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Transcriptome-wide screens of peripheral blood during the onset and development of posttraumatic stress disorder (PTSD) indicate
widespread immune dysregulation. However, little is known as to whether biological sex and the type of traumatic event influence shared
or distinct biological pathways in PTSD. We performed a combined analysis of five independent PTSD blood transcriptome studies
covering seven types of trauma in 229 PTSD and 311 comparison individuals to synthesize the extant data. Analyses by trauma type
revealed a clear pattern of PTSD gene expression signatures distinguishing interpersonal (IP)-related traumas from combat-related traumas.
Co-expression network analyses integrated all data and identified distinct gene expression perturbations across sex and modes of trauma in
PTSD, including one wound-healing module downregulated in men exposed to combat traumas, one IL-12-mediated signaling module
upregulated in men exposed to IP-related traumas, and two modules associated with lipid metabolism and mitogen-activated protein
kinase activity upregulated in women exposed to IP-related traumas. Remarkably, a high degree of sharing of transcriptional dysregulation
across sex and modes of trauma in PTSD was also observed converging on common signaling cascades, including cytokine, innate immune,
and type I interferon pathways. Collectively, these findings provide a broad view of immune dysregulation in PTSD and demonstrate
inflammatory pathways of molecular convergence and specificity, which may inform mechanisms and diagnostic biomarkers for the
disorder.
Neuropsychopharmacology (2018) 43, 469–481; doi:10.1038/npp.2017.220; published online 8 November 2017
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INTRODUCTION

Posttraumatic stress disorder (PTSD) is a debilitating
disorder that develops after exposure to a traumatic event
and increases vulnerability to adverse health outcomes. The
estimated lifetime prevalence of PTSD is ~ 5–6% in men and
~ 10–12% in women (Kessler, 1995), and even higher among
recent war-veterans with estimates as high as ~ 20%

(Ramchand et al, 2010). Although extensive work has
identified putative risk factors that are associated with PTSD
(DiGanji et al, 2013), the identification of discrete diagnostic
biomarkers for the disorder remains elusive. Heterogeneity
in susceptibility to PTSD suggests that the response of an
individual to trauma may depend on biological sex as well as
the type of adverse event (eg, early life adversity, violence,
assault, accidents, combat). These factors, in turn, may
determine downstream consequences, such as perturbation
of biological pathways, making it unlikely that a valid,
singular biomarker will be specific to all PTSD cases.
Research into the mechanisms underlying the onset and

development of PTSD converge on hypothalamic–pituitary–
adrenal (HPA) axis and immune system functioning
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(Daskalakis et al, 2016; Cohen et al, 2016). As such, several
studies have examined pro-inflammatory cytokines and
glucocorticoid activity in peripheral blood mononuclear cells
or lymphocytes in PTSD cases to build more effective models
for identifying molecular factors underlying PTSD. These
studies were reviewed by Passos et al (2015), who
summarized that increases in C-reactive protein (CRP),
interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α),
interleukin 1 beta (IL-1β), and interferon gamma (IFN-γ) all
underlie the onset and emergence of PTSD symptoms.
However, despite the evident effects of biological sex on
incidence rates of PTSD, very few of the reviewed studies
examined sex differences in psychobiological or inflamma-
tory responses to trauma. Moreover, the majority of these
reports centered their analysis around pre-determined
targets, limiting the ability to identify novel genes and
molecular pathways relevant to the pathophysiology
of PTSD.
Transcriptome-wide screens of peripheral immune cells from

individuals with PTSD have extended findings from candidate
gene studies through systems-wide exploration of immune
system dysregulation in response to PTSD. Segman et al (2005)
first reported on transcriptomic differences in peripheral blood
from trauma survivors with PTSD on the day of emergency
room (ER) visit and 4 months later, implicating dysregulation
of transcriptional enhancers and immune activating genes. We
later described blood-based transcriptomic signatures implicat-
ing sex differences in cytokine pathways activated in PTSD
from a population of individuals exposed to various traumatic
backgrounds (Neylan et al, 2011). In a separate and non-
overlapping study, we also identified transcriptomic differences
in central nervous system development and immune tolerance
induction pathways in PTSD cases, both with and without a
history of childhood maltreatment, implicating trauma-related
dimorphism (Mehta et al, 2013). Parallel lines of research have
identified candidate prognostic and diagnostic blood-based
gene expression classifiers in war-veterans with PTSD (Glatt
et al, 2015; Tylee et al, 2015), that were largely associated with
dysregulated innate immune function both prior to and
following PTSD development (Breen et al, 2015). Collectively,
while these data-driven approaches have formed the foundation
of ongoing work to build PTSD biomarkers, they have yet to be
widely replicated. Inconsistencies may be attributable to various
clinical factors (eg, comorbidity, medication) and technical
factors (eg, various technologies and statistical methods used to
evaluate data). More importantly, these studies are often
severely underpowered and model gene expression changes in
the context of an explicitly defined biological sex or trauma
type. As such, a critical remaining question is how biological
pathways in peripheral blood overlap across sex and modes of
trauma in PTSD, and how this information may inform the
search for more verifiable diagnostic biomarkers for the
disorder.
The primary goal of the current investigation was to

synthesize the existing data from transcriptome-wide gene
expression studies in PTSD and to clarify their relevance to
PTSD pathophysiology, while explicitly modeling sex- and
trauma-related differences. To do so, we performed a mega-
analysis of five independent transcriptome-wide peripheral
blood studies covering seven types of trauma in 229 PTSD
and 311 comparison individuals. To address our goals, a
standardized multistep analytic approach was used that we

have reviewed in the context of blood-based biomarker
discovery in neuropsychiatric disorders (Breen et al, 2016),
and that we have also applied to other transcriptome-wide
mega-analyses (Hess et al, 2016; Tylee et al, 2016). To this
end, our analyses specifically sought to: (1) determine the
relatedness of PTSD gene expression signatures across
different types of trauma; (2) identify candidate genes,
pathways and co-regulatory networks in PTSD and deter-
mine if such alterations are distinct between different
biological sex and trauma types; and (3) construct diagnostic
blood-based gene expression classifiers to differentiate PTSD
cases from trauma-exposed control individuals and clarify
the potential clinical utility of peripheral blood gene
expression.

