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Summary

Recent studies provide evidence of correlations of DNA methy-

lation and expression of protein-coding genes with human aging.

The relations of microRNA expression with age and age-related

clinical outcomes have not been characterized thoroughly. We

explored associations of age with whole-blood microRNA expres-

sion in 5221 adults and identified 127 microRNAs that were

differentially expressed by age at P < 3.3 3 10�4 (Bonferroni-

corrected). Most microRNAs were underexpressed in older indi-

viduals. Integrative analysis of microRNA and mRNA expression

revealed changes in age-associated mRNA expression possibly

driven by age-associated microRNAs in pathways that involve

RNA processing, translation, and immune function. We fitted a

linear model to predict ‘microRNA age’ that incorporated expres-

sion levels of 80 microRNAs. MicroRNA age correlated modestly

with predicted age from DNA methylation (r = 0.3) and mRNA

expression (r = 0.2), suggesting that microRNA age may comple-

ment mRNA and epigenetic age prediction models. We used the

difference between microRNA age and chronological age as a

biomarker of accelerated aging (Dage) and found that Dage was

associated with all-cause mortality (hazards ratio 1.1 per year

difference, P = 4.2 3 10�5 adjusted for sex and chronological

age). Additionally, Dage was associated with coronary heart

disease, hypertension, blood pressure, and glucose levels. In

conclusion, we constructed a microRNA age prediction model

based on whole-blood microRNA expression profiling. Age-

associated microRNAs and their targets have potential utility to

detect accelerated aging and to predict risks for age-related

diseases.
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Introduction

Human aging is a complex process that has been linked to dysregulation

of numerous cellular and molecular processes, including shortened

telomere length (Harley et al., 1990), altered DNA damage response

(Moskalev et al., 2013), loss of protein homeostasis (Tomaru et al.,

2012), cellular senescence (Childs et al., 2015), and mitochondrial

dysfunction (Green et al., 2011). Those cellular and molecular processes

can lead to a variety of diseases including cancer, cardiovascular disease,

and neurological disease, as well as an increased risk of mortality

(Fontana et al., 2010; L�opez-Ot�ın et al., 2013).

Recent studies have revealed that human aging can be characterized

by changing patterns of DNA methylation (Hannum et al., 2013;

Horvath, 2013) and expression of protein-coding genes (Peters et al.,

2015). A growing body of research suggests that aging is associated

with changes in DNA methylation both genome-wide and at specific C-G

dinucleotide (CpG) loci. Two recent studies developed age predictors

based on the methylation state of CpGs in whole blood and other tissues

(Hannum et al., 2013; Horvath, 2013). The resultant DNA methylation-

based predicted age (i.e., DNAm age) was associated with chronological

age in several independent studies. The difference between DNAm age

and chronological age (i.e., DNAm Dage) has been proposed as an index

of accelerated aging and was reported to be associated with all-cause

mortality and several coronary heart disease risk factors (Marioni et al.,

2015; Christiansen et al., 2016; Horvath et al., 2016).

At the mRNA level, a recent meta-analysis of whole-blood gene

expression in ~15 000 individuals identified 1497 mRNAs that are

differentially expressed in relation to age (Peters et al., 2015). An age

predictor based on mRNA expression (i.e., mRNA age) highlighted genes

involved in mitochondrial, metabolic, and immune function-related

pathways as key components of aging processes. The difference

between mRNA age and chronological age (i.e., mRNA Dage) correlated
with many metabolic risk factors including blood pressure, total

cholesterol levels, fasting glucose, and body mass index (BMI) (Peters

et al., 2015).

MicroRNAs (miRNAs) are a class of small noncoding RNAs that

downregulate protein-coding genes by either cleaving target mRNAs or

suppressing translation of mRNAs into proteins (Lee & Ambros, 2001;

Lee et al., 2004; Cordes & Srivastava, 2009). Research in a
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Caenorhabditis elegans model system revealed changes in miRNA

expression in relation to lifespan and longevity (Boehm & Slack, 2005;

Ib�a~nez-Ventoso et al., 2006; Pincus et al., 2011). In humans, highly

specific miRNA expression patterns are correlated with many age-related

diseases including cardiovascular disease (Small & Olson, 2011; Huan

et al., 2015c) and cancer (Lu et al., 2005; Hayes et al., 2014). Recent

studies have examined differentially expressed miRNAs in relation to age

in whole blood (ElSharawy et al., 2012), peripheral blood mononuclear

cells (PBMC) (Noren Hooten et al., 2010), and serum (Noren Hooten

et al., 2013; Zhang et al., 2014). These studies, however, were based on

small sample sizes, limiting the power to investigate age-related changes

in miRNA expression. We hypothesized, a priori, that it would be possible

to create a miRNA signature of age that is predictive of chronological age

and that age prediction based on miRNA expression is biologically

meaningful and can be used as a biomarker of risk for age-related

outcomes including all-cause mortality.

In a previous study, we measured miRNA expression in whole blood

from more than 5000 Framingham Heart Study (FHS) participants. We

investigated the heritability of miRNA expression and performed a

genome-wide association study (GWAS) of miRNA expression to identify

miR-eQTLs (Huan et al., 2015b). Our results showed that miRNAs are

under strong genetic control. In the present study, we further investi-

gated whole-blood miRNA expression in relation to chronological age in

FHS participants. Fig. S1 shows the overall study design. We identified

127 miRNAs that were differentially expressed in relation to chronolog-

ical age, and performed internal validation by splitting the samples 1:1

into two independent sample sets. An integrative miRNA–mRNA

coexpression analysis and miRNA target prediction revealed many age-

related pathways underlying age-associated molecular changes. We also

defined and evaluated an age predictor based on miRNA expression

levels (i.e., miRNA age). Our results indicate that the difference between

miRNA age and chronological age (i.e., miRNA Dage) is associated with

multiple age-related clinical traits including all-cause mortality, coronary

heart disease (CHD), hypertension, blood pressure, and glucose levels. In

addition, we compared miRNA age with DNAm age and mRNA age in

FHS participants.

