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Summary

Skeletal muscle has emerged as one of the most important tissues involved in regu-

lating systemic metabolism. The gastrocnemius is a powerful skeletal muscle com-

posed of predominantly glycolytic fast-twitch fibers that are preferentially lost

among old age. This decrease in gastrocnemius muscle mass is remarkable during

aging; however, the underlying molecular mechanism is not fully understood. Strik-

ingly, there is a ~70% decrease in Cisd2 protein, a key regulator of lifespan in mice

and the disease gene for Wolfram syndrome 2 in humans, within the gastrocnemius

after middle age among mice. A proteomics approach was used to investigate the

gastrocnemius of naturally aged mice, and this was compared to the autonomous

effect of Cisd2 on gastrocnemius aging using muscle-specific Cisd2 knockout (mKO)

mice as a premature aging model. Intriguingly, dysregulation of calcium signaling and

activation of UPR/ER stress stand out as the top two pathways. Additionally, the

activity of Serca1 was significantly impaired and this impairment is mainly attributa-

ble to irreversibly oxidative modifications of Serca. Our results reveal that the over-

all characteristics of the gastrocnemius are very similar when naturally aged mice

and the Cisd2 mKO mice are compared in terms of pathological alterations, ultra-

structural abnormalities, and proteomics profiling. This suggests that Cisd2 mKO

mouse is a unique model for understanding the aging mechanism of skeletal muscle.

Furthermore, this work substantiates the hypothesis that Cisd2 is crucial to the

gastrocnemius muscle and suggests that Cisd2 is a potential therapeutic target for

muscle aging.
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1 | INTRODUCTION

Sarcopenia, characterized by a progressive loss of skeletal muscle

mass and function, is one of the most prominent features during

aging. Skeletal muscle fibers can be classified into different types

based on their physiological and metabolic characteristics. Type I

muscle fibers are slow-twitch fibers; these fibers are associated with

high levels of oxidative enzyme activity, low levels of glycolytic

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

Accepted: 21 October 2017

DOI: 10.1111/acel.12705

Aging Cell. 2018;17:e12705.

https://doi.org/10.1111/acel.12705

wileyonlinelibrary.com/journal/acel | 1 of 13

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1111/acel.12705
http://wileyonlinelibrary.com/journal/ACEL


enzyme activity, large number of mitochondria, and slow-twitch con-

traction. Type II muscle fibers are fast-twitch fibers; these fibers are

associated with high levels of glycolytic enzyme activity, fewer mito-

chondria, and fast contraction times. Importantly, these different

subtypes of muscle fibers exhibit different sensitivities to aging. Pre-

vious studies have revealed that there is preferential loss and atro-

phy of glycolytic fast-twitch fibers compared to slow-twitch muscle

fibers on aging (Lexell, 1995; Thompson, 1994). Interestingly, two

studies have shown that fast-twitch muscle fiber-specific restoration

is able to help regulate glucose metabolism and adipose tissue home-

ostasis in mice (Akasaki et al., 2014; Tsai et al., 2015), which implies

that the fast-twitch muscles have an important role during aging.

The gastrocnemius is a powerful superficial bipennate muscle

located with the soleus in the posterior (back) compartment of the

lower leg in humans and in the hind leg in mice. Decreases in the

muscle mass of the gastrocnemius, composed of predominantly fast-

twitch fibers, are quite remarkable during aging. In contrast, the

soleus muscle, composed of predominantly slow-twitch fibers, shows

less atrophy and is much less affected during aging among humans

and rodents (Braga et al., 2008; Kovacheva, Hikim, Shen, Sinha &

Sinha-Hikim, 2010; Martin et al., 2007; Sinha-Hikim et al., 2013).

This is consistent with observations indicating that fiber size decline

prominently affects fast-twitch fibers, and that slow-twitch fibers are

less affected. However, the molecular mechanisms underlying the

degeneration and dysfunction of the gastrocnemius muscle during

aging are not fully understood.

The CDGSH iron-sulfur domain-containing protein 2 (CISD2)

plays a crucial role in lifespan control and human disease. Recessive

mutations in human CISD2 cause type 2 Wolfram syndrome (WFS2;

MIM 604928), a rare neurodegenerative and metabolic disorder

associated with a shortened lifespan. In the Cisd2 knockout mice,

Cisd2 deficiency shortens lifespan and drives premature aging; addi-

tionally, neuronal lesions and muscle abnormalities are the two earli-

est manifestations of this premature aging phenotype, and these

precede the gross premature aging phenotype (Chen et al., 2009).

