
ShapeShop: Towards Understanding Deep Learning 
Representations via Interactive Experimentation

Fred Hohman,
College of Computing, Georgia Institute of Technology Atlanta, GA 30332, USA

Nathan Hodas, and
Data Sciences & Analytics, Pacific Northwest National Laboratory, Richland, WA 99354, USA

Duen Horng Chau
College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

Deep learning is the driving force behind many recent technologies; however, deep neural 

networks are often viewed as “black-boxes” due to their internal complexity that is hard to 

understand. Little research focuses on helping people explore and understand the relationship 

between a user's data and the learned representations in deep learning models. We present our 

ongoing work, ShapeShop, an interactive system for visualizing and understanding what semantics 

a neural network model has learned. Built using standard web technologies, ShapeShop allows 

users to experiment with and compare deep learning models to help explore the robustness of 

image classifiers.

Author Keywords

Interactive visualization; model exploration; learning semantics

ACM Classification Keywords

1.2.m [Artificial Intelligence]: Miscellaneous

Introduction

Commonly, researchers and practitioners working in deep learning build a model iteratively, 

as they search a hyper-parameter space to find the best set of parameters to construct the best 

model possible. This exploratory process takes a nontrivial amount of time and is often 

guided by the model builder's intuition and experience. This is especially true in deep 

learning, where models can perform rather differently depending on the data and specific 

neural network being considered [7]. To expedite this process and build better models, 

researchers want to be able to understand what a model has learned, to help decide what to 

try next.

Interactive visualization techniques have been used to probe machine learning models to 

understand what they have learned [1, 6]; in deep learning, new techniques have been 

HHS Public Access
Author manuscript
Ext Abstr Hum Factors Computing Syst. Author manuscript; available in PMC 2018 January 
17.

Published in final edited form as:
Ext Abstr Hum Factors Computing Syst. 2017 May ; 2017: 1694–1699. doi:10.1145/3027063.3053103.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



developed to specifically inspect neural network models [10, 11]. Specifically for neural 

network image classifiers, a visualization technique called class activation maximization [5] 

shows what a classifier has learned for each class (e.g., Fig. 1, bottom). While keeping the 

layer weights of a neural network fixed after the training phase, one maximizes a class's 

output by initializing it with an initial image and optimizing the image while using the 

model loss function as the score, activating the specific neurons that correspond to that class 

[2]. Back-propagation is performed until the model is certain the numerically generated 

image belongs to the target class. The bottom image in Fig. 1 shows an example of this 

procedure being applied to the popular VGG16 convolutional neural network image 

classifier [8] showing the ocean liner class. The hope is that the resulting image should 

represent the prototypical class, i.e., what the model understands that specific class to be, 

since all of its relevant neurons have been activated. This technique can be used to produce 

images on a wide range of networks, for example, MNIST digit classifiers [2], and has even 

been used to produce realistic images [4, 5].

However, research has only started looking into how to support people in exploring and 

interpreting what a deep learning model has learned [9, 3]. Using a deep learning model as a 

black-box can be detrimental — if it performs poorly, users may not know why, leading to 

flawed decisions. For example, consider Fig. 1, showing class activation maximization for 

the ocean liner class on the VGG16 [8] network. Notice the boat with ocean liner-like 
features; however, also notice the unidentifiable object circled in red (possibly the Statue of 

Liberty or a distant building). The network has learned that this object, which has no 

semantic connection to the ocean liner, is somehow representative of the ocean liner. This 

kind of incorrectly learned representation illustrates that using model accuracy alone may be 

insufficient as a measure of model robustness. By understanding the learned representations, 

users can confidently deploy a model and trust the decisions it makes.

We are addressing this important research problem of deep learning interpretation by 

developing the foundational tools and techniques to help users explore the relationship 

between image data used in classification tasks and the learned representations. Currently 

our work supports a small image dataset consisting of shapes; we are extending it for more 

benchmark datasets (e.g., CIFAR10, ImageNet). Our ongoing work presents the following 

contributions:

1. The Shape Workshop (ShapeShop): an interactive visualization for users to 

explore, experiment with, and visualize the relationship between a training 

dataset and the learned model space, in real time.

2. Preliminary experimental results showing what semantics various models are 

learning in simple shapes, by using ShapeShop to compare multiple models.