MATERIALS AND METHODS

Literature Search and Study Criteria

To systematically identify relevant studies for our combined
mega-analysis, we performed a literature search (SCOPUS)
and microarray database searches (NCBI GEO and EMBL-
EBI ArrayExpress) for transcriptome-wide studies of whole
blood- or leukocyte-based gene expression in PTSD. Studies
were included if they met the following criteria: (i) cross-
sectional post-trauma studies published between 2005 and
2015; (ii) contained individuals meeting structured diagnos-
tic criteria for PTSD (eg, DSM, PCL); (iii) also contained a
trauma-exposed healthy control group. Studies were ex-
cluded on the bases of: (i) using qualitative real-time PCR or
immunoassays as a means to investigate a targeted panel of
candidate genes; (ii) investigating mechanisms in lympho-
blastoid cell lines, skin fibroblast cultures, serum, and
plasma; and (iii) secondary data integration analyses and
review papers were also excluded. Five studies met these
criteria for which raw gene expression data and clinical
covariates (age, sex, ethnicity, and trauma type) were
available, and one additional study from which data were
unavailable (Sarapas et al, 2011). Using these five studies,
seven trauma-specific case–control bio-sets were curated by
parsing individuals provided by Neylan et al, 2011 into two
separate sub-groups (ie, combat- and assault-related trau-
mas) and Mehta et al, 2013 into two separate sub-groups (ie,
childhood- and IP-related traumas). All data were obtained
from either the corresponding authors of the original studies
or from publicly available data repositories. For diagnostic
criteria, we relied on those used at each study site, some of
which were based on clinician assessments and others based
on standardized screening tool. There was no additional
filtering of subjects based on medical comorbidities beyond
what was described on the original studies.

Gene Expression Data Processing and Quality Control

All statistical analyses were conducted in the statistical
package R. Data from each study were processed, normal-
ized, and quality treated independently (see Supplementary
Figure 1 for workflow). Briefly, when multiple microarray
probes mapped to the same HGNC symbol, the probe with
the highest average expression across all samples was used
for further analysis. Normalized data were inspected for
outlying samples using unsupervised hierarchical clustering
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of samples and principal component analysis to identify
potential outliers outside two SDs from these grand averages.
Combat batch correction (Leek et al, 2015) was applied to
remove systematic sources of variability other than case/
control status, such as technical, clinical, or demographic
factors both within each study (as necessary), and then
across all studies using common gene symbols, forming the
bases for subsequent mega-analytic case–control groups. The
frequencies of circulating immune cells were estimated for
each individual in each study using Cibersort cell-type de-
convolution (https://cibersort.stanford.edu/) (Newman et al,
2015). See Supplementary File for full details on these data
processing steps.

Differential Gene Expression Analyses

Trauma-specific analyses. Differential gene expression
(DGE) was performed independently for each of the seven
case–control groups using the limma package (Ritchie et al,
2015) to detect relationships between diagnostic status and
gene expression levels. The covariates age and sex were
included in all models to adjust for their potential
confounding influence on gene expression between main
group effects. To determine the relatedness of DGE
signatures across the seven trauma-specific groups, each
gene list was converted into a matrix of binary gene
presence/absence calls with respect to each group and a
Jaccard coefficient was applied to create a gene-based
phylogeny, as previously described (Diaz-Beltran et al, 2016).

Mega-analytic analyses. To increase statistical power and
test for biological sex- and trauma-specific gene signatures,
individual samples from different experiments were combined
based on (i) biological sex and (ii) type of trauma to form three
large mega-analytic case–control groups. First, common gene
symbols across all available samples were identified
(ngenes= 4062). Then, Combat batch correction (Leek et al,
2015) was applied to remove systematic sources of variability
other than case/control status, such as technical factors (eg,
difference technologies, duration of time from PTSD onset to
blood acquisition), clinical factors (eg, comorbidities), or
demographic factors (eg, ethnicity) across all individual studies.
Finally, DGE analysis was performed for each mega-analytic
case–control group controlling for effects of age, and unless
otherwise specified, the significance threshold was a nominal
P-value o0.05. This nominally significant P-value was used to
yield a reasonable number of genes to include within functional
annotation and gene network analyses.

Weighted Gene Co-Expression Network Analysis

Weighted gene co-expression network analysis (WGCNA)
(Langfelder and Horvath, 2008) was used to build signed co-
expression networks using a total of 4062 genes found in
common across all experiments (see Supplementary
Information for details). Two broad analyses were per-
formed. First, a series of module preservation analyses
sought to determine whether PTSD development influences
the underlying gene co-regulatory patterns, as being
preserved or disrupted, compared to controls, and vice
versa. For these analyses, module preservation was assessed
using a permutation-based preservation statistic, Zsummary,

implemented within WGCNA with 500 random permuta-
tions of the data (Langfelder et al, 2011). Zsummary takes into
account the overlap in module membership as well as the
density and connectivity patterns of genes within modules. A
Zsummary score o2 indicates no evidence of preservation,
2oZsummaryo10 implies weak preservation and Zsummary

410 suggests strong preservation. Second, to increase
confidence and power to detect biologically meaningful
modules, a consensus network was built to use all available
samples. Once modules were identified from the consensus
network, modules were assessed for significant associations
to PTSD diagnostic status, sex, and mode of trauma. Singular
value decomposition of each module’s expression matrix was
performed and the resulting module eigengene (ME),
equivalent to the first principal component, was used to
represent the overall expression profiles for each module.
Differential analyses of MEs was performed using Bayes
ANOVA (Kayala and Baldi, 2012) (parameters: conf= 12,
bayes= 1, winSize= 5), comparing between diagnostic status,
sex, and mode of trauma, correcting P-values for multiple
comparisons with post hoc Tukey tests.

