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Abstract

Parasite virulence, an important factor contributing to the severity of Plasmodium falciparum

infection, varies among P. falciparum strains. Relatively little is known regarding markers of

virulence capable of identifying strains responsible for severe malaria. We investigated the

effects of genetic variations in the P.f. merozoite surface protein 2 gene (msp2) on virulence,

as it was previously postulated as a factor. We analyzed 300 msp2 sequences of single P.

falciparum clone infection from patients with uncomplicated disease as well as those admit-

ted for severe malaria with and without cerebral disease. The association of msp2 variations

with disease severity was examined. We found that the N allele at codon 8 of Block 2 in the

FC27-like msp2 gene was significantly associated with severe disease without cerebral

complications (odds ratio = 2.73, P = 0.039), while the K allele at codon 17 of Block 4 in the

3D7-like msp2 gene was associated with cerebral malaria (odds ratio = 3.52, P = 0.024).

The data suggests possible roles for the associated alleles on parasite invasion processes

and immune-mediated pathogenicity. Multiplicity of infection was found to associate with

severe disease without cerebral complications, but not cerebral malaria. Variations in the

msp2-FC27-block 2-8N and 3D7-block 4-17K allele appear to be parasite virulence mark-

ers, and may be useful in determining the likelihood for severe and cerebral malaria. Their

interactions with potential host factors for severe diseases should also be explored.
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Introduction

The clinical presentation of malaria caused by P. falciparum ranges from asymptomatic infec-

tion to moderate acute febrile illness to severe complicated disease with organ failure, includ-

ing life-threatening cerebral malaria. Although factors contributing to this wide spectrum of

severity have not been well characterized to date, parasite virulence is believed to be an impor-

tant contributor [1]. Multiple field studies have tried to characterize virulent strains of P. falcip-
arum using genetic polymorphisms as markers [2–8]. Although evidence of differences in

virulence among P. falciparum strains have accumulated, the virulent strains have not yet been

characterized in sufficient detail to identify suitable virulence markers.

Merozoite surface protein 2 gene (msp2) has been shown to be a useful marker for strain

differentiation [9, 10]. Msp2 is involved in RBC invasion, as anti- msp2 antibodies have been

shown to inhibit merozoite invasion and parasite growth [11, 12]. Synthetic msp2 peptides

bind with high affinity to RBCs, and can also inhibit parasite invasion [13]. Moreover, msp2
has been implicated as a target of naturally acquired clinical immunity to malaria [14–18], and

used as a candidate malaria vaccine antigen [12, 19, 20]. Msp2 is exceptionally interesting as a

candidate marker for parasite virulence given its pathogenicity and genetic diversity, with a

high degree of both length and sequence polymorphism [21]. It is composed of five domains

including conserved N- and C-terminal domains (block 1 and block 5), two non-repetitive

variable domains (block 2 and block 4) and a central repetitive domain (block 3). Sequences in

block 2 and block 4 are dimorphic and used as the basis to divide msp2 alleles into two distinct

families—FC27 and IC-1/3D7. Repeated sequences in block 3 vary in number and sequence of

repeat units [21–23].

Although msp2 is highly polymorphic, most studies to date have used only msp2 allelic

dimorphism and size variation as markers for parasite virulence genotyping based on PCR fol-

lowed by a conventional gel electrophoresis or high-resolution capillary electrophoresis to ana-

lyze fragment sizes. As yet, no conclusive relationships with virulence have been observed.

Previous studies have shown mixed results with both the FC27 and 3D7 families variously

described as virulent strains. Virulence of particular families also varied between communities

[5, 6, 24, 25], and several studies could not find any association between particular alleles and

disease severity [2, 3, 26, 27]. These inconsistent results need to be verified, although it may be

partly explained by variability in genotyping and interpretation methods of those studies, as

well as parasite heterogeneity among the populations studied. Sequence analysis may detect

variation in dimorphic and repetitive regions more sensitively, possibly providing useful infor-

mation to characterize parasite virulence. In this study, parasite msp2 sequences from Thai

malaria patients with mild to severe cerebral clinical disease were analyzed to evaluate associa-

tions with malaria severity.

