase-1-activating scaffold. The 
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inactive pro-caspase-1 will oligomerize and be 
autoproteolytically cleaved into the active form 
[10]. Activation of caspae-1 will directly induce 
the processing and release of IL-1β and IL-18.

In contrast to other NLRs that require direct 
binding with their activating ligand, the interac-
tion of ligands and NLRP3 is more complex 
[11]. There is an expanding list of NLRP3 
ligands, which are mostly structure and func-
tion unrelated [12]. Currently, the exact mecha-
nisms of how the NLRP3 protein interact with 
such a wide variety of ligands are still largely 
unknown. However, certain common patterns 
of activating stimulus have been identified. It is 
widely accepted that the full activation of 
NLRP3 requires two independent signals. The 
first priming signal is stimulated by NF-κB path-
way to upregulate the major component 
(NLRP3) and substrate (pro-IL-1β) of inflamma-
some [13]. Emerging evidences indicate that 
the priming process is more complicated, which 
involves post-translation regulation of NLRP3 
and ASC protein [14-18]. As a prototypical first 
activation signal, LPS was found to prime 
NLRP3 both in transcriptional and post-transla-
tional manners [19]. For this reason, even in 
researches related to CNS sterile inflammation, 
LPS is also widely applied as the first priming 
signal to investigate inflammasome activation 
[20-22]. After priming, distinct signals are 
required to active NLRP3 and thus promote the 
assembly of inflammasome complex. The po- 
tential involved pathways have been extensive-
ly studied and three activation models were 
introduced: potassium flux through ion chan-
nels, lysosomal membrane destabilization and 
release of cathepsin, and mitochondrial dam-
age [10]. 

In the context of traumatic injury, neurodegen-
erative disease, and long-term drug abuse in- 
duced neurotoxicity, the CNS resident immune 
system primarily deals with self-derived “sterile 
insults” released from damaged neuron or 
other glial cells. The result of the immune cells 
activation can be either beneficial or detrimen-
tal. It is important to determine the timing of 
engagement and specific downstream inflam-
matory pathways that directly associated with 
neuropathology. Otherwise, non-specific imm- 
une suppressive therapy will also eliminate the 
inflammatory cascade that supports healing. 
Thus, our ultimate research goal is to promote 

the resolution of inflammation by dampening 
the specific signaling pathways tied to neuro-
toxicity. Abundant evidence indicate that 
NLRP3 inflammasome is actively involved in 
chronic sterile CNS inflammation and lead to 
detrimental consequences [20, 21, 23-29]. The 
criticle role of NLRP3 inflammasome in promot-
ing neuronal damage was further demonstrat-
ed in traumatic-induced injury [30]. In both neu-
rodegenerative disease and acture neuronal 
injury, the DAMPs will be released and quickly 
initiate a cascade of danger-associated intra-
cellular signaling, which activates the NLRP3 
inflammasome that orchestrate the inflamma-
tory signaling in response to neuronal danger 
signals. One of the most potent effect of NLRP3 
inflammasome activation is through processing 
and release of IL-1β and IL-18 that are critical 
amplifiers of the innate immune response to 
CNS damage. The excessive release of pro-in- 
flammatory cytokine exacerbates excitotoxici- 
ty-induced neuronal damage [31-33], and in 
turn, promote the DAMPs-induced inflamma-
some activation. This vicious cycle can be fur-
ther fueled by neuropathogenic factors such as 
amyloid-β or α-synuclein. In general, NLRP3 
inflammasome signaling is a specific inflamma-
tory pathway tightly associated with initiation 
and maintenance of neurotoxicity. Thus, target-
ing inhibition on NLRP3 inflammasome activa-
tion might be a promising therapeutic strategy. 