Functional Annotation and Protein Interaction
Networks

The ToppFunn module of ToppGene Suite software (Chen
et al, 2015) was used to assess enrichment of gene ontology
(GO) terms using a one-tailed hyper geometric distribution
with family-wise false discovery rate (FDR) at 5%. GO semantic
similarity analysis was used to assess shared/unique gene
content among GO terms using the GoSemSim semantic
similarity R package (Yu et al, 2015), and default semantic
contribution factors (‘is_a’ relationship: 0.8 and ‘part_of’
relationship: 0.5). Second, gene modules were tested for
overrepresentation of PTSD genome-wide association study
(GWAS) signatures obtained from the DisGenNet database
(Pinero et al, 2015), retrieved using the disease-term query
‘PTSD’. Third, DGE signatures were used to build direct
protein–protein interaction (PPI) networks, which can reveal
key genes/transcription factors mediating the regulation of
multiple target genes. PPIs were obtained from the STRING
database (Franceschini et al, 2012) with a signature query of
DGE lists from the mega-analytic case–control comparisons.
We used a combined STRING score of 40.4 (ie, medium-to-
high confidence interactions). For visualization, the STRING
network was imported into CytoScape (Shannon et al, 2003).

Construction of PTSD Blood-Based Diagnostic
Classifiers

BRB-Array Tools supervised classification methods (Simon
et al, 2007) were used to construct gene expression classifiers.
Three models were specified to distinguish PTSD cases from
controls relative to: (1) men exposed to combat trauma, (2)
men exposed to IP traumas, and (3) women exposed to IP
traumas. Each model consisted of three steps. First, to ensure
a fair comparison, all genes in the training data with Po0.05
were subjected to classifier construction, respective for each
mega-analytic case–control group. This heuristic rule of
thumb approach was used to cast a wide net to catch all
potentially informative genes, while false-positives would be
pared off by subsequent optimization and cross-validation
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Table 1 Blood-Based Transcriptome-Wide Studies of Posttraumatic Stress Disorder Included in the Mega-Analysis

Study Data type PTSD (n) Controls
(n)

% Female Age (years) Sample type Predominant
ancestry, %

Genes
analyzed

Additional sample informationa

Breen et al,
2015
GSE64814

Poly-A enriched, 50 bp
paired-end sequencing on
Illumina Hi-Seq 2000

46 combat 46 combat 0% 23.3± 3.22 Isolated leukocytes European, 55.5% 13 944 Marine Resilience Study (MRS) sample of US.
Marines who served a 7-month combat
deployment. Blood was drawn 3 months post-
deployment for each participant. PTSD symptoms
were assessed at this time using CAPS and
diagnosis was determined using DSM-IV criteria for
partial or full PTSD

Tylee et al,
2015
GSE63878

Affymetrix Hu-Gene 1.0
ST Array

24 combat 24 combat 0% 22.2± 3.1 Isolated leukocytes European, 72.0% 22 772 MRS sample of US. Marines who served 7–9-
month combat deployment. Blood was drawn
3 months post-deployment for each participant.
PTSD symptoms were assessed and diagnostic
status was determined using the CAPS

Mehta et al,
2013

Illumina HT-12 version 3.0 54 childhood
67 other IP

38 childhood
166 other IP

73.6% 42.0± 12.6 Whole blood African American,
88.9%

9193 General medical community-based sample
(Atlanta, Georgia) selected for traumatic exposure.
Blood samples were obtained years after trauma
exposure. PTSD symptoms were assessed using
the PSS and diagnosis was determined by applying
DSM-IV criteria to PSS items; control subjects
were negative for current or lifetime PTSD

Neylan et al,
2011

CodeLink Human Whole
Genome BioArrays

15 combat
14 assault

14 combat
15 assault

26.9% 30.0± 6.0 Isolated CD14+
monocytes

European, 56.7% 17 988 Recruited through Veterans Affairs Medical Center
PTSD Outpatient Program (San Francisco,
California) and through community fliers. Included
both assault and combat-related traumas. Blood
samples were obtained years after trauma
exposure. Symptoms were assessed and diagnostic
status was determined using the CAPS

Segman et al,
2005

Affymetrix Human
Genome-U95A

9 ER-trauma 8 ER-trauma 37.5% 31.1± 11.4 Isolated
mononuclear cells

Jewish ancestry, 100% 9668 Acute trauma exposure in emergency room
setting. Samples collected at 4 months after trauma
onset. PTSD cases met DSM-IV criteria for PTSD
4 months post trauma