ShapeShop

ShapeShop is an interactive system (see Fig. 2) for visualizing what semantics a neural 

network has learned from data consisting of simple shapes in images (Fig. 2.1). It enables 

interactive model experimentation, where a user can explore and compare various image 

classifiers and their learned spaces. It does so by training an N-image neural network 

Hohman et al. Page 2

Ext Abstr Hum Factors Computing Syst. Author manuscript; available in PMC 2018 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



classifier where the user visually selects which N classes to include during model training. A 

handful of model hyperparameters can also be selected prior to training, such as the model 

choice (a multilayer perceptron or a convolutional neural network, Fig. 2.2), the initial image 

used in the image generation process (an all black image, an all white image, noise, and 

blurred noise), the gradient ascent step-size, and the number of epochs used in training (Fig. 

2.3), however the system is easily extendable to include any model hyperparameter desired.

ShapeShop uses the class activation maximization visualization technique to produce N 
images, each corresponding to one class. The system presents all N resulting images and 

correlation coefficients back to the user for visual inspection and comparison. This process 

then repeats, where a user can select different images to train on, produce more 

visualizations from new models, and compare to the previous results. This process provides 

feedback to the user to assist with model building, giving a deeper understanding of what 

space the model is learning. Note that every model trained in ShapeShop is trained to near 

perfect accuracy (>99%) and reports a low loss score, reinforcing that models can be trained 

to similar accuracy but learn completely different spaces. Our focus is on fundamentally 

understanding what the neural network models are capable of learning, not the quality or 

photo-realness of the produced images; therefore we resist from realism-boosting gradient 

update heuristics, as seen in other research [4].

System Design & Implementation

For the back-end, we use the Keras (https://keras.io) Python package, a wrapper for deep 

learning libraries such as Ten-sorFlow and Theano, for model building, training, and image 

generation. To achieve close to real-time results, we limit our images to be small in size, and 

for each training image clicked, we include ten of the image with random noise added to 

produce unique training data. We have designed ShapeShop with portability in mind; 

ShapeShop also runs on machines with different computational capabilities (e.g., laptops, 

GPU-equipped machines) and scale to larger datasets. The system contains two primary 

models to choose from: a multilayer perceptron containing two fully connected dense layers 

of width 128 followed by a dense softmax classification layer, and a simple convolutional 

neural network containing two convolutional layers, a max pooling layer, and ending with 

the same softmax layer for classification. However, the system is agnostic to the model, so 

any other model can be swapped out.

For the front-end, we use modern web technologies such as D3 to display data selection and 

image generation results. ShapeShop enumerates the steps for using the system. These are 1: 

Select Training Data, 2: Select Model, 3: Select Hyperparameters, and 4: Train and 
Visualize. Once the data and hyperparameters have been selected and the “Train and 

Visualize” button is clicked, the image generation process begins. The results appear in a 

row at the bottom of the view and include one image and correlation coefficient 

corresponding to each training image selected before.

The image represents the prototypical class, i.e., what semantics the neural network has 

learned. Since an image is produced for each class, the user is able to visually inspect the 

result and qualitatively compare it to the original black and white binary image. The 

correlation coefficient provides a more quantitative comparison to the original binary image 

Hohman et al. Page 3

Ext Abstr Hum Factors Computing Syst. Author manuscript; available in PMC 2018 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://https://keras.io


used in training. ShapeShop uses the absolute value of the Pearson correlation coefficient. 

Therefore, the coefficient ranges from 0 to 1, where numbers closer to 0 indicate low to no 

correlation found between the produced image and original, and numbers closer to 1 indicate 

high correlation between the produced image and the original.

Preliminary Results

We now present two scenarios where ShapeShop helps a user explore how deep learning 

models learn different representations given diverse data and model architectures.

Understanding the Effect of Diverse Data

A user wants to explore the effect of adding more diverse data to a model to see how the 

model's representation changes. Maybe augmenting a model with more diverse classes could 

build a more accurate model with representations that are more human recognizable, or 

perhaps it may be the exact opposite — more data could mean a less accurate model and less 

recognizable representations.

Our user starts with two specific classes in Fig. 2: the centered vertical and horizontal line 

classes. Using ShapeShop, we build, train, and visualize a binary classifier by choosing the 

black initial input image in the hyperparameter selection section and keeping all other 

hyperparameters with default values. In the results, Fig. 3.1, we see two model 

representation images: the left for the vertical line class, and the right for the horizontal line 

class. Our user sees that the model is interestingly classifying one class (e.g., vertical line) 

by the absence (dark horizontal line) of their other. This surprises our user — a line should 

be defined by its straight path, and not the absence of other paths.