Materials and methods

Patients

A total of 480 P. falciparum-infected blood samples were analyzed in this study. Samples were

obtained from patients living in northwest Thailand near the Myanmar border. P. falciparum
infection was diagnosed by microscopic examination of giemsa-stained thick and thin blood

films. Patients were classified clinically into 3 groups: mild (n = 204), non-cerebral severe

(n = 166), and cerebral (n = 110) malaria. Cerebral malaria was characterized by unrousable

coma with positive asexual P. falciparum forms and exclusion of other causes of coma. Severe,

non-cerebral malaria was characterized by one of the following symptoms: high parasitemia

(>100,000 parasites/μl), hypoglycemia (glucose < 2.2 mmole/liter), severe anemia

Msp2 sequence variation associated with malaria severity

PLOS ONE | https://doi.org/10.1371/journal.pone.0190418 January 17, 2018 2 / 18

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0190418


(haematocrit < 20% or haemoglobin < 7.0 g/dl), and increased serum creatinine levels (> 3.0

mg/dl). Non-cerebral severe malaria is referred to as ‘severe malaria’ for the remainder of the

paper. Mild malaria was characterized by a positive blood smear, fever without other identified

cause of infection, and the absence of manifestations of severe or cerebral malaria as described

above [28]. Patients underwent clinically appropriate treatment based on presenting clinical

features at the hospital for Tropical Disease, Faculty of Tropical Medicine, Mahidol University,

Bangkok, Thailand. All subjects were� 13 years old with a mean age of 25.5, 23.9, and 28.6

years for mild, severe, and cerebral malaria, respectively. Average parasite density for mild,

severe, and cerebral malaria were 28,577, 165,166, and 111,686 parasites/μl, respectively. This

study was approved by the institutional review boards of Thammasat University, Thailand.

Prior to enrollment, written informed consent was obtained from all participants or their

parents or guardians for those under 18 years of age.

Blood collection and DNA preparation

Blood samples were collected at the time of diagnosis and prior to treatment in EDTA tubes.

Genomic DNA was purified from whole blood using a QIAamp miniblood kit (QIAGEN, Hil-

den, Germany) according to the manufacturer’s instructions.

Msp2 amplification and sequencing

Nested PCR amplification of the P. falciparum msp2 gene was performed in all 480 samples

using 2 pairs of primers, using previously described primer sequences and PCR conditions

[29]. PCR products were analyzed on 6% polyacrylamide gel with a standard molecular weight

(100bp DNA ladder, Takara, Japan). Multiple infections with two or more parasite clones were

defined as>1 band of amplified PCR product observed. Since in pre-analysis of this dataset,

multiplicity of infection was found to be a confounding factor for malaria severity, only sam-

ples with single clone infection were analyzed for msp2 sequence. Direct sequencing of PCR

products was performed on both strands of DNA using the BigDye1 Terminator V3.1 Cycle

Sequencing Kit (Applied Biosystems, Foster City. CA, USA).

Sequences and polymorphisms analysis

Variable msp2 sequence domains including block 2, 3, and 4 were analyzed for polymor-

phisms. Based on sequence similarity to msp2 sequences of the K1 (FC27-liked) and 3D7

strains (GenBank accession numbers: M59766.1; PFB0300c), msp2 sequences obtained here

were grouped into 2 allelic families—FC27 and 3D7. Since block 2, 3, and 4 of msp2 were abso-

lutely different among these 2 families, separate alignment of each family was performed to

analyze for polymorphisms. Nucleotide alignments were performed separately for each block

using Bioedit software [30]. Blocks and their borders were defined as described by Ferreira

et al. [21]. For repeat region in block 3, nucleotide / amino acid sequences of repeat units were

aligned and variations of both copy number and sequences of repeat units were analyzed.

These polymorphic sequences were submitted to the GenBank database (accession numbers

JX885898-JX885980).