The Cisd2 protein has been detected in various different subcellular

localities, being enriched in the mitochondrial outer membrane frac-

tion, in the ER, and in the mitochondria-associated ER membranes

(MAMs) of various cell types (Wang, Kao, Chen, Wei & Tsai, 2014).

ER and mitochondria are the two major intracellular calcium stores

that respond to signals for calcium mobilization, while MAMs serve

as hotspots for calcium transfer between the ER and mitochondria.

Previous studies had revealed that Cisd2 plays an essential role in

mitochondrial integrity and in the regulation of intracellular calcium

homeostasis (Chang et al., 2012; Chen, Wu, Kirby, Kao & Tsai, 2010;

Lu et al., 2014; Wang, Chen, et al., 2014; Wiley et al., 2013).

So far, few proteomics studies have been reported that involving

premature muscle degeneration. Accordingly, it is anticipated that a

detailed analysis and comparison of the differentially and commonly

expressed proteins between naturally aged and Cisd2 mKO muscle

tissues may lead to the discovery of critical aging regulators rather

than disease-specific and age-related protein effects. In this study,

we took a proteomics approach followed by biochemical validation;

the aim was to investigate age-related protein changes within the

gastrocnemius muscle. Our intent was to identify the top altered

pathways and explore their association with pathological alterations.

We generated muscle-specific Cisd2 KO (mKO) mice to investigate

the autonomous effect of Cisd2 on the gastrocnemius muscle. Fur-

thermore, proteomic profiling of naturally aged wild-type (WT) mice

was also carried out and these results compared with those from

young WT and Cisd2 mKO mice. The target was to address the bio-

logical relevance of Cisd2 deficiency to the aging of the gastrocne-

mius muscle.

2 | RESULTS

2.1 | Age-dependent decrease in Cisd2 levels and
degeneration of gastrocnemius muscle in the
naturally aged mice and Cisd2 mKO mice

Previously, we have shown that there is an age-dependent decrease

in Cisd2 expression levels within the brain and the femoris muscle

using C57BL/6 WT mice (Chen et al., 2010; Wu et al., 2012). The

mean lifespan of C57BL/6 mice is 25.5 � 3.9 months (n = 50) in our

mouse facility. In the femoris muscle, there was an average 38% and

57% decrease in the Cisd2 protein level during middle age (12-

month-old [12M]) and during old age (24M), respectively, compared

with young (3M) mice (Wu et al., 2012). Strikingly, in the gastrocne-

mius, there was a much higher decline, namely a ~70% decrease in

Cisd2 protein level during middle/old age (Figure 1a,b). This suggests

that Cisd2 expression in the gastrocnemius is more sensitive to aging

and such reduced protein levels are likely to impact on the age-

related alterations that affect the gastrocnemius.

Cisd2 mKO (MCK-Cre; Cisd2f/f) mice were used to study the

biological effects of Cisd2 deficiency on the skeletal muscle and

exclude potential nonautonomous effects from nonmuscle tissues

(Fig. S1). The weights of the gastrocnemius and soleus muscles,

which are tightly associated, seemed to decrease to a similar extent

during systemic and muscle-specific Cisd2 knockout (Figure 1c,d).

Pathologically, naturally aged (26M WT) mice displayed overt degen-

erative loss and occasional rounded and shrunken fibers in the gas-

trocnemius (Figure 1e left panel). These pathological alterations were

also detectable in Cisd2 mKO mice at 3M (Figure 1e right panel).

Ultrastructurally, in the naturally aged mice, we found dilated SR and

degenerate intermyofibrillar mitochondria along with autophagic vac-

uoles. In the Cisd2 mKO mice, there were more severe alterations in

the mitochondria and SR; additionally, T-tubule dilation also could be

detected in the prematurely aged gastrocnemius (Figure 1f).

2.2 | Proteomic profiling of the gastrocnemius
muscles in the naturally aged and Cisd2 mKO mice

To obtain a better understanding for the mechanism underlying the

age-related alterations of the gastrocnemius, a label-free proteomics

approach using LC-MS/MS was applied to investigate the protein

changes in the following two mouse groups: (i) 3M Cisd2 mKO vs.
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3M Cisd2f/f control and (ii) 26M old vs. 3M young WT (Fig. S2a).

