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Abstract

The persistence of HIV infection, even after lengthy and successful combined antiretroviral therapy (cART),
has precluded an effective cure. The anatomical locations and biological mechanisms through which the viral
population is maintained remain unknown. Much research has focused nearly exclusively on circulating resting
T cells as the predominant source of persistent HIV, a strategy with limited success in developing an effective
cure strategy. In this study, we review research supporting the importance of anatomical tissues and other
immune cells for HIV maintenance and expansion, including the central nervous system, lymph nodes, and
macrophages. We present accumulated research that clearly demonstrates the limitations of using blood-derived
cells as a proxy for tissue reservoirs and sanctuaries throughout the body. We cite recent studies that have
successfully used deep-sequencing strategies to uncover the complexity of HIV infection and the ability of the
virus to evolve despite undetectable plasma viral loads. Finally, we suggest new strategies and highlight the
importance of tissue banks for future research.
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Introduction

Despite long-term treatments with combined anti-
retroviral therapy (cART) that effectively reduce HIV

plasma viral loads to undetectable levels, viral rebound is
inevitable when treatment is interrupted. The inability to
entirely eradicate the virus has precluded an effective cure, as
described in several recent reviews.1,2 In this report, we focus
on the challenges to a cure that are specific to targeting the
nonblood tissue(s) that harbor virus throughout infection.
From this perspective, the three preeminent challenges of
HIV cure research are: (1) identify the location of the ana-
tomical reservoir/sanctuary from which virus repopulates
blood upon cessation of cART; (2) define the mechanism by
which virus is maintained at low or undetectable levels in
such locations; (3) develop a treatment that will eradicate or
silence the virus without damaging nearby sensitive or irre-
placeable tissues [e.g., central nervous system (CNS)].

In this study, we will use the term ‘‘reservoir’’ as defining a
tissue or cell in which latent virus is archived without repli-
cation/infection cycles and is instead perpetuated through
cellular expansion and/or cellular longevity (as per Ref.3),
and ‘‘sanctuary’’ as describing a tissue or cell in which virus
is shielded from the effects of cART and which permits some
low level of ongoing and complete virus replication cycles
(e.g., an ‘‘active reservoir’’4). The expectation is that virus
harbored in reservoirs will remain genetically similar to their
earlier precursor, whereas virus in sanctuaries will accumu-
late diversity over time as the infection cycle continues and
maintains the potential to migrate among compartments.3

The two viral persistence mechanisms are not mutually
exclusive, and given the high viral mutability and widespread
infection, both are likely and have been shown to work
synergistically in HIV controllers not on cART.5 However,
they are too often presented in opposition, with an undue
emphasis on memory T cells as the dominant, if not only,

1Bioinfoexperts LLC, Thibodaux, Louisiana.
2Division of Experimental Medicine, Department of Medicine, Zuckerberg San Francisco General Hospital, University of California, San

Francisco, San Francisco, California.
3The National Neurological AIDS Bank at David Geffen School of Medicine, University of California at Los Angeles, Los Angeles,

California.
4Department of Pathology and Laboratory Medicine, David Geffen School of Medicine and Olive View-UCLA Medical Center, Los

Angeles, California.
5The AIDS and Cancer Specimen Resource, San Francisco, California.
6Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California.

AIDS RESEARCH AND HUMAN RETROVIRUSES
Volume 34, Number 1, 2018
ª Mary Ann Liebert, Inc.
DOI: 10.1089/aid.2017.0072

3



means by which HIV infection is maintained.4 As a result,
much cure research, including clinical trials and mathemat-
ical modeling,6,7 has focused intensively on the reactivation
of virus from T cell reservoirs to provide a method of viral
detection and eradication. In these models, viral reservoir T
cells are drug induced to express HIV, which in turn kills
them through a program known as ‘‘shock and kill’’; how-
ever, this strategy has been largely ineffective at eliminating
the reservoirs completely and preventing rebound after cART
cessation.2 In this study, we review evidence supporting the
importance of sanctuaries for HIV maintenance and expan-
sion, allowing another understudied target for further re-
search in advancing strategies to cure HIV infection.

The mechanism of HIV persistence is largely dependent
upon the infected cell type (e.g., T cells, macrophages, mi-
croglia, astrocytes) and its anatomical location (e.g., lymph
node, gut, blood, CNS, cancer tissues, etc.). There is no de-
bate that various subsets of T cells are major cellular reser-
voirs of HIV during cART8–14 and maintain virus through
clonal proliferation without interference from cART.15,16 As
expected under this scenario, virus obtained from circulating
T cells during suppressive therapy showed a lack of genetic
evolution compared with pretherapy virus, consistent with
the model of maintenance through latency rather than repli-
cation.17–19 However, an expanding body of evidence now
demonstrates that circulating T cells do not adequately rep-
resent the totality of infection, as they only represent a small
fraction of all T cells in the body, and ignore the importance
of HIV infection in other cell types.20 In a recent study, deep
sequencing techniques, which were not employed in the
above-cited studies, revealed evolution within HIV provirus-
harboring peripheral blood mononuclear cells (PBMC) dur-
ing cART therapy.21 Another study found that while PBMC
proviral DNA sequences were similar to residual plasma
viremia, episomal DNA sequences in PBMCs were not,
suggesting an alternative tissue-based source of infectious
virus independent of residual plasma virus.22 Furthermore,
the inclusion of an integrase inhibitor along with the standard
cART protease inhibitor resulted in an increase in uninte-
grated 2-long terminal repeat (LTR) circles in some subjects.
2-LTR circles are the byproduct of an unsuccessful integra-
tion attempt, which occurs after viral reverse transcription,
thus blocking successful provirus integration, a step required
for production of new viral RNA species. This observation
suggests that in some cases, the virus successfully completed
the replication cycle and theoretically could have integrated
into cellular DNA without the integrase inhibitor treatment.2