Total: 5 studies 229 311

Combat
trauma, men

Mega-analytical group 1 85 84 0% 24.4± 4.7 Combined European, 63.6% 10 112

IP trauma,
men

Mega-analytical group 2 45 67 0% 41.1± 12.8 Combined African American
69.7%

4378

IP trauma,
women

Mega-analytical group 3 99 160 100% 39.5± 12.3 Combined African American
76.1%

4378

Abbreviations: CAPS, Clinician administered PTSD Scale; CD14+, cluster of differentiation 14-positive; DSM-IV, Diagnostic and Statistical Manual of Mental Disorders-IV; IP, interpersonal trauma.
aWe attempted to include available information pertaining to each sample, with particular emphasis on the type of trauma exposure, the time point of biological sample acquisition, and the diagnostic criteria used for each
study. All details were obtained from the referenced articles.
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steps. Second, classifiers composed of different numbers of
genes were constructed by recursive feature elimination
(RFE). RFE provided feature selection, model fitting, and
performance evaluation via identifying the optimal number
of features with maximum predictive accuracy. Third, the
ability for RFE to predict group outcome was assessed by
support vector machines (SVM) and compared to four
different multivariate classification methods (ie, diagonal
linear discriminant analysis (DLDA), nearest centroid (NC),
first-nearest neighbors (1NN), three-nearest neighbors
(3NN)). For each of the three models, classification
accuracies are reported for both the training data (70% of
data) and the completely withheld test data (30% of data) as
area under the receiver operating curve (AUC).

Statistical Power and Sample Size Computation

We estimated the expected discovery rate (EDR), a multi-test
equivalent to power, and sample size at a fixed number of
biological replicates (n) and type I error rate (α) using the
PowerAtlas software (Page et al, 2006). This sample size
calculation method is based on studies of the distribution of
P-values from DGE analyses from microarray studies
controlling for EDR. For evaluating which n is best suited
for a future study, we set the average probability of detecting
an effect (EDR) to be 40.8 and α= 0.05.

Code and Data Availability

Computational code and quality controlled gene expression
data are available upon request to the corresponding author
and can also be directly downloaded at https://github.com/
BreenMS/PTSD-blood-transcriptome-mega-analysis.

RESULTS

Literature Search and Data Curation

A total of five cross-sectional PTSD studies met our criteria
(Patients and Methods) for which raw gene expression data

and clinical covariates were available (Table 1). From these
five studies, seven trauma-specific case–control groups were
derived, including three groups exposed to combat traumas,
one group exposed to assault traumas, one group exposed to
childhood-related traumas, one group exposed to ER
accident-related traumas, and one group exposed to ‘other’
IP-related traumas, which could not be explicitly defined.
These seven trauma-specific groups were later combined to
form three large mega-analytic case–control groups, aimed at
explicitly modeling for sex- and trauma-related differences
(Table 1, bottom), including: (i) men exposed to combat
traumas (nPTSD= 85, nControl= 84, kgenes= 10 112); (ii) men
exposed to IP traumas (nPTSD= 45, nControl= 67,
kgenes= 4378); and (iii) women exposed to IP traumas
(nPTSD= 99, nControl = 160, kgenes= 4378).

Between-Trauma Comparisons

Following standardized data pre-processing procedures (see
Patients and Methods and Supplementary File), the propor-
tions of circulating immune cells were estimated for all
individuals since complete cell counts with leukocyte
differentials were not available. Comparative analyses of
the estimated immune cell-type proportions showed no
significant differences between PTSD cases and controls in
any of the seven trauma-specific case–control groups
(Supplementary Table 1), suggesting that cell-type frequen-
cies would not confound downstream analyses. Subse-
quently, to determine the overall relatedness of the trauma-
specific groups, seven lists of covariate adjusted DGE
signatures were generated, then converted into a binary
matrix of gene presence/absence calls. Distance-based
clustering with pair-wise similarity was measured via Jaccard
coefficient. A high degree of DGE similarity formed two
distinct branches that clustered the five IP trauma groups
how from the three combat trauma groups (Figure 1a). Pair-
wise overlaps of the seven DGE lists were used to further
quantify this result (Figure 1b and c) and identified a number
of significant overlaps between: childhood and assault
traumas (∩ = 35, P= 0.05); childhood and ER-related

Figure 1 Concordance of differential gene expression (DGE) analyses across seven trauma-specific case–control groups. (a) Jaccard clustering of PTSD
DGE signatures from the seven trauma-specific case–control groups. Overlap of PTSD DGE signatures found in common across (b) interpersonal (IP) traumas
and (c) combat traumas. For combat-related traumas, interferon-induced Protein 44 like (IFI44L) was consistently overexpressed and G protein subunit
gamma 11 (GNG11) was consistently underexpressed in PTSD cases relative to control individuals. All analyses were adjusted for age and sex. Supplementary
Table 2 contains full lists of overlapping gene symbols.
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traumas (∩ = 31, P= 0.03); assault and ER-related traumas
(∩ = 18, P= 0.04); ER-related traumas and IP-related
traumas (∩ = 9, P= 0.03); and combat traumas between
Breen et al, and Neylan et al, (∩ = 23, P= 6.9e−9)
(Supplementary Table 2). No genes were consistently
differentially expressed across all five IP trauma groups
(Figure 1b), although two genes showed consistent but weak
effects across all three combat trauma groups (Figure 1c);
interferon-induced protein 44 like (IFI44L) was overex-
pressed, while G protein subunit gamma 11 (GNG11) was
underexpressed in PTSD cases relative to controls. Notably,
no gene in any of the above comparisons survived FDR
Po0.05.