Results

Study population

Table 1 shows the characteristics of the 5221 FHS participants in this study

(2295 participants from the FHS offspring cohort and 2926 participants

from the FHS third-generation cohort). At the time of measured sample

collection for miRNA isolation, the FHS Offspring cohort was on average

20 years older than the Third Generation cohort (mean age 66 vs.

46 years). As expected, given the age differences between cohorts, the

Offspring cohort had a higher prevalence of cardiovascular disease risk

factors. In addition, during 6 years of follow-up, incident deaths occurred

more commonly in the Offspring cohort (257 vs. 12).

We split the 5221 FHS samples 1:1 by pedigrees into independent

discovery and replication sets (see Methods). The mean age was 54.9 in

the discovery set and 55.4 in the replication set (P = 0.21). Other clinical

factors did not differ between the discovery and replication sets.

Identification of differentially expressed miRNAs in relation

to chronological age

We identified 127 miRNAs that were differentially expressed in relation to

chronological age at P < 3.3 9 10�4 (Bonferroni-corrected, 0.05/150).

The incremental proportion of interindividual difference in age explained

by the 127 differentially expressed miRNAs ranged from partial r2 of

0.002–0.15. Table 2 provides results for the top 25 miRNAs, and

Table S1 provides the full list. Of the 127 age-associated miRNAs, 103

(81%) miRNAs were negatively correlated with age and 24 (19%)

miRNAs were positively correlated (Fig. 1). Age-related miRNA expres-

sion studies in whole blood (ElSharawy et al., 2012), PBMCs (Noren

Hooten et al., 2010), and serum (Noren Hooten et al., 2013; Zhang

et al., 2014) have similarly reported that the majority of age-related

miRNAs show decreased expression in older individuals.

The age associations of miRNAs in the discovery and replication sets

were highly consistent with Pearson’s correlations (r) of beta values

(effect size) of > 0.99 and of log10-transformed P values of 0.97

(Fig. S2). Ninety-one percentage of differentially expressed miRNAs in

relation to age in the discovery set (at P < 3.3 9 10�4) replicated in the

replication set (at P < 3.3 9 10�4). The validation results suggest that

age-associated miRNA expression signatures are robust and highly

replicable.

In conducting a sensitivity analysis, we identified differentially

expressed miRNAs in relation to age separately in the FHS Offspring

cohort and FHS Third Generation cohort (Tables S2 and S3). At

P < 3.3 9 10�4, there were 32 age-associated miRNAs identified in

the FHS Offspring cohort and 57 in the larger FHS Third Generation

cohort. A total of 23 miRNAs overlapped between cohorts. The Pearson

correlation of beta values for all 150 measured miRNAs between cohorts

was 0.67 (Fig. S3). These results suggest that age-associated miRNA

expression differs slightly across age groups.

miRNA age prediction

We used elastic net regression (Friedman et al., 2010) to select miRNAs

for building an age prediction model using 10-fold cross-validation. To

Table 1 Framingham heart study offspring and third generation cohort study

participant characteristics

Phenotypes/Covariates

Offspring

cohort

N = 2295

Third

generation

cohort

N = 2926

Male (%) 44 46

Age (years), mean (SD) 66 (9) 46 (9)

Body mass index (kg m�2), mean (SD) 28.3 (5.4) 28.0 (5.9)

Systolic blood pressure (mm Hg), mean (SD) 129 (17) 116 (14)

Diastolic blood pressure (mm Hg), mean (SD) 73 (10) 74 (9)

Serum glucose (mg dL�1), mean (SD) 107 (23) 96 (18)

High-density lipoprotein (mg dL�1), mean (SD) 59 (18) 60 (18)

Total cholesterol (mg dL�1), mean (SD) 186 (37) 187 (35)

Triglycerides (mg dL�1), mean (SD) 118 (70) 113 (79)

Current smokers, n (%) 147 (6) 341 (12)

Hypertension, n (%) 1449 (63) 719 (25)

Hypertension, no hypertensive treatment, n (%) 209 (9) 170 (6)

Prevalent diabetes mellitus, n (%) 317 (14) 156 (5)

Prevalent diabetes mellitus, no diabetes

treatment, n (%)

108 (5) 56 (2)

Prevalent coronary heart disease, n (%) 219 (10) 31 (1)

Deaths, n (%) 257 (11) 12 (0)

Hypertensive treatment, n (%) 1196 (52) 544 (19)

Diabetes treatment, n (%) 209 (9) 103 (4)

Lipids treatment, n (%) 951 (41) 453 (15)
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ensure unbiased validation, the age prediction model was trained only in

the discovery sample set. Table S4 reports the results of the prediction

model that included 80 miRNAs. Seventy-two of the 80 miRNAs in the

prediction model showed differential expression in relation to age at

P < 3.3 9 10�4.

The correlation between miRNA predicted age (miRNA age) and

chronological age was significant in the discovery (Pearson’s correlation

r = 0.70; P < 1 9 10�320) and replication sets (r = 0.65;

P = 2.7 9 10�311) (Fig. 2). We hypothesized that the difference

between miRNA age and chronological age (miRNA Dage) is an index

of ‘biological’ aging, with a positive Dage indicating accelerated aging,

and a negative Dage reflecting slower aging in comparison with

chronological age. miRNA Dage was not associated with miRNA age

(Fig. S4).