The PEAKS, a software program developed recently with improved

sensitivity and accuracy, was used to quantify the identified proteins

by LC-MS/MS. With 1% false discovery rate (FDR), a total of 865

and 1,021 proteins were identified in the first group (Cisd2 mKO vs.

Cisd2f/f) and second group (old WT vs. young WT), respectively. As

the protein quantification algorithm relies on the extracted ion chro-

matogram (XIC) of unique peptides, we only selected proteins with

≥2 unique peptides for further label-free quantification analysis. The

differentially expressed proteins (DEPs) were defined those with a

significance >13 (p < .05) and a fold change >1.5 compared to their

control group. A total of 46 and 71 proteins were, respectively,
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F IGURE 1 Age-dependent decrease in Cisd2 within the gastrocnemius of WT mice and the pathological defects found in the
gastrocnemius of naturally aged mice and Cisd2 mKO mice. (a,b) Decrease in Cisd2 protein level in the gastrocnemius muscle at middle age,
13-month-old (13M) and old age (26M) compared with young (3M) WT mice. (c) Gross view of the mice and of the gastrocnemius muscles for
naturally aged mice (3M vs. 26M WT mice), and Cisd2 genetically modified mice (systemic Cisd2 KO, Cisd2f/f and mKO mice). S, soleus; G,
gastrocnemius. (d) Quantification of muscle weight of the gastrocnemius. (e) H&E staining of transverse sections of the gastrocnemius muscle
of 3M WT, 26M WT, and 3M Cisd2 mKO mice. The black arrows indicate degenerative loss of muscle fibers. The blue arrows indicate the
rounded fibers. Scale bars, 50 lm. (f) Ultrastructural alterations in the gastrocnemius muscles of 3M WT, 26M WT, and 3M Cisd2 mKO mice
as revealed by TEM. The red stars indicate dilated/degenerate SR. The yellow stars indicate degenerate mitochondria. Early or initial
autophagic vacuoles (AVi), namely autophagosomes, which are double-membrane structures containing undigested cytoplasmic organelles, were
detected in the 26M WT and 3M Cisd2 mKO mice. Mt, mitochondria. Scale bars, 500 nm
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recognized as DEPs in the naturally aged mice and Cisd2 mKO mice

(Figure 2a; Table S1). Furthermore, 10 proteins were observed in

both DEP datasets (BiP, Grp94, Calr, P4hb, Pdlim3, Pgam2, Des,

Vim, Gstm2, and Tnnc2) (Figure 2b; Figs S3, S4). Notably, four of 10

of these common DEPs (Calr, Grp94, BiP, and P4hb) were all up-

regulated and involved in protein maturation and ER stress. This

implies that these proteins probably have a critical role in proteosta-

sis during the aging process. Moreover, Gene Ontology classification

revealed that most DEPs in both datasets are involved in similar

annotations, namely biological process, molecular function or cellular

component (Figure 2c), indicating the presence of commonly altered

functional pathways within the gastrocnemius in the naturally aged

mice and Cisd2 mKO mice.

To further identify and compare the top altered pathways

between the two aging models, these DEPs were investigated by

Ingenuity Pathway Analysis (IPA). Statistically significant canonical

pathways enriched in the two DEP datasets at p < .01 were identi-

fied (Table S2). Among these, the calcium signaling and unfolded

protein response (UPR)/ER stress pathways, which are highly associ-

ated with the function of Cisd2, stand out among the topmost path-

ways altered in both the naturally aged and Cisd2 mKO mice. By

way of contrast, only the Cisd2 mKO mice showed significant mito-

chondrial dysfunction. Furthermore, previous studies have revealed

that Cisd2-deficient mouse embryonic fibroblasts (MEFs) exhibit

increased levels of reactive oxygen species (ROS) and reactive nitro-

gen species (RNS) (Wiley et al., 2013), and that Cisd2 overexpression

is able to protect cells from H2O2-induced oxidative stress and cell

death using a breast cancer cell model (Darash-Yahana et al., 2016).