Mega-Analytic Comparisons

To increase statistical power, these seven trauma-specific
case–control groups were combined to form three large
mega-analytic case–control groups designed to explicitly
model for differences in sex and modes of trauma (ie,
combat and IP traumas) and DGE lists were generated for
each comparison (Supplementary Table 3). Comparatively
equal numbers of over- and underexpressed genes were
observed in men exposed to combat traumas (nup= 150,
ndown= 174) and men exposed to IP traumas (nup= 114,
ndown= 145), while women exposed to IP traumas displayed
significantly more overexpressed genes than underexpressed
genes (nup= 123, ndown= 63, P= 1.2e− 05; two-tailed pro-
portions test) (Figure 2a). DGE indicated small, but
significant, gene overlaps between men exposed to combat
traumas and women exposed to IP traumas (∩ = 18,
P= 1.1e−08), men exposed to combat traumas and men
exposed to IP traumas (∩ = 7, P= 0.04), and between men
and women exposed to IP traumas (∩ = 15, P= 2.3e−08)
(Figure 2b). Notably, one gene, interferon-induced protein
with tetratricopeptide repeats 3 (IFIT3), was significantly
differentially expressed in all comparisons, albeit with
different directions of change. Overall, DGE signatures were
associated with PTSD diagnosis and not with any other
factors, including age, ancestry, study site, or estimated cell-
type frequencies (Supplementary Figure 2).
Though few genes were differentially expressed in all

comparisons, functional annotation of these DGE signatures
indicated a high degree of overlap of commonly perturbed
biological processes between men exposed to combat- and
IP-related traumas (∩ = 27, P= 2.1e−14), men exposed to
combat traumas and women exposed to IP traumas (∩ = 16,
P= 3.3e−12), and between men and women exposed to IP-
related traumas (∩ = 42, P= 1.3e−137) (Figure 2c). In
addition to several common biological processes, numerous
unique gene sets were also identified for each comparison
(Supplementary Table 4) suggesting that differences in sex
and trauma types may impact distinct biological processes.
However, in exploring the semantic similarity between these
distinct gene sets, we identified a series of relevant,
biologically meaningful interactions, positioning each dis-
tinct biological process as a component of a broad ‘stress
response system’ (Figure 2d). To support this observation,
we tested whether candidate genes that are dysregulated
together indeed interact with each other at the protein level.
A significant overrepresentation of direct protein interac-
tions was identified for each DGE list, and a union of all

three networks was constructed (Supplementary Figure 3).
Notably, IFIT3 demonstrated protein-level interactions with
partners across all three networks, among other interferon
proteins such as IFI44L, IRF7, IFI44, IFI35, IFIT4, and IRF4.
The network generated from men exposed to combat
traumas featured several genes with a high degree of
connectivity involved in type I interferon signaling and
antiviral responses, including DDX58, IFIH1, IFIT1/2, MX1,
RSAD2, STAT1, and members of the OAS gene family.
Comparably, genes related to men with a history of IP
trauma formed a relatively unique network with the most
highly connected genes included EZR, H2AFZ, IMPDH2,
JUND, STAT5B, and SYK. The network generated for women
with a history of IP trauma, consisted of ABL1, ATM, TNF,
and UBB, which demonstrated the highest degree of
connectivity.
Markedly, of the 15 biological processes found at the

intersection of all comparisons (Figure 2c), all terms were
strongly enriched for innate immune responses, cytokine
signaling, and cytokine production (Figure 3a). Surprisingly,
the genes within each of these gene sets were predominantly
overexpressed among men exposed to combat traumas and
women exposed to IP traumas, but were underexpressed in
men exposed to IP traumas. To further quantify this
observation, the concordance of transcriptome-wide DGE
patterns was calculated among the three mega-analytic case–
control comparisons first constraining to all genes specific to
innate immune or cytokine signaling and then using all
remaining genes (Figure 3b–d). Positive associations in
changes of innate immune and cytokine genes were observed
between men exposed to combat traumas and women
exposed to IP traumas (r= 0.61, P= 3.3e− 34), and negative
associations were observed between men exposed to combat
and IP traumas (r=− 0.37, P= 6.4e− 12), and between men
and women exposed to IP traumas (r=− 0.29, P= 1.2e− 12).
Next, we sought to determine whether these biological
processes were specific to PTSD or found in common with
other neuropsychiatric disorders including major depression,
schizophrenia, bipolar disorder, and autism spectrum
disorder, by implementing series of cross-disorder overlap
comparisons, at both the individual gene and GO level
(Supplementary Figure 4; Supplementary Table 4). Indeed,
the majority of innate immune and cytokine signatures were
more strongly related to a universal diagnosis of PTSD across
differences in biological sex and modes of traumas, rather
than in these other disorders.

Stratified Gene Co-Expression Module Preservation
Analyses

WGCNA was used to assess the extent of module preserva-
tion by integrating all PTSD cases compared to all control
individuals using a permutation-based preservation statistic
(Zsummary, Patients and Methods). This analysis identifies
large differences in gene co-regulatory patterns as being
disrupted in PTSD cases relative to controls, or vice versa
(Figure 4a and b). In control individuals, 16 modules were
identified and one module implicated in anti-inflammatory
signaling was weakly preserved (Zsummary= 8.6) in PTSD
cases, including genes IL10, TNFSF14, and LILRB1. In the
reverse approach, 14 modules were identified across PTSD
cases and all were highly preserved within control
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individuals, indicating that major changes in the underlying
gene–gene connectivity may not be a basis for the pathology
of PTSD. A separate series of between trauma type
comparisons were also performed (see Supplementary File
and Supplementary Figure 5 for details).