Recently, novel specific small-molecular inhibi-
tor (MCC950) has been developed and suc-
cessfully reduced the IL-1β production in vivo 
[34]. The specific inhibition of NLRP3 inflamma-
some not only delayed the onset of experimen-
tal autoimmune encephalomyelitis (EAE), but 
also attenuated the severity of disease. Ad- 
ministration of MCC950 to APP/PS1 mice (ani-
mal model of Alzheimer’s disease) significantly 
reduced the amyloid-β accumulation and thus, 
significantly improved the cognitive function. 
The enhanced clearance of amyloid-β is 
achieved by increased phagocytosis of microg-
lia, which dampen the neuroinflammation-
induced neurotoxicity [35]. In addition to small-
molecular inhibitor, microRNA that negatively 
regulates NLRP3 expression was also identified 
[36]. Overexpression of miR-223 reduced the 
erythrocyte lysis associated microglia activa-
tion and neuronal damage, which suggests a 
protective role of miR-223 in intracerebral 
hemorrhage. 
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Like traumatic injury and neurodegenerative 
disease, both neuronal autonomous and non-
autonomous cell death contribute to the long-
term drug abuse-induced neurotoxicity. The 
microglial NLRP3 is activated in response to 
DAMPs release, promoting the proinflammato-
ry-induced secondary neuronal damage. By 
introducing specific NLRP3 inhibition strategy, 
the auto-amplification loop between neuronal 
damage and sterile inflammation may be cut 
off. In next part, we will review the current 
research evidence that supports the roles of 
NLRP3 activation in neuronal dysfunction 
induced by long-term abuse of drugs. 

Inflammasome in alcohol abuse

According to the 2015 National Survey on Drug 
Use and Health (NSDUH), 6.2 percent of people 
that ages 18 and older suffered from the 
Alcohol Use Disorder (AUD) in the USA. There 
was around 88000 people died with alcohol-
related reason (Alcohol and Public Health: 
Alcohol-Related Disease Impact. Centers for 
Disease Control and Prevention). Because alco-
hol molecule is small and amphipathic, it can 
freely cross the BBB. Long-term abuse of alco-
hol has been reported to be associated with 
many negative impacts on normal neurological 
function, including habit formation, decision 
making, stress, and reward [37]. Animal stud-
ies indicated that chronic use of alcohol 
induced microglia and astrocyte activation 
accompanied with increased proinflammatory 
cytokines, which inhibited the neurogenesis 
and induced long-term behavioral alterations 
[38-42]. Two important alcohol related neuro-
toxic mechanisms have been identified includ-
ing the release of proinflammatory factors and 
the ROS activation [43]. Overactivated microg-
lia are considered primarily responsible for ele-
vated neuoinflammatory signaling and contrib-
ute to development of neurological deficit [44, 
45]. In contrast, anti-neuroinflammatory drug 
minocycline and doxycycline significantly de- 
creased the alcohol consumption [46, 47]. 
These promising therapeutic effects of anti-
neuroinflammatory strategy push researchers 
to further investigate the molecular mecha-
nisms of alcohol-induced neuroinflammation. 

IL-1 related signaling pathway has been well-
studied in alcohol-associated neurological 
impairment. In human postmortem brain tis-