Many studies of HIV persistence have focused on the
identity of HIV within T cell subsets from blood-derived
lymphocyte subsets. Equally plausible sites of HIV persis-
tence are within tissue-resident macrophages, which are
long-lived and capable of harboring replicating HIV.23–25

Macrophages may provide conditions consistent with a sanc-
tuary, as they are more resistant to the cytopathic effects of
the virus24,26 and contain lower intracellular concentrations
of cART than T cells,27–29 both of which decrease the ef-
fectiveness of cART30 and may result in ongoing replication.
The potential for transmission of HIV between cells within
anatomical tissue sites may be variable.31 For example, the
dynamics of infection are different in macrophages than in
T cells: macrophages efficiently promote cell-to-cell transfer
of virus through virological synapses32 and contain virions

in cytoplasmic channels that are not immediately released.
Cell-to-cell spread reduces sensitivity to drug therapy due
to the higher number of virions per cell compared with cell-
free infection,33,34 although this effect is perhaps attenuated
with combination therapy.35 Cell-to-cell spread was shown to
induce viral gene expression more quickly than cell-free in-
fection ex vivo, independent of the higher number of virions
transmitted through this route.36 Additionally, macrophages
can selectively uptake infected T cells, thereby becoming
productively infected.37 Other cell types involved in cell-to-
cell spread through virological synapses include dendritic
cells and keratinocytes, which are abundant at sites relevant
to sexual transmission.38,39 Although not likely reservoirs,
these cell types could nonetheless play an important role in
maintaining virus and/or increasing cellular activation which
enhances infection.40

Considerable evidence suggests that lymphoid tissue may
act as a sanctuary for virus during cART. Lower concentra-
tion of drugs were found in lymphatic tissues than in blood,41

which may allow for continued HIV replication. Our group
sequenced multiple HIV RNA and DNA species isolated
from lymph nodes, brain, and other postmortem tissues
from subjects with undetectable viral loads at the time of
death.42,43 The evolutionary rate of these HIV sequences
was similar to the previously estimated rate of pre-cART
and wild-type virus,44–46 suggesting an important role for
these tissues as viral sanctuaries. Another recent study, using
cART-treated subjects, similar analytical techniques, and
deep sequencing, found evidence of ongoing replication of
wild-type virus in lymph nodes and continual seeding of the
blood from lymph node sanctuary sites.47 Interestingly, one
group reported evidence for HIV RNA+ cells in lymph nodes
before cART therapy interruption, suggesting ongoing tissue-
based HIV replication. Moreover, during viral rebound after
cessation of cART, the presence of diverse populations of
virus suggested that the rebounding viral population origi-
nated from multiple sources, including lymph nodes.48 A re-
cent study of HIV controllers who were not on cART showed
that blood virus was largely the result of clonally expanded
archival provirus, whereas lymph node virus was actively
replicating.5 In this study, a small number of circulating
T cells showed evidence of recent infection, suggesting a
model in which active infection in lymph nodes could be-
come clonally expanded provirus in blood. This supports the
findings that the lymph node is an important site of ongoing
replication despite undetectable viral load (VL).

The CNS represents another potential reservoir/sanctuary
for virus. Resident brain cells, including astrocytes, peri-
vascular macrophages, and microglial cells, are long-lived
and capable of inducing latency.49 Interestingly, astrocytes
and neurons, actively express HIV nef and rev proteins.50–52

The blood/brain barrier may protect the brain to some degree
from viral infiltration into the CNS, as not all HIV-infected
patients have detectable virus in brain tissues and/or cere-
brospinal fluid (CSF). Viral populations in the CNS are
established early in infection, and may remain compart-
mentalized with respect to plasma virus throughout the
course of infection, and even among different brain com-
partments.53,54 This pattern has occurred even when cART
was begun in the first few months of infection, with the ac-
cumulation of genetic diversity pre-cART.55 A recent study
found that, upon cessation of cART, rebound virus in the
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CSF was distinct from that in plasma and was detected at
multiple time points, suggesting independent sources of
replication-competent virus between the CNS and the pe-
riphery.56 We recently reported the presence of viral DNA
using digital droplet polymerase chain reaction (ddPCR)
from 48/87 autopsy brain tissues from 20 subjects with un-
detectable viral loads at death.43 Furthermore, viral RNA and
DNA from cerebellum and lymph nodes were evolutionarily
related. The similarity of the brain and lymph node virus is
especially interesting in light of a recent study, which sug-
gested that the meninges may be part of the lymphatic sys-
tem,57 which could provide the virus an alternative entry to
the brain than through the blood–brain barrier.53,58