Statistical analysis

To determine the possible association of msp2 with malaria severity, allele and haplotype fre-

quencies of msp2 were compared between the mild and severe, mild and cerebral, and severe

and cerebral malaria groups using the χ2 test or Fisher’s exact test. In this study, only alleles /

haplotypes with frequency� 10% were included in statistical analyses. Association analysis

Msp2 sequence variation associated with malaria severity
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was conducted separately for the two allelic families. To study the association of msp2 with

parasitaemia, parasitaemia levels at presentation were compared between patients carrying dif-

ferent alleles and haplotypes of msp2 using the Mann Whitney U test, and Kruskal-Wallis test,

respectively. The analysis were performed by SPSS 18 for windows (SPSS, Inc., Chicago. IL).

The extent of linkage disequilibrium (LD) between bi-allelic polymorphisms was evaluated by

r2 values calculated using the Haploview software [31]. For all analysis, a P value of less than

0.05 was considered to be statistically significant.

Results

Multiplicity of P. falciparum infection associated with severe malaria

Of 480 blood samples, msp2 amplification was successful in 471 samples (98.1%), generating

400–800 bp PCR products. Based on number of amplified msp2 bands, multiple infections

were found in 166 (35%) samples, including 124 double infection (26%), 30 triple infection

(6%), 6 samples with 4 clones infection (1%), 4 samples with 5 clones infection (0.9%), and 2

samples with 6 clones infection (0.4%). Infection with multiple P. falciparum clones was associ-

ated with increased risk of non-cerebral severe malaria (χ2 for trend, P = 0.012), notably when

infection with more than 2 clones (Table 1). Patients who were infected with more than 2 para-

site clones had higher risk to severe malaria compared to those infected with 2 or 1 parasite

clone with OR of 2.5, P = 0.008. Increase in multiplicity of infection (MOI) associated with

high parasitemia, as median of 25,890, 22,740, 99,200, 191,930 parasite/μL for patients infected

with 1, 2, 3, and >3 parasite clones, respectively, suggesting that the apparent association of

MOI with severe malaria was due to hyperparasitaemia. There was no association between

MOI and cerebral malaria. However, when MOI among severe and cerebral malaria patients

were compared, multiple clones infection was more common in severe malaria (43.3%) than

cerebral malaria (24.5%).

Msp2 sequences

Since multiplicity of infection was found as a confounder for malaria severity, only single

clone infections were analyzed for msp2 sequence and association with disease severity. Of 305

samples with single clone infection, 300 samples were available for msp2 sequences analysis.

DNA sequencing was successful in 277 samples (92.3%). Since the primers bind to the con-

served domains (block 1 and block 5), only sequences of msp2 variable domains, including

block 2, 3 and 4 were obtained (Fig 1). Block 2 and block 4 were non-repetitive, dimorphic

sequences, dividing msp2 into two families—FC27 and 3D7-like. For block 3, two repetitive

regions were found, designated as repeat region 1 (R1) and repeat region 2 (R2) and these two

regions were separated by a non-repetitive region designated as the non-repeat region (NR)

(Fig 1). Of 277 msp2 sequences from single-clone infections, 114 (41.2%) belonged to the FC27

family, while 163 (58.8%) belonged to the 3D7-like family (Table 2). Sizes of FC27 and 3D7

variants ranged from 450–606 bp and 490–730, respectively (S1 Fig). Sequence analysis can

define larger repertoire of distinct size variants (50 variants) of msp2 (FC27 and 3D7)

Table 1. Multiplicity of P. falciparum infection among mild, severe and cerebral malaria patients.