In conducting a sensitivity analysis to account for cohort effects, we

used the same method to train a miRNA age prediction model in the FHS

Offspring and Third Generation cohorts separately (Fig. S5). When the

two cohorts were used as separate discovery-replication sets, the

correlation between miRNA age and chronological age was stronger in

the Offspring cohort (Pearson’s correlation r = 0.50 and

P = 1.2 9 10�73) than in FHS Third Generation cohort (Pearson’s

correlation r = 0.36 and P = 2.7 9 10�45). The different correlation

between miRNA age and chronological age in cohort-specific analysis

could be explained by differences in mean age, age range, and

unmeasured technical factors.

Heritability of miRNA Dage

The estimate of heritability of miRNA Dage (h2miR�Dage) was 0.38. To

determine whether any specific genetic variants correlate with miRNA

Dage, we performed a genome-wide association study of miRNA Dage
using all available FHS samples (see Fig. S6 for the Manhattan plot).

There were no SNPs associated with miRNA Dage at P < 5 9 10�8.

We previously reported that miRNA expression levels are highly

heritable, and identified 5269 miRNA expression-associated SNPs for 76

miRNAs within +/- 1 MB of the associated SNP (i.e., cis-miR-eSNPs). We

further explored whether miRNA Dage is linked to cis-miR-eSNPs. No cis-

miR-eSNPs were associated with miRNA Dage at P < 1 9 10�5.

Influence of blood cell types on miRNA age

We compared the differentially expressed miRNAs in relation to age both

with and without adjustment of blood cell types. As shown in Fig. S7,

the Pearson correlation coefficients of beta values with vs. without

adjustment for blood cell types were > 0.99, and for log10-transformed

P values, it was > 0.99. In addition, 122 of the 127 age-associated

miRNAs (96%) remained significant after adjusting for blood cell types,

indicating that adjusting for blood cell type proportions had little effect

on our results.

In conducting a sensitivity analysis adjusting for white blood cell

counts, the miRNA age predictor exhibited a weaker but still high

correlation with chronological age (r = 0.61) in the replication set. Cell

type effects explained a proportion of age variability, which may have

resulted in the weaker correlation observed between miRNA age and

chronological age after adjusting for cell types.

miRNA Dage is predictive of all-cause mortality and

correlated with many metabolic traits

The association of miRNA Dage with all-cause mortality was tested in

FHS Offspring participants (there were too few deaths in the Third

Generation cohort for meaningful analysis). We found that miRNA Dage
was associated with mortality with a hazards ratio (HR) of 1.10 (95% CI

1.05–1.14; P = 4.2 9 10�5) per year of miRNA Dage after adjustment

for chronological age and sex. Kaplan–Meier survival curves for miRNA

Dage tertiles are presented in Fig. 3. The plot illustrates higher mortality

rates for those with higher Dage. Sensitivity analyses were performed to

Table 2 Top 25 differentially expressed miRNAs in relation to chronological age

miRNA Estimated Beta† SE R-squared P-Value

miR-99b-5p 0.07 0.002 0.15 1.16E-286

miR-130b-5p 0.06 0.002 0.11 3.04E-227

miR-505-5p 0.06 0.002 0.12 3.04E-226

miR-425-3p 0.08 0.002 0.10 8.58E-203

miR-144-5p 0.11 0.004 0.09 1.55E-165

miR-182-5p 0.10 0.003 0.08 7.29E-157

miR-1275 0.08 0.003 0.08 5.40E-149

miR-601 0.09 0.003 0.08 4.48E-146

miR-206 0.07 0.003 0.08 4.48E-139

miR-30a-5p 0.03 0.001 0.08 9.07E-132

miR-218-5p 0.07 0.003 0.07 4.94E-130

miR-30d-5p 0.04 0.002 0.07 9.10E-127

miR-502-3p 0.05 0.002 0.06 5.28E-116

miR-28-3p �0.08 0.003 0.06 7.96E-114

miR-197-3p 0.04 0.002 0.06 3.69E-111

miR-320b 0.04 0.002 0.07 4.77E-110

miR-576-3p 0.06 0.002 0.06 2.58E-105

miR-181a-5p 0.06 0.003 0.05 2.61E-87

miR-18a-5p 0.05 0.003 0.05 2.93E-86

miR-223-5p 0.05 0.002 0.05 6.86E-86

miR-339-5p 0.04 0.002 0.05 1.65E-85

miR-24-3p 0.03 0.001 0.05 2.08E-84

miR-22-3p �0.06 0.003 0.05 2.14E-84

miR-345-5p 0.04 0.002 0.05 1.66E-82

miR-302c-3p 0.08 0.004 0.05 2.83E-82

†Higher Ct values indicate lower miRNA expression levels. Therefore, positive beta

values indicate negative associations between miRNA expression and age.

Fig. 1 Volcano plot of differentially expressed miRNAs in relation to chronological

age. Higher Ct values indicate lower miRNA expression levels. Therefore, positive

beta values indicate negative associations between miRNA expression and age.
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control for additional potential confounders (cigarette smoking, HDL

cholesterol, total cholesterol, triglycerides, systolic and diastolic blood

pressure, fasting blood glucose, BMI, lipid treatment, diabetes treat-

ment, hypertension treatment, prevalent cancer, prevalent CHD, and

prevalent diabetes). The fully adjusted HR was 1.15 (95% CI 1.08–1.22;

P = 2.5 9 10�5).