Since the user wants the model to learn human recognizable accurate representations of both 

line classes, the user adds two more classes: solid and hollow circles. Our user expects that 

the model will now focus on more than just vertical and horizontal directions, such as the 

curves found in the circle classes. Keeping all other parameters fixed, the user builds, trains, 

and visualizes the model (shown in Fig. 3.2). The user notices the dark lines in each of the 

line classes are now diminished, indicating that adding the two circle classes helped the 

model learn more accurate semantics of the lines. As a result, the line correlation 

coefficients increase to 0.52 and 0.53. Following this observation, the user wants to continue 

to improve the model's semantic representations, so the user user adds two more classes to 

include: the noise and the blurred noise classes. This indeed helps; the model now focuses 

more on the image features now that noise has been included (Fig. 3.3), further improving 

the correlation coefficients to 0.59 and 0.57.

Through ShapeShop, our user gains insight into how having diverse data can help the model 

learn more human recognizable representations, going beyond typical validation metrics 

such accuracy and loss.

Comparing Different Neural Network Architectures

The user now wants to compare the multilayer perceptron (MLP) network to the 

convolutional neural network (CNN) architectures. CNNs are built and tuned to seek out 

Hohman et al. Page 4

Ext Abstr Hum Factors Computing Syst. Author manuscript; available in PMC 2018 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



spatial correlations in images by using filters to detect gradients, edges, curves, and other 

conceptual semantics, while MLPs are not as robust for detecting such features. Using 

ShapeShop, the user selects four shapes and both noise classes to add to the training data and 

visualizes two models: an MLP and a CNN (keeping all other hyperparameters fixed, Fig. 

2). Notice that the user's expectations are confirmed: while the MLP (Fig. 2.[1]) captures 

some semantic qualities of each shape, the CNN (Fig. 2.[2]) better shows what parts in each 

image are distinctive from the rest of the set. For example, notice the corners of the square 

being highlighted to distinguish its class from the circle class, where corners do not exist.

Ongoing Work and Conclusion

Highlighting Semantic Objects

Visualizing class representations of a neural network helps in understanding what a model 

has both learned and not learned, providing insight on how to iterate the model in the future. 

As we saw in Fig. 1, the ocean liner representation contained an object that did not belong to 

the class, possibly showing that our model thinks some object (e.g., the Statue of Liberty) is 

part of the boat. We plan to explore how incorporating human feedback could help address 

this problem via a semantic highlighting feature that we think could help improve a model's 

learned representations and even shorten model training time. As seen in Fig. 4, a user is 

presented with a data case from the ocean liner class and highlights the boat with a yellow 

(positive) region and the Statue of Liberty with a red (negative) region, providing additional 

semantically meaningful constraints to the model during training. We believe this technique 

could improve model accuracy when a user's dataset is small and each data case is majorly 

influential during the training process.

Freeform Class Drawing

Currently ShapeShop is a web-based interactive system for visualizing model 

representations from a selectable set of training data consisting simple shapes in images. 

Planned work includes the addition of a new UI component in the Select Training Data 
section where a blank canvas allows a user to draw their own image class (or derive from an 

existing class). Alongside the predefined set of images currently available, providing this 

free form drawing tool could allow users to create more complex geometries to further 

experiment with neural network classifiers. For example, creating compositions of simple 

semantics could test whether a model improves given its components, e.g., does a house 

class (triangle on top, square on bottom) improve in the presence of square and triangle 

classes.

Planned Evaluation

Besides evaluating ShapeShop's usability, we plan to recruit deep learning researchers to 

evaluate the utility our planned features and system as a whole. We plan to test how the 

semantic highlighting feature may improve model accuracy, shorten the model training time, 

and produce more semantically accurate learned representations. Also, we plan to 

experiment with the freeform drawing tool to explore how the presence of simple 

compositional semantics may affect the recognition of more complex geometries.

Hohman et al. Page 5

Ext Abstr Hum Factors Computing Syst. Author manuscript; available in PMC 2018 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusion

Through ShapeShop, we have taken an important first step in helping users visualize and 

better understand deep learning representations via interactive experimentation. We plan to 

extend ShapeShop's capabilities to support interactive semantic highlighting and freeform 

class drawing, and we believe effective combination of visual and quantitative techniques 

will ultimately help users gain insights into and illuminate black-box deep learning models.

Acknowledgments

This work supported in part by grants NSF IIS-1563816 and NIH BD2K U54EB020404.

References

1. Amershi, Saleema, Chickering, Max, Drucker, Steven M., Lee, Bongshin, Simard, Patrice, Suh, Jina. 
Modeltracker: Redesigning performance analysis tools for machine learning. CHI. 2015:337–346. 
2015. 