In this context, four DEPs that are related to the ROS response and

redox regulation were pinpointed; these are involved in the “NRF2-

mediated oxidative stress response” and “glutathione redox reac-

tions” pathways. The expression profiles of the above-mentioned

DEPs, provided in Figure 2d as a heat map, along with the involved

pathways or antioxidant function, form an interesting group of path-

ways associated with muscle aging.

2.3 | Activation of UPR/ER stress stands out as the
top pathway above all the other pathways enriched
in the DEP datasets

To further ascertain whether ER stress and the UPR signaling path-

way are indeed activated in the two aging models, we used Western

blotting to validate three UPR transducers, namely eIF2a, ATF6a,

and IRE1a. Our results revealed that the ATF6 arm of the UPR was

selectively activated in the age-related ER stress of old (26M) WT

mice, whereas the PERK/eIF2a arm of the UPR was strongly acti-

vated in the 3M Cisd2 mKO (Figure 3a–d). Interestingly, while the

protein level of phosphorylated-IRE1a remained unchanged, the total

protein level of IRE1a was significantly increased in the Cisd2 mKO

gastrocnemius (Figure 3a,c). Furthermore, the mRNA levels of UPR

downstream target genes, BiP, Grp94, and Chop, were also demon-

strated to be activated (Figure 3e). These results are consistent with

the pathological findings of dilated/degenerated SR (Figure 1f;

Fig. S5a), which further supports our earlier proteomic and biochemi-

cal evidence. Taken together, both naturally and prematurely aged

gastrocnemius muscles exhibited ER stress as revealed by activation

of one of the three UPR upstream sensors and induction of down-

stream target gene expression. A graphical summary comparing the

ER stress and UPR pathways between the two mouse aging models

is presented in Figure 3f.

2.4 | Dysregulation of calcium homeostasis is
involved in the natural and premature aging of the
gastrocnemius muscle, but this is associated with
different DEPs

Intriguingly, the TEM analysis of the naturally aged gastrocnemius

muscles of WT mice revealed large tubular aggregations (TAs), which

seemed to replace myofibrils and squeeze the mitochondria with

degenerated morphology (Figure 4a). However, neither 3M Cisd2

mKO nor 3M WT gastrocnemius displayed the TA phenotype. TAs are

distinct structures that are composed of closely packed membranous

tubules and are considered to be SR-derived structural abnormalities

associated with aging in mice (Agbulut, Destombes, Thiesson & Butler-

Browne, 2000). Although the functional role of TAs and the process

by which they develop are not well understood, a previous study has

shown that some calcium regulator proteins, including Serca1, Casq1,

and RyR1, are components of TAs (Chevessier, Marty, Paturneau-

Jouas, Hantai & Verdiere-Sahuque, 2004). We therefore analyzed the

TA phenotype in relation to the DEPs involved in calcium signaling.

Specifically, Casq1 and Serca1 protein levels were found to be signifi-

cantly increased in the naturally aged gastrocnemius, but not in the

prematurely aged gastrocnemius (Figure 4b; Fig. S6a,b). By way of

contrast, Ryr1 and Myh4 were significantly increased only in the Cisd2

mKO gastrocnemius, and not in the naturally aged gastrocnemius (Fig-

ure 4b,c). Taken together, the dysregulation of calcium homeostasis in

the naturally and prematurely aged gastrocnemius muscles appears to

be regulated in different ways and to involve different DEPs. A graphi-

cal summary comparing the calcium signaling related pathways of the

two aging models is presented in Figure 4d.

Next, we investigated whether these alterations cause deteriora-

tion in muscle contractile function by monitoring the activity of Ser-

ca1, which is predominantly expressed and is mainly responsible for

the calcium influx into the SR and muscle relaxation in the gastrocne-

mius (Fig. S7). A pyruvate kinase/lactate dehydrogenase (PK/LDH)

coupling reaction was used to investigate the 2,5-Di-(tert-butyl)-1,4-

benzohydroquinone (TBQ)-sensitive ATPase activity of Serca using

crude homogenates of the gastrocnemius (Gehrig et al., 2012; Simo-

nides & van Hardeveld, 1990). The Serca activity was significantly

decreased in naturally aged mice and Cisd2 mKO mice compared with

WT young mice (Figure 5a). This would seem to be a surprising dis-

crepancy in relation to the protein levels of Serca, which were found

to be up-regulated in 26M WT mice and at a similar level in 3M Cisd2

mKO mice (Figure 4b). However, previous studies have shown that

the activity of Serca is regulated by its redox status. Oxidative modifi-

cations of Serca, including cysteine S-sulfonation and tyrosine
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nitration, are irreversible modifications that increase with age and inhi-