Consensus Gene Co-Expression Network Analyses

Subsequently, we used the higher confidence and complete-
ness of a consensus network by combining all individuals
across the three mega-analytic case–control groups
(Figure 4c). This analysis identified 23 co-expression
modules, which were tested for enrichment of DGE

signatures and PTSD-related GWAS signals (Figure 4d).
Module eigenvalues (MEs) were then subjected to a Bayes
ANOVA testing to compare the extent of module expression
differences between diagnostic status, sex, and type of
trauma (Figure 4e–j). A greenyellow module (68 genes)
implicated in type I interferon-mediated signaling cascades
and enriched with differentially expressed genes from all
three mega-analytic comparisons was significantly over-
expressed in PTSD-affected men exposed to combat traumas
and PTSD-affected women exposed to IP traumas, but was
underexpressed in PTSD-affected men exposed to IP
traumas. A purple module (71 genes) implicated in blood
coagulation and wound healing was underexpressed in

Figure 2 Differential gene expression (DGE) and gene ontology (GO) analyses for the three mega-analytic case–control comparisons. (a) Volcano plots
compare the extent of log2 fold-change and − log10 P-value significance for DGE signatures in all three comparisons. The top over and under expressed genes
are labeled for each comparison. Overlap of (b) significant DGE signatures and (c) enriched GO gene sets for all comparisons are displayed. (d) Relatedness of
all significantly dysregulated gene sets by semantic similarity. Nodes represent GO terms and edges represent semantic similarity 40.5 (high degree of gene
overlap). Nodes are split into thirds and shaded by FDR P-value significance for each mega-analytic group.
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PTSD-affected men exposed to combat traumas. A darkgrey
module (31 genes) enriched with inflammatory response to
wounding and cellular lipid membrane metabolic process,
and a steelblue module (28 genes) implicated in intracellular
pattern recognition receptor signaling and mitogen-activated
protein kinase (MAPK) phosphate activity were both over-
expressed among PTSD-affected women exposed to IP
traumas. A midnight blue module (51 genes) enriched for
IL-12-mediated signaling and vascular development was
overexpressed among PTSD-affected men exposed to IP
traumas. This module also contained three potential PTSD
risk-related genes (FASLG, IFN-γ, RORA) previously identi-
fied through GWAS, reflecting greater than chance overlap
(P= 0.012). A black module (179 genes) implicated in
immune response and response to bacterial lipopolysacchar-
ide was underexpressed among PTSD-affected men exposed
to IP traumas.

PTSD Blood-Based Diagnostic Classifier Evaluation

Supervised class prediction methods were used to directly
assess the putative clinical utility of blood-based gene
expression measurements for objective PTSD diagnosis, as
well as to identify any discriminant gene(s) that may have
been overlooked in our previous analyses. Three models were
specified to distinguish PTSD cases from control individuals
for each mega-analytic group. Classification accuracies were
reported on the training data (70% of data) as well as
independently withheld test data (30% of data), and SVM
learning consistently outperformed the other methods

(Supplementary Figure 6). First, when distinguishing be-
tween PTSD cases and control individuals exposed to combat
traumas, classification accuracies reached 81% in the training
data and 60% in the withheld test data when the expression
of 40 genes was used with SVM classification. Second, when
separating PTSD-affected men from controls individuals
exposed to IP traumas, classification accuracy reached 77%
in the training data and 65% on the withheld test data when
the expression of 60 genes was used with SVM. Third, when
separating PTSD-affected women from controls individuals
exposed to IP traumas, classification accuracy reached 67%
in the training data and 58% on the withheld test data when
the expression of 25 genes as used with SVM; two common
genes were selected by both IP-related trauma models across
men and women (GNB5 and DGCR14). Further details
regarding these analyses are provided in Patients and
Methods and Supplementary Table 6.

Statistical Power and Sample Size Estimation

To inform the design of future cross-sectional studies in
PTSD, we estimated the expected discovery rate (EDR; a
multi-test equivalent to power) and sample size for each
mega-analytic case–control group using lists of P-values
derived from DGE analyses. Effect sizes estimated from these
data were assumed to be fixed with a nominal error rate
α= 0.05 and several different sample sizes (n) were
evaluated. To determine how many case and control samples
need to be included in a future study, we set the threshold of
inclusion to EDR40.8. Overall, the sample size needed to

Figure 3 Concordance of transcriptome-wide innate immune and cytokine signatures. (a) Semantic similarity for all 15 common GO term pairs (left)
clustered by hierarchical clustering method with the fraction of over- and underexpressed genes for each GO term (middle) as well as common ancestors
(right). Log2 fold changes (PTSD vs controls) were used in a series of pair-wise correlations among the three mega-analytic case–control groups and focused
on innate immune and cytokine genes relative to all other genes. (b) A positive association between PTSD-affected men exposed to combat traumas and
PTSD-affected women exposed to IP traumas. Negative associations between PTSD-affected men exposed to IP traumas and (c) PTSD-affected men
exposed to combat traumas and (d) PTSD-affected women exposed to IP traumas. Pearson correlation coefficients were applied.
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reach a power of 0.8 for men exposed to IP trauma was n of
700, for women exposed to IP trauma was n of 7000, while
men exposed to combat trauma was n of 10 000
(Supplementary Table 7).