Adipose tissue is another potential reservoir/sanctuary.
One study found HIV DNA in the adipose tissue of all studied
subjects who were on ART with undetectable VL. Additional
experiments showed that the concentration of virus in the
CD4+ fraction of the adipose tissue was higher than that of
PBMC. Furthermore, HIV RNA was also detected using
in situ hybridization.59 Another study found HIV provirus
in subcutaneous, abdominal visceral, and deep neck fat de-
posits in all subjects studied and was associated with cellu-
lar activation.60

New methods are needed that can accurately detect and
measure tissue-based HIV-infected cells in vivo without the
need for invasive procedures. A recent study described a
method for quantifying virus in gut biopsies using ddPCR61;
however, quantitative PCR methods that probe for small re-
gions of conserved HIV likely overestimate the size of the
reservoir. Thus, an additional challenge is determining the
viability of virus populations detected in sanctuaries. Deep
sequencing techniques have already been useful in more
comprehensively evaluating the viral population47,62 and will
be an informative technique going forward. Recent studies
show that after cART, viral RNA may be present, but is
largely nonfunctional and evolutionarily inert due to delete-
rious mutations and/or truncated virus63–65; therefore, in-
completely sequenced proviral DNA does not necessarily
imply the presence of functional virus.66 On the other hand, at
least some proviruses, including those in clonally expanded
cells are replication competent 67 and can continue to pro-
liferation after activation,68 indicating that these proviruses
cannot be entirely dismissed as irrelevant. Furthermore, the
identification of replication-competent fusion proteins in
patients on cART that generate HIV-1 chimeric proteins
needs further investigation.63 The current gold standard assay
to determine virus functionally is the quantitative viral out-
growth assay (QVOA), which is expensive and only provides
the minimum estimate of the potential reservoir.69 A recently
described approach uses a reporter cell-based assay, which
improves upon the QVOA in terms of expense, time, and
blood volume, and showed that the reservoir was 70-fold
greater than previously reported.69 Quantitative imaging
(e.g., positron emission tomography [PET] scan) is a
promising alternative as are indirect biological markers.70

More complex in vitro systems that realistically replicate
the microenvironment may also present a novel methodol-
ogy to study in-depth viral dynamics in tissues.70

Toward eradication of the virus from the body, the most
current and high-profile ‘‘kick and kill’’ cure strategy aims to
activate latent CD4+ T cells with latency-reversing agents
that target host cell mechanisms (reviewed recently in

Ref.71). This approach has thus far been targeted to CD4+
cells, and may not effectively eradicate virus from other cell
types, nor necessarily from the heterogeneous set of CD4+
cells themselves.20 Improving drug delivery to tissues is an
important facet of any cure strategy, such as using nano-
particles72 and targeting endosomes, where viral replication
takes place.73 Small interfering RNAs are another potential
mechanism for silencing virus,74 which could provide a
functional cure (i.e., suppressed replication without eradica-
tion of virus) for pantropic targets.

These studies all suggest that the dynamics of post-cART
infection are more complicated than initially perceived from
the study of PBMCs. Eradicating virus from anatomical tis-
sues is clearly an important goal in the development of new
strategies aimed at curing HIV infection and its conse-
quences. However, several challenges presently limit the
research into this area. Obtaining tissues from living patients
is difficult and often unethical, which has resulted in a rela-
tive paucity of research on tissues as compared with easily
obtained blood samples. HIV tissue banks and their donors
will therefore serve as an important resource going forward in
the fight for an HIV cure.75 For example, the National Neu-
roAIDS Tissue Consortium (NNTC) is funded by NIMH and
NINDS to store and facilitate distribution of tissues (brain and
nonbrain) collected from both HIV+ and HIV- donors.76 At
the time of publication, the NNTC contains tissues from 2,097
individuals and is actively following 587 HIV+ individuals at
four clinical sites across the United States, who were identified
as probable late-stage cases. These subjects have extensive
information available regarding treatment, comorbidities,
and donor demographics. Postmortem tissues are also do-
nated to the bank, although the information about these
subjects may be less complete. Another tissue resource is
the AIDS and Cancer Specimen Resource (ACSR), which
contains more than 300,000 specimens from individuals
with a range of HIV-associated comorbidities from multiple
countries and clinical trials.77 ACSR specimens are avail-
able from multisite autopsies and both nontumor and tumor
sites, along with some donor clinical information.

In summary, the central role of tissues as an important viral
reservoir/sanctuary is becoming clear. Vital research must be
directed toward understanding the dynamics of the virus in
anatomical sanctuaries to develop a fully effective method of
virus suppression and eradication.
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