bit Serca activity (Knyushko, Sharov, Williams, Schoneich & Bigelow,

2005; Qin et al., 2013). To specifically evaluate the oxidative status of

Serca1, we blotted the immunoprecipitated Serca1 from gastrocne-

mius muscle extracts using antibodies against cysteine S-sulfonation

or tyrosine nitration. Importantly, the above oxidative modifications of

Serca1 were significantly increased in the Serca1 from naturally and

prematurely aged gastrocnemius muscle (Figure 5b), indicating that

the impaired activity of Serca is mainly attributable to oxidative modi-

fication. We also found that the overall levels of these oxidative modi-

fications of all cellular proteins in the naturally and prematurely aged

gastrocnemius muscle were significantly increased (Figure 5c,d).
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2.5 | Dysregulation of energy metabolism,
mitochondrial respiration, and ROS response

Declines in mitochondrial functioning and metabolic homeostasis had

been reported previously in aged muscles. For example, ATP content

and production have been shown to be decreased by ~50% in the

mitochondria isolated from the aged gastrocnemius (Drew et al.,

2003). The gastrocnemius contains high levels of glycolytic enzymes

and uses glycolysis as its main energy source. Accordingly, the bioen-

ergetic pathways, including glycolysis, glycogen metabolism, mito-

chondrial electron transport chain (ETC), and tricarboxylic acid (TCA)

cycle, were analyzed further. In terms of glycolysis and glycogen

metabolism, both the naturally aged mice and Cids2 mKO mice

exhibited a tendency toward reduced levels of some enzymes
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involved in these pathways (Figure 6a,b). In terms of the TCA cycle,

most enzymes showed no significant change except the Idh2 and

Idh3 (Figure 6c). Remarkably, for mitochondrial ETC, there is a signif-

icant decrease in the prematurely aged gastrocnemius of Cisd2 mKO

mice of multiple subunits of complex I (Ndufa8, Ndufb6, Ndufb10,

and Ndufv2), while there only one subunit of complex I (Ndufb11)

was decreased in the naturally aged gastrocnemius (Figure 6d).

These findings are consistent with the IPA results wherein the “mito-

chondrial dysfunction” pathway was significantly enriched in the pre-

maturely aged (Cisd2 mKO vs. Cisd2f/f) but not enriched to any

great extent in the naturally aged (old vs. young WT) DEP lists

(Table S2). Furthermore, given the observation that there is a signifi-

cant increase in the irreversibly oxidative modifications of all cellular

proteins (Figure 5c,d), we analyzed the proteins involved in the

antioxidant defense pathways. In the naturally aged mice, Fth1 and

Gstm2 were significantly increased, while the Gpx1 and Sod2

showed a trend toward a decrease. In the Cisd2 mKO mice, Fth1

and Gstm2 were also increased (Figure 6e). A graphical summary

comparing energy metabolism and the ROS response pathways

between the two mouse models is presented in Figure 6f.

a b c

Myofibrils
Replaced
by TAs

Degenerated mt
squeezed by TAs

Tubular aggregates (TAs)