DISCUSSION

To our knowledge, this is the largest transcriptome-wide
analysis of PTSD conducted to date. Our combined mega-
analysis covered 229 PTSD cases and 311 comparison
individuals, enabling us to increase statistical power and to
explicitly test whether differences in sex and trauma type
play a role in perturbing common or distinct molecular
pathways in PTSD. A battery of statistical tests were applied
and we report several findings. First, re-analyses of seven
trauma-specific case–control groups revealed a high degree

of relatedness among IP-related traumas separate from
combat-related traumas. Second, once individual samples
were combined to form three mega-analytic case–control
groups, we observed unique PTSD DGE signatures in men
exposed to combat traumas, men exposed to IP traumas and
women exposed to IP traumas, which all converged on
shared biological processes of innate immune, cytokine, and
type I interferon signaling. Third, stratified network analysis
identified low module preservation between control indivi-
duals exposed to different traumas, but high module
preservation between PTSD cases exposed to the same types
of trauma, suggesting that the underlying molecular response
to different trauma types may be more homogenous in PTSD
cases. Fourth, one anti-inflammatory module within control
individuals was weakly preserved across all PTSD cases,
indicating the disruption/absence of anti-inflammatory gene

Figure 4 Consensus weighted gene co-expression network analysis (WGCNA). (a) Module preservation identified one module in control individuals with
weak preservation in PTSD cases. (b) All PTSD modules were preserved in control samples. (c) Hierarchical clustering tree (dendrogram) of the consensus
network and all samples comprising 4062 genes. Each line represents a gene (leaf) and each low-hanging cluster represents a group of co-expressed genes with
similar network connections (branch) on the tree. The first band underneath the tree indicates the 23 detected modules and subsequent bands indicate gene-
trait correlation when red indicates a strong relationship and blue indicates a strong negative relationship. (d) Gene modules were enriched for DGE signatures
and PTSD GWAS signatures curated from DisGenNet database (x-axis). The number of genes within each colored gene module are depicted (y-axis). The
top number in each cell indicates the number of genes overlapping and the bottom number indicates the P-value significance of overlap using the Fisher’s exact
test. (e–j) A Bayes ANOVA was used on ME values to test for significance between case–control status across different biological sex and trauma types and *
indicates BH Po0.05, implying significant PTSD differences. For each module, the top five most significant biological processes and/or pathways are reported.
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co-regulation within PTSD cases. Fifth, upon integrating all
data to construct one consensus network, numerous sex and
trauma-specific modules were identified, and one module
implicated in innate immunity and type I interferon
signaling was significantly associated to PTSD in all three
mega-analytic groups. Sixth, supervised multivariate classi-
fication methods constructed diagnostic PTSD classifiers for
each mega-analytic group with moderate-to-low classifica-
tion accuracies on withheld test data. Taken together, our
analyses indicate that while small-to-moderate effect sizes are
the standard for cross-sectional post-trauma studies of
PTSD, our findings consistently converge on similar down-
stream inflammatory pathways irrespective of sex and the
type of traumatic event.
A novel finding was the small, but significant, between-

trauma overlap of DGE signatures indicating the existence of
a trauma-specific and across-trauma convergent gene
regulation and signaling (Figure 1). Indeed, we previously
tested the hypothesis that differences in trauma may impact
the stress response in PTSD and we identified distinct gene
expression signatures between PTSD cases with and without
a history of childhood maltreatment that also converged on
similar cellular processes (Mehta et al, 2013). Here, we
extend upon these results and position them among a broad
background of individuals exposed to a range of different
traumatic events. Notably, not one of the seven trauma-
specific case–control comparisons resulted in a gene passing
FDR P-value o0.05, indicating the underpowered nature of
the observed data. Thus, to increase statistical power, this
initial result provided enough empirical support to combine
the data to form three mega-analytic case–control groups,
enabling us to explicitly model for differences in sex and
trauma.
Our central finding was the identification of largely unique

DGE perturbations specific to each mega-analytic case–
control group, which converged on common biological
processes of innate immune, cytokine, and type I interferon
signaling cascades (Figure 2). Our consensus network
approach validated and refined this result through identifi-
cation of a discrete co-regulated gene module (68 genes)
implicated in innate immune and type I interferon signaling
that displayed divergent expression patterns across sex and
traumas in PTSD (Figure 4e–j). This result was previously
reported in PTSD cases exposed to combat trauma (Breen
et al, 2015), and is now replicated across a larger sample.
With respect to potential mechanisms, some of the earliest
observed effects of inflammatory cytokines in PTSD under-
line their impact on the HPA axis, via negative feedback
regulation (Michopoulos et al, 2015). Enhanced negative
feedback regulation of the HPA axis function is a hallmark
of PTSD and is reflected by increased responsiveness
to glucocorticoids as manifested by decreased cortisol
concentrations following dexamethasone administration
(Michopoulos et al, 2015; Yehuda et al, 2002). Inflammatory
cytokines have also been shown to access the brain and
interact with virtually every pathophysiological domain
relevant to PTSD, including neurotransmitter metabolism,
neuroendocrine function, and neural plasticity (Felger and
Lotrich, 2013). In doing so, peripheral cytokine signals
activate relevant brain cell types that serve to amplify central
inflammatory responses and conserved behavioral responses.
Notably, we also found evidence for biological processes

significantly overrepresented in only one of the three mega-
analytic groups, suggesting that sex and type of trauma may
influence different molecular pathways in PTSD (Figure 2c).
However, in determining the relatedness between each of
these distinct biological responses, we found that all
dysregulated biological processes interacted and collectively
formed a biologically meaningful ‘stress response system’
(Figure 2d). Indeed, a dysfunctional HPA axis–immune
interface has been previously associated with similar immune
and metabolic disturbances, including cell cycle, altered
cytokine balance, blood coagulation, and lipid and metabolic
processes (Silverman et al, 2013; Silverman and Sternberg,
2012; Elenkov et al, 2000). Under this standard, each
dysregulated biological process represents one piece of a
larger stress response system, irrespective of sex and trauma,
that ultimately converges on shared inflammatory pathways.
Some of the observed PTSD-related effects involved lower