The association of miRNA Dage with prevalent CHD was tested in all

available individuals (a total of 250 prevalent CHD cases). The associ-

ations of miRNA Dage with prevalent diabetes and hypertension were

tested in individuals who were not receiving medications to treat

diabetes and hypertension (including 164 diabetes cases and 379

hypertension cases), respectively. We found miRNA Dage to be positively

associated with CHD (P = 3.8 9 10�17) and hypertension (P = 0.002),

after adjustment for chronological age, sex, and BMI (Table 3).

We also tested the associations of miRNA Dage with multiple

cardiometabolic traits using all available FHS participants who were not

receiving medications to treat hypertension, dyslipidemia, or diabetes

(N = 2993). These analyses revealed miRNA Dage to be positively

associated with systolic blood pressure, diastolic blood pressure, and

fasting glucose levels at P < 0.005 (Bonferroni-corrected, 0.05/10 tests)

after adjusting for age, sex, and BMI (Table 3).

miRNA–mRNA coexpression, miRNA targets, and pathway

analyses

To better understand how miRNAs might contribute to aging processes,

we further tested whether expression levels of age-associated mRNA

transcripts are mirrored by differential expression of age-associated

miRNAs. For this purpose, we analyzed miRNA–mRNA coexpression in

the same set of FHS individuals (n = 5012) in whom miRNA and mRNA

expression data were both available. For the 127 age-associated

miRNAs, the coexpression analysis identified 4682 mRNAs that were

highly coexpressed with the 123 age-related miRNAs at FDR < 0.05,

including 24 310 miRNA–mRNA coexpression pairs. Of the 4682 mRNAs

that were coexpressed with age-associated miRNAs, 551 mRNAs were

previously reported to be age-associated (Peters et al., 2015); the total

number of reported age-associated mRNAs in that study was 1497.

Comparison of the two ratios (4682/17 318 measured mRNAs and 551/

1497) yielded P < 1 9 10�16 (by the hypergeometric test), suggesting

that age-associated differences in miRNA expression are indicative of

age-associated changes in their coexpressed mRNAs. Gene ontology

enrichment analysis (Table S5) showed that the coexpressed mRNAs are

enriched for translation (P = 3.3 9 10�7), immune response

(P = 9.4 9 10�7), and RNA processing (P = 1.7 9 10�5).

Among the miRNA–mRNA coexpression pairs, TargetScan v7.0 (Lewis

et al., 2005; Agarwal et al., 2015) predicted 3552 of the 4682 mRNAs

to be potential corresponding targets for the coexpressed age-associated

miRNAs, including 406 of the 551 age-associated mRNAs (~74%).

Details of miRNAs and their coexpressed/predicted target mRNAs

involved in each GO category are provided in Table S6.

Comparing miRNA age with mRNA age and DNAm age

In our previous studies, we used mRNA expression and DNA methylation

data to predict age (i.e., mRNA age and DNAm age) in FHS Offspring

Fig. 2 miRNA age vs. chronological age. (A) In the discovery set; (B) in the replication set.

Fig. 3 Survival probability by tertiles of miRNA Dage.
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participants (Marioni et al., 2015; Peters et al., 2015). In order to

compare miRNA age with mRNA age and DNAm age, we used miRNA

age calculated only in the FHS Offspring cohort. The Pearson correlation

(r) of chronological age with miRNA age in the FHS Offspring cohort was

0.50 (P = 1.2 9 10�73). The r values of chronological age with mRNA

age and DNAm age were 0.56 and 0.73, respectively. As shown in

Fig. 4, miRNA age was positively correlated with mRNA age and DNAm

age, with r values of 0.20 and 0.34, respectively. DNAm age and mRNA

age were also positively correlated (r = 0.43).

When mRNA age and DNAm age were both regressed on chrono-

logical age, the r2 was 0.57. Regressing miRNA age, mRNA age, and

DNAm age on chronological age yielded an r2 of 0.63. Using data from

individuals whose miRNA and mRNA data were both available

(N = 2784), we further tested the associations of miRNA Dage with

cardiometabolic traits adjusting for mRNA Dage, as shown in Table S7.

The results did not change appreciably when adding mRNA Dage in the

model. The miRNA Dage remained associated with CHD, hypertension,

BP, and glucose. We did not include DNAm Dage in the model, because

DNA methylation data were available in a smaller number of eligible

individuals.

Discussion

We systematically assessed age-associated differences in whole-blood

miRNA expression levels and developed a miRNA age predictor. We

calculated the difference between miRNA predicted age and chrono-

logical age to generate Dage, which we put forth as an indicator of an

individual’s rate of biological aging. We found Dage to be associated

with risk for all-cause mortality and with prevalent CHD, hypertension,

and glucose levels.

In comparison with previous age-related miRNA expression studies

(Noren Hooten et al., 2010, 2013; ElSharawy et al., 2012; Zhang et al.,

2014), our study included > 25 times as many participants (N = 5221 vs

N < 200) and a wide age range (24–92 years). As such, our study was

well powered to investigate differential levels of miRNA expression in

relation to age. Among the 150 whole-blood miRNAs available for

analysis in this study, we identified 127 miRNAs that were differentially

expressed in relation to age at P < 0.05/150. The differential expression

patterns of miRNAs were highly consistent between separate discovery

and replication sample sets. The effect sizes (r2) of individual differential

miRNA expression with age were small, ranging from 0.05–0.15

(Table 2), limiting the use of single miRNAs as clinical biomarkers of

age. The small effect sizes required a large sample size to identify a-

multiple miRNA age-related biomarker.