Multiplicity of infection Mild (%) N = 178 Severe (%) N = 105 Cerebral (%) N = 154 Odds for severe (mild vs severe) Odds for cerebral (mild vs cerebral)

1 clone 129 (65.5) 93 (56.7) 83 (75.5) 0.72 0.64

2 clones 55 (27.9) 46 (28.1) 23 (20.9) 0.84 0.42

3 clones 10 (5.1) 18 (11.0) 2 (1.8) 1.8 0.20

> 3 clones 3 (1.5) 7 (4.3) 2 (1.8) 2.3 0.67

https://doi.org/10.1371/journal.pone.0190418.t001
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compared to simple gel electrophoresis (20 variants). Frequencies of sized variants based on

both methods are shown in S1 Fig.

Msp2 alignment

Nucleotide alignment of 114 FC27-liked sequences demonstrated several polymorphisms. In

block 2, an indel and 7 SNPs causing amino acids changes were found (Fig 2A, Table 3), while

in block 4, two non-synonymous SNPs were found (Fig 2B, Table 3). In block 3, R1 contained

one or three copies of the 96 nucleotide repeat (32 aa.), while R2 contained one to five copies

of the 36 nucleotide repeat (12 aa.) generating 5 different combinations [(R1)n(R2)n] (Table 3).

The non repeat region (NR) in this family contained conserved 21 nucleotides (7 aa.). Within

the repeat of 96 nucleotides in R1 region, a single non-synonymous point mutations was

found at position 17, 4 or 30, producing four variants [R1-A (no mutation), R1-B, R1-C, and

R1-D respectively] (Fig 2C). Similarly for the R2 region, point mutations within the repeat of

36 nucleotides were found producing three variants; R2-1 (no mutation), R2-2 (single muta-

tion at position 1), and R2-3 (double mutations at position 1 and 14) (Fig 2D). Considering

Fig 1. Structure of the variable region of the Plasmodium falciparum msp2 gene showing block 2, 3, and 4. FC27

and 3D7-like structures were presented in the upper and lower panels, respectively. Amino acid (aa.) lengths of each

block are indicated. Block 3 consist of 2 different repeat units (R1 and R2), which were separated by a non repeat

region (NR). For 3D7-like sequences, R1 had Glycine (G), Serine (S), and Alanine (A) enriched sequences, while R2

featured Threonine (T) repeats.

https://doi.org/10.1371/journal.pone.0190418.g001

Table 2. Frequencies of FC27 and 3D7-like msp2 in P. falciparum isolates from 277 malaria patients in Thailand with mild (M), severe (S) or cerebral (C) disease.

Msp2 Mild (M)

N = 115

Severe (S)

N = 84

Cerebral (C)

N = 78

Total

N = 277

M vs S

P-value

M vs C

P-value

S vs C

P-value

family (%) (%) (%) (%) Odds Ratio Odds Ratio Odds Ratio

FC27 54 (47.0) 28 (33.3) 32 (41.0) 114 (41.2) P = 0.054 P = 0.416 P = 0.311

3D7 61 (53.0) 56 (66.7) 46 (59.0) 163 (58.8) OR = 0.56 OR = 0.79 OR = 1.39

https://doi.org/10.1371/journal.pone.0190418.t002
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both the copy number and the repeat variants, 13 allelic variants were found among the

FC27-like msp2 sequences (Table 3). Overall, the combination of block 2, 3, and 4 polymor-

phisms generated 21 distinct haplotypes among 114 FC27-like msp2 sequences (Table 4) (Gen-

Bank accession numbers JX885898-JX885918).

For the 3D7 family, nucleotide alignment of 163 3D7-liked msp2 sequences demonstrated

more diverse and complex sequences than those for FC27. Several non-synonymous SNPs and

indel were found in block 2, 4 and the NR region of block 3 (Fig 3A, 3B and 3C and Table 5).

In block 2, four non-synonymous SNPs were found while in block 4, eight non-synonymous

SNPs and 2 indel were found. In the NR of block 3, six non-synonymous SNPs and 3 indel

were found. R1 of block 3 contained extremely diverse sequences—mostly Glycine (G), Serine

(S), and Alanine (A). Because of significant diversity, alignment of repeat sequences in R1 was

difficult. According to the previous study that considered the amino acids GA dipeptide

(encoded by GGT GCT) as the ancestral repeat [32, 33], we aligned the R1 region by amino

acid. Ten different dipeptide motifs (GA, GS, GG etc.) were observed (coded 0–9 in S1 Table).