Glycogen

Regulation of calcium homeostasis Calcium signaling

d 3M Cisd2 mKO versus 3M WT
Ca2+

Ca2+

SR

SOCE
Stim

Orai

Ca2+

Ca2+ Ca2+ Ca2+

Sarcomere

Contraction

Voc Nmda Trpc2

ERp57

Casq1 Trdn

Serca1

CaMK2α

Tnnc2

Myl1
Myh4

Cytosol

Naturally aged 26M versus 3M WT
Ca2+

Sln

Ca2+

SOCE
Stim

Orai

Ca2+

Ca2+ Ca2+ Ca2+

Sarcomere

Contraction

Voc Nmda Trpc2

ERp57

Casq1
Trdn

Serca1 Tnnc2

Myh4

Myl1

CaMK2α

Cytosol

Casq2
Serca2

Casq2

Sln Sln

Sln
SR

[Ca2+]i
CaMIp3r

Ryr1

Mt

Mcu

Ncx Pmca

Ncx

[Ca2+]i
CaMIp3r

Ryr1

Mt

Mcu Ncx

Ncx Pmca

Tnni2

Tnnt3
Tnni2

Tnnt3

Calna Calna

R
el

at
iv

e 
LC

-M
S 

in
te

ns
ity

Serca1

0
0.5
1.0
1.5
2.0 * *

Serca2

0
0.5
1.0
1.5
2.0

Ryr1

0

2

4

6 *

Casq1

0
1
2
3
4

*
Casq2

0.0
0.5
1.0
1.5
2.0

*

Trpc2

0

0.5

1.0

1.5

26M3M
WT

f/f mKO
3M

ERp57

0

2

4

6 ** *
Tnnc2

0
0.5
1.0
1.5
2.0 * *

Tnni2

0
0.5
1.0
1.5
2.0 p = .058 *

Tnnt3

0
0.5
1.0
1.5
2.0 **

CaMK2α

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

Calna

Myh4

0

5

10

15
*

Myl1

0
0.5
1.0
1.5
2.0 *

Serca2

R
el

at
iv

e 
LC

-M
S 

in
te

ns
ity

R
el

at
iv

e 
LC

-M
S 

in
te

ns
ity

R
el

at
iv

e 
LC

-M
S 

in
te

ns
ity

26M3M
WT

f/f mKO
3M

26M3M
WT

f/f mKO
3M

26M3M
WT

f/f mKO
3M

26M3M
WT

f/f mKO
3M

26M3M
WT

f/f mKO
3M

26M3M
WT

f/f mKO
3M

26M3M
WT

f/f mKO
3M

26M3M
WT

f/f mKO
3M

26M3M
WT

f/f mKO
3M

26M3M
WT

f/f mKO
3M

26M3M
WT

f/f mKO
3M

26M3M
WT

f/f mKO
3M

f/f26M3M
WT

mKO
3M

F IGURE 4 Dysregulation of calcium homeostasis and calcium signaling in naturally and prematurely aged gastrocnemius muscle. (a)
Ultrastructural analysis by TEM revealed tubular aggregations (TAs) were present in the gastrocnemius muscles of the naturally aged WT mice
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3 | DISCUSSION

Four new findings are identified in this study. Firstly, there is a sig-

nificant down-regulation of Cisd2 protein (~30% remains) in the gas-

trocnemius of middle-aged and old WT mice, suggesting that Cisd2

may play a crucial role in gastrocnemius aging. Secondly, Cisd2 mKO

mice have an overt phenotype that leads to degeneration of skeletal

muscles, destruction of mitochondria, and destruction of ER/SR,

together with impairment of proteostasis. Importantly, these

phenotypic characteristics are very similar to those observed in natu-

rally aged mice regarding pathological alterations, ultrastructural

abnormalities, and proteomic profiling. Thirdly, in addition to com-

mon protein changes, there are unique pathway alterations and sub-

cellular changes involved in the natural and premature aging

processes. In particular, TAs, which are associated with dysregulation

of calcium homeostasis, were detected only in naturally aged mice.

In contrast, while the “mitochondrial dysfunction” pathway was sig-

nificantly enriched in Cisd2 mKO mice, this only occurred to a lesser
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extent in naturally aged mice. Finally, the redox status of Serca1 is

significantly altered and there is oxidative modification of Serca1

that obviously damages its functionality leading to an impaired cal-

cium-dependent Serca activity and a consequential defect in calcium

uptake by the ER/SR. Many ER chaperones are calcium-dependent

for optimal activity, and therefore, a reduction in the ER calcium will

reduce chaperone function and ER folding capacity, thereby cause

ER stress and turn on UPR signaling. These findings provide an

explanation, at least in part, as to why the pathways for calcium

signaling and UPR/ER stress stand out above the rest of the

age-related pathway changes. Moreover, the up-regulation of Serca

protein in the naturally aged gastrocnemius might be a compensation

in response to damaged Serca protein, which would lead to func-

tional loss.

In this study, we provided evidence for the first time to substanti-

ate that the idea that Cisd2 plays a crucial role in the skeletal muscles

and that it functions in a cell-autonomous manner to maintain the

integrity of skeletal muscles. In middle-aged WT mice, the dramatic

reduction in Cisd2 in the gastrocnemius correlated with the presence

of obvious pathological and biochemical alterations (Fig. S8). Interest-

ingly, in the soleus of WT mice, the Cisd2 level is maintained consis-

tently during aging (Fig. S9a,b), and this correlates well with the

observation that no overt degeneration of the soleus was found at

old age (Fig. S9c). However, in the Cisd2 mKO mice, both the soleus

and gastrocnemius displayed an overt degeneration phenotype

(Fig. S9d,e), suggesting that Cisd2 also plays a crucial role in the

soleus and that a consistent level of Cisd2 in the soleus of WT mice

may help preserve its mass and function during natural aging.