sue, expression of IL-1β and inflammasome 
proteins (NLRP3 and NLRP1) are significantly 
upregulated in hippocampal area [48]. The 
administration of IL-1 receptor antagonist sig-
nificantly reduced the acute alcohol-induced 
sedation and promote the recovery from alco-
hol-induced motor impairment [49]. It is well-
accepted that IL-1 signaling is regulated both by 
TLR4-NF-κB pathway and casepase-1-induced 
maturation process, which is priming and acti-
vation signal of inflammasome [50]. For this 
reason, the roles of inflammasome in alcohol-
induced toxicity were extensively studied. As 
the important priming signal of inflammsome, 
TLR4 was found upregulated in microglia and 
played a pivotal role in alcohol-induced proin-
flammatory cytokine production and psycho-
logical impairments [38, 51-54]. In addition to 
TLR4, another important inflammasome prim-
ing signal, high mobility group box-1 (HMGB1), 
has also been found released from damaged 
neuron [55, 56]. Further studies indicate that 
alcohol induced the acetylation and phosphory-
lation on HMGB1, which is highly associated 
with its release [57-59]. Correspondingly, the 
expressional level of receptors (TLR2, TLR4, 
TLR9, and RAGE) of HMGB1 were also found 
elevated in response to alcohol consumption 
[59]. There is evidence indicating that NLRP3 
activation in macrophage/monocyte will, in 
turn, stimulate the release of HMGB1 to amplify 
the inflammatory signaling [60]. However, 
whether such vicious cycle exists in alcohol-
induced neuroinflammation has not been 
investigated. As for the second activation sig-
nal of the inflammasome, current studies sug-
gest that alcohol-induced mitochondrial dys-
function and oxidative stress contribute to the 
inflammasome activation in astrocyte and neu-
ronal progenitor cells [61, 62]. Taken together, 
both the first priming signal and the second 
activation signal were proved to be induced by 
alcohol. To fully characterize the inflammasome 
activation in alcohol-induced neuroinflamma-
tion, a study performed on mice with both phar-
macological and genetic manipulation of an 
essential component of the NLRP3 inflamma-
some. After administrated with 5% of ethanol 
for 5 weeks, mice in control group increased in 
expressional level of NLRP1, NLRP3, ASC, and 
proinflammatory cytokines, suggesting a func-
tional role of alcohol as the first priming signal. 
On the other hand, the increased caspase-1 
activity and release of IL-1β proved that alcohol 
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could also work as the second signal and com-
plete the NLRP3 inflammasome activation [59]. 
In the mice genetically deleted with TLR4, 
NLRP3, or ASC less, ethanol administration 
failed to induce the activation of caspase-1 and 
production of IL-1β. Furthermore, the caspae-1 
activity and IL-1β were found no increase in 
NLRP3-KO or ASC-KO mice [59]. Based on 
these evidence, inflammasome-IL-1β signaling 
cascade plays a critical role in alcohol-induced 
neuroinflammation. Following studies focused 
on the inflammasome activation and its asso-
ciation with alcohol-induced neuronal damage 
and function impairments. The ethanol-induced 
inflammasome activation impairs the differen-
tiation of neuronal progenitor cells into the 
mature neuron and thus, inhibits the neurogen-
esis in the hippocampal area [41, 48, 61]. By 
pharmacological blockade of inflammasome 
activation, the alcohol-induced impairment of 
neurogenesis could be reversed [48]. Although 
rIL-1ra successfully prevented the alcohol-
induced inflammasome activation and proin-
flammatory cytokines release, its protective 
role in neurogenesis is still largely unknown. In 
future, more experiments with NLRP3-KO or 
ASC-KO mice should be tested whether inhibi-
tion of inflammasome could reduce the con-
sumption of alcohol or reverse the neuroinflam-
mation-associated neuronal damage.

Gut-liver-brain axis is another promising but still 
less studied direction in inflammasome 
research on alcohol abuse. Because alcohol 
consumption could impair the integrity of BBB, 
it has been hypothesized that the peripheral 
endotoxin might cross into the brain [63, 64]. 
On the other hand, it is well-accepted that alco-
hol disrupts the intestinal epithelium integrity, 
which promotes the translocation of intestinal 
microbiome [65-67]. Thus, it is reasonable to 
hypothesize that alcohol increases endotoxin 
levels in the circulation and promotes the 
entrance of endotoxins into the brain. However, 
recent evidence suggests that endotoxin level 
did not change after 5 weeks of alcohol admin-
istration, which ruled out this possibility [59]. 
This might attribute to the fact that, in a healthy 
individual, the circulated endotoxin would be 
kept in check by the interaction of multiple 
organs [68]. However, it is still unknown if trans-
located endotoxin could escape the surveil-
lance of immune system in a late stage of alco-
hol abuse, which is featured by a persistent 
systemic inflammation and liver detoxification 

impairment. In that case, it is still possible that 
gut-derived endotoxin will cross into the brain 
and prime the alcohol-induced inflammasome 
activation. Another potential connection bet- 
ween gut and brain in the context of alcohol 
abuse is through the liver damage. It has been 
found that alcohol-induced translocation of 
endotoxin will initiate the inflammasome-relat-
ed proinflammatory response in liver [69]. The 
activation of inflammasome not only plays a 
central role in alcoholic liver disease but also 
promotes the releasing of liver DAMPs into the 
blood [70, 71]. Because the liver is considered 
as a major source of inflammatory cytokines 
that release into the serum [72], liver inflamma-
some activation induced by gut-derived endo-
toxin will further amplify the systematic inflam-
mation. Once these circulated proinflammatory 
cytokines enter the brain tissue and activate 
the NF-κB pathway, the CNS inflammasome will 
be primed to be activated [73]. Lastly, whether 
gut-liver-brain axis was achieved by the liver-
potentiated generalized immune response and 
subsequent neuroinflammation is worth inves-
tigating. The inflammasome activation both in 
liver and brain might serve as a converging sig-
naling that provides a promising therapeutic 
target to dampen the inflammatory cross-inter-
action in systematic level. 