By comparing the FHS Offspring and Third Generation cohorts, as

shown in Fig. S3, the estimated beta values for 150 measured miRNAs in

relation with age are consistent between cohorts. All 23 significant age-

associated miRNAs that overlapped between the two cohorts showed a

concordant direction of effects. However, there were more than 50

miRNAs that were significant in the overall sample set, but not in either

Table 3 Associations of miRNA Dage with

prevalent CHD, diabetes, hypertension, and

cardiometabolic traits
Trait/Disease

Chronological age miRNA Dage

Estimated Beta SE T-Value P-Value Estimated Beta SE T-Value P-Value*

CHD 15.28 0.84 18.20 8.72E-72 5.42 0.64 8.45 3.76E-17

Hypertension 9.45 0.64 14.84 2.76E-48 1.62 0.53 3.05 2.34E-03

Diabetes 8.42 1.05 8.02 1.28E-15 1.01 0.77 1.30 1.94E-01

Total cholesterol 0.82 0.05 15.84 3.81E-54 �0.05 0.07 �0.82 4.14E-01

High-density lipoprotein 0.07 0.02 2.73 6.34E-03 0.06 0.03 2.00 4.61E-02

Triglycerides 0.26 0.10 2.51 1.21E-02 �0.18 0.13 �1.36 1.73E-01

Systolic blood pressure 0.55 0.02 26.27 5.09E-136 0.10 0.03 3.78 1.58E-04

Diastolic blood pressure 0.08 0.01 6.00 2.24E-09 0.06 0.02 3.65 2.67E-04

Glucose 0.31 0.02 15.81 5.78E-54 0.07 0.02 2.86 4.30E-03

Body mass index 0.004 0.01 0.52 6.01E-01 �0.002 0.01 �0.24 8.11E-01

*The P-value threshold for significance for miRNA Dage vs. traits analyses (P < 0.005) was determined by the Bonferroni

method (0.05/10). Significant P-values are shown in boldface.

Fig. 4 Comparison of miRNA Dage, mRNA age, and DNAm age. (A) miRNA age vs. DNAm age; (B) miRNA age vs. mRNA age; (C) mRNA age vs. DNAm age.
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cohort. Because the cohort-specific analysis reduced the available sample

size by about half, the differences by cohort may have arisen from

reduced power. Another possible reason for differences by cohort is that

the correlation of miRNA expression with age may differ in the younger

and older cohorts, which differed in age by an average of 20 years

(Noren Hooten et al. 2013). However, we cannot exclude undetected

technical factors contributing to differences between the cohorts.

Many of our identified miRNAs were previously shown to be

differentially expressed in relation to age in whole blood (ElSharawy

et al., 2012), PBMCs (Noren Hooten et al., 2010), and serum (Noren

Hooten et al., 2013; Zhang et al., 2014; Smith-Vikos et al., 2016). For

example, miR-130b-5p (the second most significant miRNA in our study)

was previously reported to be negatively associated with age in serum

(Zhang et al., 2014). In addition, miR-340-3p was reported to be

significantly downregulated in long-lived individuals vs. short-lived

individuals (Smith-Vikos et al., 2016). In mouse studies, miR-130b-5p

was shown to regulate cholesterol and triglyceride homeostasis

(Wagschal et al., 2015). One of our top 25 miRNAs, miR-24, was

reported to be negatively correlated with age in whole blood (ElSharawy

et al., 2012) and PBMCs (Noren Hooten et al., 2010). One study found

that increased expression of miR-24 in T-cell lines downregulated the

expression of histone H2A family member X, which plays a key role in

DNA damage response (Brunner et al., 2012). We also found that most

of the age-associated miRNAs are downregulated in older individuals,

consistent with previous findings.

miRNAs play a pivotal role in post-transcriptional regulation of

protein-coding genes. Therefore, we hypothesized that age-associated

mRNAs might be regulated by age-associated miRNAs. Our miRNA–

mRNA coexpression and target prediction analysis revealed that the

coexpressed/targeted mRNAs for the identified age-associated miRNAs

were enriched for previously reported age-associated mRNAs (enrich-

ment P < 1.0 9 10�16) (Peters et al., 2015). This result suggests that

age-associated changes in miRNA expression levels may alter the

expression of their targeted protein-coding genes, which play vital roles

in aging processes. GO analysis results were consistent with effects on

known aging mechanisms including regulation of transcription, transla-

tion, and immune response.

The regulation of transcription and translation of protein-coding

genes is essential to aging processes. In C. elegans studies, reducing the

levels of key proteins involved in translation, such as ribosomal proteins,

ribosomal-protein S6 kinase, and translation initiation factors, increased

the lifespan of C. elegans (Hansen et al., 2007; Pan et al., 2007).

Ribosomal-protein S6 kinase also regulates lifespan in mammalian

models (Selman et al., 2009). miRNAs in Drosophila have been shown to

block the eIF4F translation initiation complex assembly, thereby inhibit-

ing overall translation of protein-coding genes (Fukaya et al., 2014).

Similarly, a recent study reported that miR-139 represses the translation

initiation factor EIF4G2 and thereby reduces overall protein synthesis

(Emmrich et al., 2016). Our results found that many miRNAs (e.g., miR-

139 and miR-140) were coexpressed with and targeted many ribosomal

genes (e.g., RPL11 and RPL30) as well as translation initiation and

elongation genes (e.g., EEF2 and EIF4B) (Table S6). Our results call for

further functional studies to explore the specific mechanisms by which

age-associated miRNAs exert their effects on aging and age-related

diseases through regulation of key transcription and translation genes.

Many miRNAs have been found to be involved in immune pathways.