2. Erhan, Dumitru, Bengio, Yoshua, Courville, Aaron, Vincent, Pascal. Visualizing higher-layer 
features of a deep network. University of Montreal; 2009. 2009

3. Liu M, Shi J, Li Z, Li C, Zhu J, Liu S. Towards Better Analysis of Deep Convolutional Neural 
Networks. IEEE Transactions on Visualization and Computer Graphics. 2017; 23(1):91–100. 2017. 
[PubMed: 27576252] 

4. Mordvintsev, Alexander, Olah, Christopher, Tyka, Mike. Inceptionism: Going deeper into neural 
networks. Google Research Blog. 2015 2015. 

5. Nguyen, Anh, Dosovitskiy, Alexey, Yosinski, Jason, Brox, Thomas, Clune, Jeff. Synthesizing the 
preferred inputs for neurons in neural networks via deep generator network. arXiv preprint arXiv:
1605.09304. 2016 2016. 

6. Ren, Donghao, Amershi, Saleema, Lee, Bongshin, Suh, Jina, Williams, Jason D. Squares: 
Supporting Interactive Performance Analysis for Multiclass Classifiers. IEEE Transactions on 
Visualization and Computer Graphics. 2017; 23(1):61–70. 2017. [PubMed: 27875134] 

7. Russakovsky, Olga, Deng, Jia, Su, Hao, Krause, Jonathan, Satheesh, Sanjeev, Ma, Sean, Huang, 
Zhiheng, Karpathy, Andrej, Khosla, Aditya, Bernstein, Michael, Berg, Alexander C., Fei-Fei, Li. 
ImageNet Large Scale Visual Recognition Challenge. IJCV. 2015; 115(3):211–252. 2015. 

8. Simonyan, Karen, Zisserman, Andrew. Very deep convolutional networks for large-scale image 
recognition. arXiv preprint arXiv:1409.1556. 2014 2014. 

9. Smilkov, Daniel, Carter, Shan, Sculley, D., Viégas, Fernanda B., Wattenberg, Martin. Direct-
Manipulation Visualization of Deep Networks. ICML Visualization Workshop. 2016 2016. 

10. Yosinski, Jason, Clune, Jeff, Nguyen, Anh, Fuchs, Thomas, Lipson, Hod. Understanding neural 
networks through deep visualization. arXiv preprint arXiv:1506.06579. 2015 2015. 

11. Zeiler, Matthew D., Fergus, Rob. Visualizing and Understanding Convolutional Networks. 
SpringerI nternational Publishing; Cham: 2014. p. 818-833.

Hohman et al. Page 6

Ext Abstr Hum Factors Computing Syst. Author manuscript; available in PMC 2018 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Visualizing the ocean liner class learned by the VGG16 [8] network (bottom) showing the 

network possibly learning other semantically less related image objects to the ocean liner 

(e.g., Statue of Liberty, circled in red).

Hohman et al. Page 7

Ext Abstr Hum Factors Computing Syst. Author manuscript; available in PMC 2018 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
The ShapeShop system user interface is divided into two main sections. The Model Builder 

(top) contains the training data, model, and hyperparameter selection options where a user 

follows enumerated steps, concluding with the system building and training an N-image 

classifier, where each training image selected corresponds to one class. In the Experiment 

Results section (bottom), each time the “Train and Visualize” button is clicked a new set of 

results appears including the class activation maximization of each class.

Hohman et al. Page 8

Ext Abstr Hum Factors Computing Syst. Author manuscript; available in PMC 2018 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Through ShapeShop, our user understands how data diversity improves a classifier's 

semantic robustness. ❶ The user starts with two line classes, whose quality incrementally 

improves ❷ by adding circle classes and ❸ noise classes.

Hohman et al. Page 9

Ext Abstr Hum Factors Computing Syst. Author manuscript; available in PMC 2018 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
An example data case when a user highlights semantic object features in the training dataset. 

The user-highlighted yellow region is the relevant semantic part of the image desired to be 

classified, most commonly the image's class (in this example, the ocean liner) and the user-

drawn red region denotes that this semantic object is not part of the desired class.

Hohman et al. Page 10

Ext Abstr Hum Factors Computing Syst. Author manuscript; available in PMC 2018 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	ShapeShop
	System Design & Implementation

	Preliminary Results
	Understanding the Effect of Diverse Data
	Comparing Different Neural Network Architectures

	Ongoing Work and Conclusion
	Highlighting Semantic Objects
	Freeform Class Drawing
	Planned Evaluation
	Conclusion

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