Inflammasome in psychostimulants abuse

Cocaine and methamphetamine (Meth) are two 
primary abused psychostimulants in the United 
States. Cocaine is a psychostimulant drug that 
binds to dopamine transporter and inhibits its 
reuptake of synaptic dopamine. Compared to 
cocaine, methamphetamine not only blocks the 
reuptake but also promotes the dopamine 
release. They are both highly addictive and neu-
rotoxic after long-term abuse. Accumulating evi-
dence suggest that neuroinflammation under-
lies the mechanisms of neurotoxicity and 
provides a promising target. To better under-
stand the mechanisms of cocaine- and Meth-
related neuroinflammation, latest researches 
on inflammasome activation will be reviewed. 
Also, whether inflammasome-related signaling 
serves as a converging pathway that mediates 
the synergistic neurotoxic effect of HIV-1 infec-
tion with stimulant abuse will also be 
discussed. 

In mice administrated with cocaine, NF-κB sig-
naling was found to be activated and associat-
ed with structural changes that mediate the 
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drug reward-based learning [74, 75]. In consis-
tent with this, upregulation of multiple pro-
inflammatory mediators and microglia activa-
tion were detected in cocaine abused animal 
models [76-78]. It has been suggested the pro-
inflammatory signaling activation is due to the 
dysregulated redox status after cocaine admin-
istration [79-81]. Although with the activation 
of the first signal (NF-κB signaling) and the sec-
ond signal (oxidative stress), there is little study 
indicate the inflammasome activation in the 
brain after exposure to the cocaine. In cultured 
microglia, cocaine stimulates the proinflamma-
tory release mediated through the ER stress-
autophagy and ER stress-TLR2 axes [82, 83]. 
However, given the fact that ER stress is also a 
well-accepted activating signal for NLRP3 
inflammasome activation [84, 85], there is no 
further study performed to investigate the role 
of the inflammasome in cocaine-induced 
microglial activation. 

On the other hand, cocaine downregulates the 
expression of tight junction while it upregulates 
the expression of the brain endothelial adhe-
sion molecules and CCL2 [86, 87]. Therefore, 
cocaine not only impairs the integrity of BBB 
but also promotes the transmigration of mono-
cyte. In HIV-1 infected patients, cocaine abuse 
enhances the transmigration of HIV-1 infected 
monocyte/macrophage [88]. Emerging eviden- 
ce suggest that HIV-1 virus proteins could prime 
and activate the NLRP3 inflammasome [89-
91]. For this reason, it is worth to investigate 
whether cocaine could potentiate the HIV-1-
induced inflammasome activation. Current evi-
dence indicates that cocaine potentiates the 
ROS activation in HIV-1-infected macrophage, 
which is accompanied with the upregulation of 
inflammasome forming genes [92]. Although 
the ROS induction was considered as the sec-
ond activation signal, the direct evidence of 
increased activity of caspase-1 and processing 
of IL-1β is still needed. It also suggests NLRP1-
caspase-5 axis may contribute to the synergis-
tic effect induced by cocaine and HIV-1 infec-
tion. Taken together, current evidences suggest 
that inflammasome may serve as a converging 
signaling that mediates the synergistic proin-
flammatory effect in the macrophage. In future, 
whether cocaine-induced ER stress could also 
potentiate the HIV-1-induced inflammasome 
activation in microglia is worth investigating. 