expression levels for cytokine-related genes, specifically in
men exposed to IP trauma compared to women, and men
exposed to combat trauma (Figure 3). Differences in
inflammatory cytokine levels in trauma survivors with PTSD
have previously been reported (Gill et al, 2009). Discrepan-
cies may potentially reflect different degrees of HPA axis
response suppression to glucocorticoid activation
(Freidenberg et al, 2010), or alternatively, differences
associated with the duration since the traumatic experience
as well as other confounding factors. One study examining
the levels of inflammatory markers within a refugee
population with PTSD postulated that differences could
partly be explained by a variable environmental component
associated with less antigen exposure (Söndergaard et al,
2004). We also acknowledge that gene expression perturba-
tions may be fundamentally different in controls with
prolonged exposure to conflict zones compared to controls
exposed to IP traumas, which may be influencing these
results. To address this issue, a series of pair-wise co-
expression preservation analyses were performed using
matched controls exposed to different types of trauma
(Supplementary Figure 5). These analyses indicated that gene
co-expression modules involved in processes other than
inflammatory signatures differed on the basis of exposure to
different traumatic events.
Distinct gene expression perturbations were also identi-

fied, including (i) one wound-healing module downregulated
in men with a history of combat trauma, (ii) two modules
implicated in lipid processes and MAPK activity upregulated
in women exposed to IP-related trauma, and (iii) one IL-12-
mediated signaling module upregulated in men exposed to
IP-related trauma. Regarding to the first distinction (i),
research highlights the role of platelets in innate and adaptive
immune responses and suggest that platelet activation and
reactivity is dysregulated by mental stress. A stress response
involving blood platelets has also been shown to be a critical
biomarker of hemostatic, thrombotic, and inflammatory
perturbations (Pacák and Palkovits, 2001). Notably, this
result is also a re-affirmation of our previous finding
indicating decreased wound healing and blood coagulation
in war-veterans with PTSD (Breen et al, 2015), now
replicated in a larger cohort of samples. Regarding the
second distinction (ii), the MAPK pathway functions as
a mediator of cellular stress, including inflammation, by
also modulating the levels of glucocorticoid receptor
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phosphorylation, ultimately leading to differences in cellular
transcriptional activity (Galliher-Beckley et al, 2011; Reul,
2014). Since signaling cascades, such as the MAPK, couple to
numerous receptors for stress-related neurotransmitters and
neuropeptides (Whitaker et al, 2014), future work should
determine more precisely which neurotransmitter signaling
systems are driving the observed traumatic stress- and sex-
induced changes. Regarding the final distinction (iii), the
IL-12 signaling pathway initiates innate and adaptive
immune responses in part by promoting NK cell toxicity as
well as the differentiation of naive CD4+ T cells into T helper
1 cells, and induces the production of IFN-γ, which is also a
member of this gene module. Here, upregulation of IL-12
signaling in men exposed to IP trauma indicates immune
priming that may promote inflammation. With respect to
sex dimorphism, increased percentage of IL-12 producing
monocytes and lymphocytes in response to physiological
concentrations of testosterone has been reported in men
compared to women (Posma et al, 2014). Taken together,
these distinct biological perturbations all align with a
common pro-inflammatory pathology across sex and modes
of trauma in PTSD. However, a great deal of research is
needed to further delineate the precise mechanisms, as well
as cause and effect relationships, underlying these inflam-
matory signatures and sex disparities.
Our study also has several limitations. First, sample size

and power estimates indicated that our enhanced sample size
is still underpowered and a substantially larger number of
biological replicates are needed (Supplementary Table 7).
These estimates are echoed by our inability to identify
multiple test corrected DGE signatures and to construct
accurate diagnostic blood-based PTSD classifiers, all of
which reported low-to-moderate classification accuracies
on withheld test data. Second, it is likely that our results
may be influenced by clinical heterogeneity (eg, medical
comorbidity, medication) among PTSD cases, potentially
contributing to the diminished power. While our effort to
carefully measure the contribution of potential confounding
factors on our gene expression results demonstrated that
DGE signatures were associated with PTSD diagnosis and
not with any other factors (eg, age, ancestry, study site, cell-
type frequencies), other unmeasured factors may also
influence the results. Additionally, to fully understand the
contribution of ancestry to gene expression variation, future
studies may consider integrating principal components of
ancestry from paired GWAS data if available. Third, we were
unable to distinguish biological sex differences for combat-
related traumas due to a large ascertainment bias of men
with a history of combat exposure. Fourth, though our
estimates of cell-type fractions implied no differences
between case–control groups, we are unable to determine
gene expression changes specific to any particular cell type.
Finally, as the combined data are cross-sectional with
considerable variation in the amount of time from PTSD
onset to blood sample acquisition, we are unable to
determine whether expression differences represent expres-
sion signature of past or current PTSD, or it is a marker of
pre-trauma vulnerability to PTSD development. Similarly,
some traumas are defined by event (eg, combat, assault) but
others are defined by time (eg, childhood) or place (eg, ER).
Likewise, both childhood and ER traumas might be due to
similar trauma types, including assaults, which are unknown

in the current study and may effect the interpretation of our
results.
In sum, these data provide evidence for shared inflamma-

tory profiles in peripheral blood gene expression across sex
and modes of trauma in PTSD as evident by transcriptional
dysregulation and co-expression on processes of innate
immune, cytokine, and type I interferon signaling. Moreover,
the fact that several unique biological processes were also
affected across sex and trauma types that ultimately formed
components of a broader stress response system, underscore
a shared underlying molecular pathology. While existing
animal and cellular work support the sex-dependent effects
specific to MAPK and IL-12 signaling modules, further
research is needed to delineate cause and effect relationships.
Collectively, these findings may have implications for
identifying objective diagnostic biomarkers, disease mechan-
isms, and therapeutic interventions in immune disturbances
for PTSD.
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