For example, previous studies showed that miR-181a regulates local

immune balance (Liu et al., 2012) and T-cell sensitivity (Li et al., 2007),

although its mechanistic action remains unclear. We found that miR-

181a-3p was coexpressed with and predicted to target three immune

response genes, namely CXCL16, RAB27A, and SPON2. RAB27A is also

involved in the T-cell activation pathway. Other identified miRNAs such

as miR-193b-3p target immune function-related genes, including CTSW,

ETS1, FAIM3, ICOS, TGFBR3, DPP4, and KIF13B. Similarly, miR-31-5p

targets CD27, FASLG, INPP5D, TCF7, TGFBR3, and DPP4 and may merit

further investigation.

Heritability analysis revealed that miRNA Dage is a heritable trait

(h2 = 0.38). We did not, however, find genome-wide significant associ-

ations with miRNA Dage, likely due to an insufficient sample size for

GWAS of this trait.

We also showed that individuals with a predicted miRNA age greater

than their chronological age (i.e., higher miRNA Dage) exhibit higher

blood pressure and glucose levels, a higher prevalence of CHD and

hypertension, as well as increased risk of death from all causes. In

comparison, DNAm Dage was previously shown to be associated with

all-cause mortality, but not with prevalent CHD or hypertension (Marioni

et al., 2015; Horvath et al., 2016). mRNA Dage was reported to be

associated with blood pressure, glucose, and HDL and total cholesterol,

but not with all-cause mortality (Peters et al., 2015). In comparing

miRNA age with DNAm age and mRNA age in FHS Offspring

participants, miRNA age showed modest correlations with DNAm age

(r = 0.3) and mRNA age (r = 0.2), suggesting that miRNA age may

complement mRNA and epigenetic age prediction models and can

capture unique aspects of the molecular mechanisms of aging and age-

related diseases.

One limitation of this study is that we assessed miRNA expression in

whole blood, which consists of multiple cell types and plasma. To

address this, we tested whether the proportions of individual blood cell

types influenced the association of age with miRNA expression levels. In

comparing results with and without cell type adjustment, we observed

only minimal changes due to cell type composition. In our previous

miRNA expression QTL study, we also did not find substantial cell type

effects on the correlation between genetic variants and miRNA

expression. Another limitation is that we were unable to perform

external replication of our results. To our knowledge, no other study has

published extensive analyses of miRNA expression in relation to age in a

large sample size with a wide age range. In addition, by splitting our

sample set into independent discovery and replications sets, we

demonstrated a high degree of replicability of our age-related miRNAs.

Experimental procedures

Study population

The FHS Offspring cohort was initially recruited in 1971 and included

5124 offspring (and their spouses) from the FHS Original cohort. The FHS

Third Generation cohort was recruited from 2002 to 2005 and included

4095 adult children of the Offspring cohort participants (Feinleib et al.,

1975; Splansky et al., 2007). The samples used for miRNA analysis in the

present study (N = 5221) included 2295 participants from the FHS

Offspring cohort who attended the eighth examination cycle (Exam 8,

2005–2008) and 2926 participants from the FHS Third Generation

cohort who attended the second examination cycle (Exam 2, 2008–

2011). Because the samples from the Offspring and Third Generation

cohorts share familial relatedness, we merged the samples from the two

cohorts together. Next, the entire FHS sample set was split 1:1 by

pedigrees into separate discovery and replication sets. To ensure that the

samples in the discovery set did not share relatedness with samples in the

replication set, a given pedigree was assigned either to the discovery or

to the replication set, but not in both.
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Gene (mRNA) expression data were obtained from 2446 FHS

Offspring (Exam 8) and 3180 Third Generation (Exam 2) participants

(Huan et al., 2015a). DNA methylation data were obtained from 2377

FHS Offspring cohort participants (Exam 8). miRNA and mRNA expres-

sion data were available for 5012 participants, and there were 2079

participants with miRNA, mRNA, and DNA methylation data. All

participants provided written consent for genetic research.

miRNA expression profiling and normalization

Peripheral whole-blood samples were collected in PAXgene tubes

(Asuragen, Inc., Austin, TX, USA). Purified RNA was extracted using

the PAXgene Blood RNA System Kit (Qiagen, Venlo, Netherlands). The

WT-Ovation Pico RNA Amplification System (NuGEN, San Carlos, CA,

USA) was used to amplify 50 ng RNA samples according to the

manufacturer’s recommended protocols. RNA quality was measured

using an Agilent 2100 Bioanalyzer and RNA concentration was quan-

tified using a NanoDrop ND-1000 spectrophotometer. miRNA profiling

was carried out at the high-throughput Gene Expression and Biomarker

Core Laboratory at the University of Massachusetts Medical School using

TaqMan chemistry-based miRNA assays by using Dynamic Arrays on

BioMark System (Fluidigm, South San Francisco, CA, USA).

The initial miRNA list encompassed all TaqMan miRNA assays available

at the start of the study, including 754 miRNAs that were profiled in

~600 FHS individuals. 346 miRNAs expressed in > 20% samples were

further profiled in 2445 FHS Offspring and 3245 Third Generation cohort

participants. Quantification of miRNA expression was based on cycle

threshold (Ct), where lower Ct values signify higher miRNA expression

levels. miRNAs with Ct values ≥ 27 indicated that they were not

expressed in the sample. Outlier miRNAs with Ct values ≥ 5 standard

deviations from the mean Ct value were categorized as missing. We

excluded miRNAs expressed in < 5000 samples and samples with > 10%

of miRNAs having missing values from analysis. A total of 150 miRNAs

and 5221 samples remained for analysis, and 1.2% of remaining missing

values were replaced with Ct = 27.