Chronic abuse of Meth is a feature with neuro-
toxicity marked by diminished dopamine con-

centration, low level of the dopamine transport-
er, and neuroinflammation [93-97]. Although 
with abundant evidence against Meth-induced 
microglial activation as reviewed above, little 
study performed on microglia focused on 
inflammasome. However, the HMGB1 was 
found to be upregulated in Meth-administrated 
rats and induced the IL-1β production [98]. The 
author proposed that HMGB1 is released from 
the Meth-stressed neuron. It has been demon-
strated that neuronal-derived HMGB1 is recog-
nized by microglia as the danger-associated 
signal and primes the NLRP3 inflammasome 
[99]. As for the second activation signal, there 
are accumulating evidence suggesting that 
Meth application induces the mitochondrial 
damage and ROS production [100-103]. 
Therefore, in vivo, after priming with neuronal 
released HMGB1, Meth is very likely to activate 
the microglial NLRP3 inflammasome through 
the mitochondrial ROS pathway [104]. 

Inflammasome in morphine abuse

Morphine is originally isolated from poppy straw 
or opium poppy [105]. It is on the World Health 
Organization’s list of Essential Medicines as an 
effective analgesic medicine [106]. Up to now, 
morphine is still one of the most effective drugs 
to treat both acute and chronic severe pain. 
However, the clinical application of morphine is 
limited by its long-term deleterious effects 
including addiction and withdrawal symptoms 
[107-109]. In chronic pain management, the tol-
erance of morphine will occur on repeated use 
of the drug, which increases the dose of the 
drug to achieve the same extent of pain relief 
[110]. The increased amount of drug, in turn, 
promotes the development of drug depen-
dence. To prevent the diminished morphine 
responsiveness in a patient, multiple hypothe-
ses were raised including µ-opioid receptor 
desensitization, synaptic plasticity changes, 
and morphine-induced microglial activation 
and proinflammatory cytokines release [111-
115]. In this review, we primarily focus on the 
role of inflammasome-induced cytokines rele- 
ase in morphine tolerance. 

Traditionally, morphine was defined as an 
immunosuppressive drug that subjects pro-
longed abuse under susceptibility of various 
infectious diseases [116, 117]. Although many 
basic functions of both innate and adaptive 
immune system such as phagocytic activities 
of macrophages or T, B-cell antibody response 
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were inhibited by morphine, the production of 
proinflammatory cytokines is, in general, incre- 
ased by morphine administration [118]. Further 
studies discovered that morphine promoted 
the translocation of intestinal bacteria that 
induces the sepsis in mice [119-121]. Priming 
with morphine significantly potentiated proin-
flammatory responses in LPS administrated 
rats and promoted the progression of sepsis to 
septic shock [122]. All these evidence provide 
an alternative explanation for morphine-indu- 
ced vulnerability to infection, which is achieved 
by impairment of pathogen clearance capability 
while augmenting pathogenic inflammatory 
response. Taken together, the immune modula-
tion of morphine is much more complicated 
than we thought.

Recently, emerging evidence indicate that while 
morphine administration systematically damp-
ens the activation of the peripheral immune 
system, local CNS resident immune cells, 
microglia are overactivated [123-125]. Because 
cytokines released from activated microglia 
might alter the neuronal adaption to morphine 
[126, 127], the role of neuroinflammation in 
the development of morphine tolerance was 
extensively investigated. Further studies con-
firmed that morphine could non-stereoselec-
tively bind to the accessory protein of TLR4, 
triggering the TLR4 oligomerization and proin-
flammation [123]. It has been demonstrated 
that while µ-opioid receptor expressed on 
microglia mediated analgesic effect of mor-
phine [124], the microglial TLR4 is critical to the 
development of morphine tolerance [128, 129]. 
Inspired by this, following studies targeted 
microglial activation and subsequent cytokines 
release and successfully blocked the chronic 
morphine-induced tolerance [130, 131]. Among 
those of morphine-induced cytokines, IL-1β 
stands out for its strong anti-analgesic effects 
against morphine and important role in mor-
phine tolerance [132, 133]. Administration of 
morphine significantly stimulate the IL-1β 
release mediated by TLR4 signaling, and IL-1 
receptor antagonization substantially reverses 
the morphine tolerance [115, 134]. Because 
NLRP3 activation is primed by TLR4 activation 
and lead to the release of IL-1β, the NLRP3 
inflammasome is receiving more and more 
attention in research field of morphine 
tolerance. 