The tissue-specific Cre recombinase used in this study was dri-

ven by the MCK promoter. This begins to express at an embryoni-

cally late stage, namely E17 just before birth, and reaches maximal

levels at postnatal day 10, remaining at a constantly high-level

throughout the rest of mouse’s life (Bruning et al., 1998). Therefore,

the phenotypic effect of Cisd2 knockout of skeletal muscle would

seem to occur after the postnatal stage rather than during prenatal

early development. Regarding the natural aging of WT mice, 18 of

the 46 DEPs have also been identified by other groups as involved

in aging, including P4hb (McDonagh, Sakellariou, Smith, Brownridge

& Jackson, 2014), Casq1 (McDonagh et al., 2014), Pgam2 (Chaves

et al., 2013), and Gstm2 (Chaves et al., 2013), suggesting common

protein alterations can be found by different experimental

approaches.

In humans, TAs have been reported to appear in the skeletal

muscles during a variety of disorders including various neuromuscu-

lar disorders and TA myopathy. The latter is a rare muscle disease

associated with muscle weakness and cramps in humans (Chevessier

et al., 2005). In mouse models, the structure of TAs can be experi-

mentally induced by anoxic conditions (Schiaffino, Severin, Cantini

& Sartore, 1977). The development of TAs has been associated

with several factors, including age (beginning at middle age), sex

(usually male) and fiber type (type II fast-twitch) in WT mice (Agbu-

lut et al., 2000). Notably, TA structures were not observed either in

the gastrocnemius of young WT male mice or in the gastrocnemius

of prematurely aged Cisd2 mKO male mice at 3 months of age.

These findings may be attributable to the age of the mice as the

formation of TAs appears to be a time-dependent process requiring

a long incubation time to allow for the gradual formation of TAs

(Lahoute et al., 2008; Nishikawa et al., 2000; Zhou et al., 2013).

Furthermore, a previous study has shown that Casq and Serca both

participate in TA development. As TAs appear to be associated with

myopathy, Serca located in the TA membrane has been suggested

to be inactivated or functionally compromised (Boncompagni, Pro-

tasi & Franzini-Armstrong, 2012). Consistent with the above, our

current findings in mice, and previous findings using a rat model

(Sharov, Dremina, Galeva, Williams & Schoneich, 2006), have both

revealed that Serca activity decreases in an age-dependent manner

and this decrease in Serca activity is correlated inversely with

increased oxidative modification, namely cysteine sulfonation and 3-

nitrotyrosine, which occurs as a consequence of oxidative stress

and aging.

If we consider the “mitochondrial dysfunction” pathway, this

was significantly enriched in the prematurely aged gastrocnemius of

Cisd2 mKO mice, and this also occurred, but only to a lesser

extent, in the naturally aged mice. It should be noted that these

DEPs are involved in oxidative phosphorylation within the mito-

chondria and are all encoded by nuclear genes. Accordingly, in addi-

tion to the presence of damaged mtDNA in the naturally aged

muscle (Wu et al., 2012), the functional decline affecting mitochon-

dria may also be attributable to the impaired protein synthesis of

nuclear-encoded mitochondrial proteins. Damage to mitochondrial

proteins and mtDNA is known to promote ROS generation, and this

forms a vicious cycle that increasingly damages cellular molecules.

The iron-sulfur cluster-bearing CDGSH domain is the only one func-

tional domain known within Cisd2, and Cisd2 knockout is likely to

lead to oxidative stress due to impaired redox activity and/or dis-

rupted iron homeostasis. Fth1 and Gstm2 are involved in the anti-

oxidation reactions necessary to resolve oxidative stress, and they

do this via sequestration of free ions and detoxification of reactive

aldehydes, respectively. Interestingly, the protein levels of Fth1 and

Gstm2 were significantly increased (Figure 6e) in the gastrocnemius

of the Cisd2 mKO mice and also in the naturally aged mice, where

there is a decrease of ~70% in Cisd2 protein, with about 30%

remaining, compared with young mice. These two changes may be

linked.

