Table 2.
Case B: (p, β11, β12, β21, β22) = (0.6, 1, −1, 1, 1); Simulation results for the estimation of parameters over 1000 replications under the subhazard correlated frailty model
| Censoring | Sample Size | Parameter | True | Mean | SD | SE1 | SE2 | |
|---|---|---|---|---|---|---|---|---|
| 25% |
n = 200 (q = 20, ni = 10) |
β11 | 1 | 1.003 | 0.274 | 0.272 | 0.217 | |
| β12 | −1 | −1.006 | 0.140 | 0.129 | 0.124 | |||
|
|
0.5 | 0.505 | 0.372 | 0.357 | – | |||
|
|
0.5 | 0.520 | 0.472 | 0.493 | – | |||
| σ01 | −0.25 | −0.254 | 0.353 | 0.347 | – | |||
|
n = 400 (q = 20, ni = 20) |
β11 | 1 | 0.991 | 0.215 | 0.217 | 0.152 | ||
| β12 | −1 | −1.004 | 0.093 | 0.088 | 0.087 | |||
|
|
0.5 | 0.490 | 0.265 | 0.259 | – | |||
|
|
0.5 | 0.493 | 0.321 | 0.315 | – | |||
| σ01 | −0.25 | −0.245 | 0.244 | 0.234 | – | |||
|
n = 1000 (q = 50, ni = 20) |
β11 | 1 | 0.983 | 0.145 | 0.137 | 0.095 | ||
| β12 | −1 | −0.999 | 0.057 | 0.056 | 0.054 | |||
|
|
0.5 | 0.486 | 0.166 | 0.160 | – | |||
|
|
0.5 | 0.477 | 0.192 | 0.191 | – | |||
| σ01 | −0.25 | −0.237 | 0.150 | 0.143 | – | |||
| 50% |
n = 200 (q = 20, ni = 10) |
β11 | 1 | 1.011 | 0.335 | 0.330 | 0.278 | |
| β12 | −1 | −1.028 | 0.172 | 0.159 | 0.153 | |||
|
|
0.5 | 0.527 | 0.458 | 0.490 | – | |||
|
|
0.5 | 0.578 | 0.666 | 0.699 | – | |||
| σ01 | −0.25 | −0.279 | 0.477 | 0.486 | – | |||
|
n = 400 (q = 20, ni = 20) |
β11 | 1 | 0.986 | 0.257 | 0.251 | 0.193 | ||
| β12 | −1 | −1.006 | 0.118 | 0.108 | 0.106 | |||
|
|
0.5 | 0.489 | 0.327 | 0.329 | – | |||
|
|
0.5 | 0.518 | 0.411 | 0.449 | – | |||
| σ01 | −0.25 | −0.249 | 0.314 | 0.316 | – | |||
|
n = 1000 (q = 50, ni = 20) |
β11 | 1 | 0.983 | 0.164 | 0.157 | 0.121 | ||
| β12 | −1 | −1.002 | 0.068 | 0.068 | 0.066 | |||
|
|
0.5 | 0.487 | 0.199 | 0.198 | – | |||
|
|
0.5 | 0.478 | 0.248 | 0.249 | – | |||
| σ01 | −0.25 | −0.238 | 0.187 | 0.185 | – |
SE1, mean of estimated standard errors using and for β1 =(β11, β12)T and , respectively, over 1000 simulations;
SE2, mean of estimated standard errors using for β = (β11, β12)T over 1000 simulations; SD, standard deviation of estimates over 1000 simulations, is defined by , where is the estimate of ψ in the ith replication and is the mean of , and ψ = β11, β12, , , or σ01.