After chronic administration of morphine (10 
mg/kg, twice a day for 7 days), the western blot 
analysis of spinal cord indicated an increase of 
processing of IL-1β, while the pro-IL-1β was not 
significantly changed [135]. In consistent with 
this, the activation form of caspase-1 was also 
significantly elevated while pro-enzyme form 
remains constant [135]. To confirm the mor-
phine-induced NLRP3 inflammasome activa-
tion in vitro, the authors also performed the 
experiments in BV-2, a cell-line of microglia. 
After treatment of 200 µM morphine, with or 
without the additional ATP signal, both the 
NLRP3 and pro-IL-1β were significantly upregu-
lated. Combined with the second activation sig-
nal provided by ATP, they detected a potent pro-
cessing and release of IL-1β and caspase-1 in 
supernatant [135]. All results indicate that mor-
phine could work as the first priming signal, 
which allow microglia response to the second 
neuronal danger-associated signal (ATP). In 
addition to this, they also found that morphine 
induced a strong production of mitochondrial 
ROS that might work as a second activation sig-
nal. After pre-administration of procyanidins, a 
potent free radical scavenger, both the mor-
phine-induced activation of mitochondrial ROS 
and NLRP3 inflammasome were blocked [135]. 
According to this study, it seems that morphine 
could both prime and activate the NLRP3 
inflammasome simultaneously. In contrast to 
this, a study focused on spinal dorsal horn 
microglia indicated that morphine only prime 
the NLRP3 inflammasome through the TLR4-
NF-κB pathway, while the second signal was 
induced by DAMPs released from injured neu-
ron [136]. In their rat model with priming of a 
short course of morphine, a second prolonged 
enduration of chronic constriction injury (CCI)-
allodynia was found to be mediated by microg-
lial NLRP3 inflammasome. In a combination of 
morphine and CCI, the level of microRNA-223 
that negatively regulated the expression of 
NLRP3 was significantly decreased. The other 
essential components of NLRP3 inflamma-
some were all upregulated (TLR4, NLRP3, pro-
Casepae-1, pro-IL-1β). As for the P2X7R, the 
critical receptor sensing the ATP released from 
an injured neuron was also elevated. Taken 
together, morphine induces a persistent sensi-
tization status of microglia that prones to be 
activated in response to neuronal DAMPs. After 
the introduction of P2X7R selectively inhibitor, 
the morphine-induced development of sensiti-
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zation was reversed. It indicates that morphine 
itself might not be enough to elicit the activa-
tion of the NLRP3 inflammasome, but rather 
potentiated the pre-existing sterile neuroin-
flammation. Nevertheless, whether the NLRP3 
inflammasome selective antagonists could pre-
vent the development of morphine tolerance is 
highly clinical relevant. It may represent a novel 
strategy in the maintanance of the strong anal-
gesic effect of morphine while eliminating its 
chronic side-effects. 

In summary, in response to a broad range of 
damage-associated molecular patterns (DAM- 
Ps) signals, microglial inflammasome, as an 
proinflammatory intracellular receptor, can be 
activated in the course of drug abuse. 
Systematic and brain stimuli induced by addic-
tive drugs converge signals on microglial inflam-
masome (Figure 1). Addictive drugs could, on 
one hand, induce local danger-associated 
molecular patterns (DAMPs) expression and 
release from the neuron (HMGB1). On the other 
hand, the drugs also cause the blood-brain bar-
rier (BBB) damage that allows peripheral cyto-
kines, endotoxins, and HIV-infected monocytes 
to cross through the BBB. These signals/mole-
cues target the microglia and upregulate the 
pro-IL-1β and pro-IL-18. The red arrows in Figure 

1 indicate the local and systematic stimuli that 
work as the first priming signal for microglial 
inflammasome. The addictive drugs could 
induce potassium efflux (1), ROS activation (2) 
and ER stress (3) in microglia, which serve as 
the second activation signals (highlighted in 
yellow) for microglial inflammasome. Taken 
together, addictive drugs induce both the first 
priming and the second activation signals for 
the activation of microglial inflammasome, 
which promotes the maturation and release of 
IL-1β and IL-18. The excessive release of IL-1β 
produces neuroinflammation, resulting in neu-
ronal damage.
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