As previously described, raw miRNA Ct values were adjusted for four

technical variables: isolation batch (50 batches), RNA concentration, RNA

quality (defined as RNA integrity number [RIN]), and RNA 260/280 ratio

(ratio of absorbance at 260 and 280 nm; measured using a spectropho-

tometer). This normalization model explained 20% to 60% of variability

of raw miRNA measurements for 80% of miRNAs.

mRNA expression profiling

Messenger RNA (mRNA) expression profiling of whole blood-derived

RNA was performed using the Affymetrix Human Exon 1.0 ST GeneChip

platform including 17 318 transcripts. Robust multichip average (RMA)

methods were used to normalize mRNA expression values (log-2-

transformed expression intensity) with quality control measures as

previously described (Joehanes et al., 2013).

DNA methylation

Buffy coat preparations were obtained from peripheral whole-blood

samples. Genomic DNA was extracted from buffy coat using the Gentra

Puregene DNA extraction kit (Qiagen, Venlo, Netherlands) and bisulfite-

converted using EZ DNA Methylation kit (Zymo Research, Irvine, CA,

USA). Samples underwent whole-genome amplification, fragmentation,

array hybridization, and single base pair extension. DNA methylation

quantification was conducted in two laboratory batches at the Johns

Hopkins Center for Inherited Disease Research (lab batch #1, N = 576)

and University of Minnesota Biomedical Genomics Center (lab batch #2,

N = 2270).

Methylation beta values were generated using the DASEN method-

ology implemented in the wateRmelon package in R version 3.0, which

includes background adjustment and quantile normalization. Sample

exclusion criteria included poor SNP matching of control positions,

missing rate > 1%, poor single nucleotide polymorphism (SNP) matching

to the 65 SNP control probe locations, outliers from multidimensional

scaling (MDS), and sex mismatch. Probes were excluded if missing rate

> 20%, previously identified to map to multiple locations, or having an

underlying SNP (minor allele frequency > 5% in European ancestry (EUR)

1000 Genomes Project data) at the CpG site or within 10 bp of the

single base extension. A total of 2377 samples and 443 252 CpG probes

remained for analysis.

Imputing cell counts

The cell count proportions of whole blood were measured in 2138 Third

Generation FHS participants (Exam 2), but not for all samples used in this

study. Cell counts were imputed using a partial least-squares regression

method (Abdi, 2010) applied to mRNA expression. The estimated cell

count proportion values imputed were generally consistent with the

measured values in the 2138 samples with cross-validated estimates of

prediction accuracy r2 > 0.8 for white blood cell, red blood cell, platelet,

lymphocyte percent, monocyte percent, and eosinophil percent, and

r2 = 0.25 for basophil percent. miRNA expression analysis accounting for

cell counts effects was performed in the 5012 samples.

Identifying differentially expressed miRNAs in relation to age

A linear mixed-effects model was used to model miRNA expression Ct

values (150 miRNAs in total) as the dependent variable and chronological

age as an explanatory variable, adjusting for sex, technical variables

(batch, RNA concentration, RNA quality score, and 260/280 ratio), and

family structure. In a sensitivity analysis, additional adjustments were

made for imputed cell counts. The statistical analysis was implemented in

the lmekin() R function (http://cran.r-project.org/web/packages/kinship/)

(Almasy & Blangero, 1998). Correcting for 150 tests (the number of

miRNAs), Bonferroni-corrected P < 3.3 9 10�4 was used as the signif-

icant threshold.

miRNA expression age prediction

The standardized residuals of miRNA expression Ct values (150 miRNAs)

were obtained by adjusting raw Ct values for three technical covariates

(RNA concentration, RNA quality score, and 260/280 ratio) and sex.

Because miRNA expression measurements for the FHS Offspring and

Third Generation cohorts were performed in independent batches, we

did not adjust Ct values for batch effect. In a sensitivity analysis,

additional adjustments were made for imputed cell counts.

We used an elastic net regression model (implemented in the R

package glmnet function (Friedman et al., 2010)) to regress chronolog-

ical age on miRNAs. Elastic net regression is a combination of traditional

Lasso and ridge regression methods, emphasizing model sparsity while

appropriately balancing the contributions of coexpressed miRNAs. To

ensure an unbiased validation, the prediction model was trained in the

discovery set. Optimal regularization parameters were estimated via 10-

fold cross-validation. The alpha parameter of glmnet was set to 0.5, and

the lambda value from the best prediction model was set to 0.2. glmnet
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automatically selected miRNAs for building an age predictor and

reported effect size for each miRNA. miRNA predicted age (i.e., miRNA

age) was calculated in the replication set using the predictor trained in

the discovery set. miRNA Dage was defined as miRNA age minus

chronological age.

Estimation of the additive heritability of miRNA Dage

The narrow-sense heritability estimate of miRNA Dage (denoted as

h2miR�Dage was the proportion of the additive polygenic genetic variance

of the total phenotypic variance of miRNA Dage:
h2miR�Dage ¼ r2A=r

2
miR�Dage, where r2A denotes the additive polygenic

genetic variance and r2miR�Dage denotes the total phenotypic variance of a

gene expression trait. The h2miR�Dage estimate was obtained using

variance-component methodology implemented in the lmekin() function

of Kinship Package in R (Almasy & Blangero, 1998). Heritability

estimation for miRNA Dage was performed using all FHS samples.

All-cause mortality ascertainment

Outcome analyses included all deaths that occurred prior to January 1,

2014 (about 6 years of follow-up). Survival status was ascertained using

multiple strategies, including routine contact with participants for health

history updates, surveillance at the local hospital, review of obituaries in

the local newspaper, and queries to the National Death Index. We

requested death certificates, hospital and nursing home records prior to

death, and autopsy reports. When cause of death was undeterminable,

the next of kin were interviewed. The date and cause of death were

reviewed by an endpoint panel of three investigators.