4 | EXPERIMENTAL PROCEDURES

4.1 | Mice

Cisd2 floxed allele (Cisd2f/f) transgenic mice were generated as pre-

viously described (Wang, Chen, et al., 2014). The muscle creatine

kinase-Cre transgenic (MCK-Cre) mice were purchased from the

Jackson Laboratory (JAX 006475) and bred with Cisd2f/f mice to

generate muscle-specific Cisd2 knockout (mKO) mice. All mice ana-

lyzed were male with a C57BL/6 background. The mice were bred in

a specific pathogen-free facility. The Institutional Animal Care and
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Use Committees (IACUC) of the National Yang-Ming University

approved this study.

4.2 | Pathological analysis

Mouse gastrocnemius muscles were collected, fixed with 10% forma-

lin, and then embedded in paraffin. Standard hematoxylin and eosin

(H&E) staining of tissue sections (3–4 lm) was carried out. The ultra-

structure of the mouse gastrocnemius muscles was examined by trans-

mission electron microscopy (TEM) (Kao, Chen, Kuo & Yang, 1995).

4.3 | Preparation of mouse skeletal muscle
proteome

Frozen mouse tissue samples were subjected to homogenization

using RIPA buffer containing protease inhibitors. Next, the homoge-

nate was centrifuged at 13,000 g (20 min) twice to pellet insoluble

cell debris. The final supernatant was collected and quantified.

4.4 | Quantitative proteomics analysis

The protein samples were resolved by SDS-PAGE and excised into

five fractions per lane for tryptic digestion. The extracted peptides

were analyzed by LTQ-Orbitrap hybrid tandem mass spectrometer

(Thermo Fisher). The raw data were processed by PEAKS software

version 7.5 for protein identification and label-free quantification

(Zhang et al., 2012). The DEP list was obtained using a 1.5-fold cut-

off with a significance threshold of p < .05. The procedure is

described in Methods S1 section.

4.5 | Pathway analysis

The DEPs were further annotated using Gene Ontology via the

PANTHER online tools (www.pantherdb.org) or analyzed by the IPA

approach (Ingenuity Systems�, www.ingenuity.com). Heat maps

were created of proteins present in significant canonical pathways

by loading log-transformed fold changes into Multi Experiment

Viewer (MEV) 4.9 software (Saeed et al., 2003).

4.6 | RNA analysis

Total RNA was isolated from muscle using TRIzol reagent (Life Tech-

nology). Reverse transcription and real-time quantitative PCR were

conducted as previous described (Lin et al., 2012).

4.7 | Western blotting

The following antibodies were used for Western blotting: Cisd2

(Chen et al., 2009); b-tubulin (05-661; Upstate); ATF-6a (IMG-273;

Imgenex); eIF2a (#9722; Cell Signaling); p-eIF2a (Ser51, #3398; Cell

Signaling); IRE1a (#3294; Cell Signaling); p-IRE1a (Ser724, PA1-

16927; Thermo); 3-Nitrotyrosine (ab61392; Abcam); Cysteine (sul-

fonate) (ADI-OSA-820; Enzo); and Serca1 (MA3-912; Thermo).

Quantitative densitometric analysis was performed using ImageJ

software.

4.8 | Sarco/endoplasmic reticulum calcium-ATPase
(Serca) activity assay

SR calcium-ATPase activity levels were assayed using an enzyme-

coupled spectrophotometric assay as described previously (Gehrig

et al., 2012; Simonides & van Hardeveld, 1990). See Methods S1.

4.9 | Immunoprecipitation and modification of
Serca1

a-Serca1 was incubated with protein A Mag Sepharose Xtra beads

(GE Healthcare Life Sciences) at 4°C for 4 hr; these were then incu-

bated with gastrocnemius lysate at 4°C overnight. After washing

with 0.1% Triton X-100/PBS buffer, the Serca1 proteins were eluted

and analyzed by immunoblotting to measure oxidative modifications.

4.10 | Statistical analysis

The results are presented as mean � SD from at least three inde-

pendent experiments. Comparisons between two groups were car-

ried out using PEAKS software for quantitative proteomics and

Student’s t test for other quantification. A p-value of less than .05

was considered significant.
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