Associations between miRNA Dage and mortality were tested using

Cox proportional hazards regression models utilizing the coxph()

function in the ‘survival’ R library (https://stat.ethz.ch/R-manual/R-deve

l/library/survival/html/coxph.html), adjusting for age at sample collection

and sex. Potential cofounders that were included in the fully adjusted

model included systolic blood pressure, diastolic blood pressure, BMI,

HDL cholesterol, total cholesterol, triglycerides, fasting blood glucose,

smoking status, lipid treatment, diabetes treatment, hypertension

treatment, prevalent cardiovascular disease, prevalent cancer, and

prevalent diabetes. Hazard ratios for miRNA Dage were expressed as

annual risk of death over 6 years of follow-up. Survival curves were

drawn by tertiles of miRNA Dage.

Association analysis of miRNA Dage with prevalent CHD,

prevalent diabetes, prevalent hypertension, and

cardiometabolic traits

To avoid the cofounding effects of drug treatment, all association tests

of miRNA Dage and cardiometabolic traits were performed in individuals

who were not receiving antihypertensive, lipids, or diabetes treatment

(n = 2993). Linear mixed-effects models were used to test associations

between miRNA Dage (dependent variable) and cardiometabolic traits

(independent variable), including systolic blood pressure, diastolic blood

pressure, total cholesterol, HDL cholesterol, triglycerides, fasting blood

glucose, and BMI using the lmekin() R function. All association tests were

adjusted for chronological age, sex, and familial relatedness. To account

for the effects of obesity on cardiovascular disease and other traits, we

additionally adjusted for BMI (except in analyses of BMI).

Linear mixed-effects models (R package lmekin() function) were used

to test associations between miRNA Dage (dependent variable) and

prevalent CHD, diabetes, and hypertension (independent variable,

coding ‘1’ for cases and ‘0’ for controls), adjusting for age, sex, BMI,

and familial relatedness. Association analysis of miRNA Dage with CHD

was performed in all available samples (n = 5221, including 250

prevalent CHD cases). Diabetes and hypertension analyses were

performed in individuals who were not receiving antidiabetic treatment

(n = 4909, including 164 type-II diabetes cases) and antihypertensive

treatment (n = 3481, including 379 hypertension cases), respectively.

miRNA–mRNA coexpression analysis

The coexpression analysis was performed on FHS participants in whom

miRNA andmRNAdatawere both available. Linearmixed-effectsmodels (R

package lmekin() function) were used to conduct pairwise coexpression

analyses for all profiled mRNAs (N = 17 318) and 150 miRNAs, with fixed

effects includingage, sex, technical covariates, imputed cell types, surrogate

variables (SV), and a random effect to account for family structure. As

described above, the mRNA expression was quantified by log-2-

transformed expression intensities. For miRNA expression, higher Ct values

reflect lower miRNA expression levels. Adjustment was made for technical

covariates (11 for mRNA expression and four for miRNA expression).

Surrogate variables (SVs) were computed from the mRNA expression data

using theRpackage ‘SVA’ (Leek&Storey, 2007), and51SVs associatedwith

at least one miRNA at Bonferroni-corrected P < 3.3 9 10�4 (0.05/150)

were included in the statistical model. The Benjamini–Hochberg method

was used to compute false discovery rate (FDR). Significant miRNA–mRNA

coexpression pairs were selected using FDR < 0.05.

Predicting miRNA targets

For the coexpressed miRNA–mRNA pairs, we used TargetScan v7.0

(Lewis et al., 2005; Agarwal et al., 2015) to predict whether the mRNAs

were the corresponding targets for the miRNAs. TargetScan predicts

mRNA targets of miRNAs by searching for the presence of 8-mer, 7-mer,

and 6-mer sites that match the seed region of each miRNA. The

sequences from 30UTR, 50UTR, and coding regions of each mRNA were

downloaded from the University of California Santa Cruz (UCSC)

Table Browser (https://genome.ucsc.edu/). The miRNA seed regions

were downloaded from miRbase v21 (http://www.mirbase.org/).

Genome-wide association study of miRNA Dage

DNA was isolated from buffy coat or from immortalized lymphoblast cell

lines in FHS participants. Genotyping was conducted with the Affymetrix

500K mapping array and the Affymetrix 50K gene-focused MIP array,

using previously described quality control procedures (Levy et al., 2009).

Genotypes were imputed to the 1000 Genomes Project panel of

approximately 36.3 million variants using MACH (Li et al., 2010). We

filtered out SNPs with MAF < 0.05 and imputation quality ratio < 0.3

(the imputation quality ratio is denoted by the ratio of the variances of

the observed and the estimated allele counts). About 9 million variants

remained after the filter. The association of miRNA Dage with each SNP

was tested by a linear mixed-effects model that was implemented in the

lmekin() R function. miRNA Dage was used as dependent variable, and

each SNP as an explanatory variable adjusting for chronological age and

sex.

Gene ontology and pathway enrichment analysis

Coexpressed or predicted targeted mRNAs for age-associated miRNAs

were combined as gene sets and classified using Gene Ontology (GO)
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databases to identify potentially relevant biological processes. Fisher’s

exact test was used to calculate enrichment P values. DAVID Bioinfor-

matics resources 6.7 (https://david.ncifcrf.gov/) (Huang et al., 2009), an

online tool for GO analysis, was used for this analysis. The significant

threshold was set at FDR < 0.05.
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