Based on the motif arrangement, 54 distinct alleles were found in this region that can be

grouped into nine types (162, 185, 18585, etc.) according to the presence of different types of

motif sequences (S1 Table). In R2, we found 8 (T8), 11 (T11), and 14 (T14) Threonine repeats

that were encoded by 2–4 copies of nanomer (ACT ACC ACA) followed by ACT ACT (Fig

3D, Table 5). Overall, combining polymorphisms in block 2, 3, and 4 generated 62 distinct

haplotypes among 163 3D7-like msp2 strains (GenBank accession numbers JX8858919-

JX885980). Haplotype analysis of polymorphisms in each block, except for the R1 region are

shown in Table 6.

Fig 2. Sequence alignment of Msp2 FC27 family of Plasmodium falciparum showing the polymorphisms in each

block. Changes of nt. / aa. are shaded with gray / yellow. The Msp2 sequence of K1 (FC27-liked) (GenBank accession

number: M59766.1) was used as a reference for Block 2 and 4 alignment. (A) Block 2: the first 6 nt. residues of 57 (19

aa.) were not analyzed. An indel and 7 non-synonymous SNPs are shown. (B) Block 4: only the first 90 nt. residues of

144 (48 aa.) are presented. Two non-synonymous SNPs are shown. (C) Block 3, repeat region1 (R1): only the first 90

nt. residues of the 96 nt. repeat are presented, showing 4 repeat variants (R1-A, R1-B, R1-C, R1-D) with different

positions of single non-synonymous SNPs. (D) Block 3, repeat region2 (R2): 36 nt. repeat showing 3 repeat variants

(R2-1, R2-2, R2-3) with different non-synonymous SNPs.

https://doi.org/10.1371/journal.pone.0190418.g002
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Table 3. Allele frequencies of polymorphisms in FC27-like msp2 of P. falciparum isolates from mild, severe and cerebral malaria patients in Thailand.

Region Polymorphic positiona Mild Severe ((S)(S) Cerebral Total M vs Sd M vs C S vs C

Nucleotide Codon (aa.) (%) (%) (%) (%) P-value, OR P-value,OR P-value,OR

Block 2 23 A/Cb 8 AAG (K) 19 (35.2) 7 (25.0) 13 (40.6) 39 (34.2) 0.347, 0.61 0.614, 1.26 0.200, 2.05

24 G/T � � T (N) 13 (24.1) 13 (46.4) 7 (21.9) 33 (28.9) 0.039, 2.73 0.816, 0.88 0.044, 0.32

� CT (T) 22 (40.7) 8 (28.6) 12 (37.5) 42 (36.8) 0.278, 0.58 0.766, 0.87 0.464, 1.50

27 T/G 9 AGT (S) 45 (83.3) 18 (64.3) 26 (81.3) 89 (78.1) 0.053, 2.78 0.806, 1.15 0.138, 0.42

� �G (R) 9 (16.7) 10 (35.7) 6 (18.8) 25 (21.9)

32 G/A 11 GGT (G) 51 (94.4) 25 (89.3) 31 (96.9) 107 (93.9) NA. NA. NA.

� A � (D) 3 (5.6) 3 (10.7) 1 (3.1) 7 (6.1)

37 A/G 13 AAT (N) 50 (92.6) 25 (89.3) 31 (96.9) 106 (93.0) NA. NA. NA.

39 T/A � � A (K) 3 (5.6) 3 (10.7) 1 (3.1) 7 (6.1) NA. NA. NA.

G� � (D) 1 (1.9) 0 (0) 0 (0) 1 (0.9) NA. NA. NA.

48 A/T 16 AAA (K) 33 (61.1) 18 (64.3) 21 (65.6) 72 (63.2) 0.779, 0.87 0.676, 0.82 0.914, 0.94

� � T (N) 21 (38.9) 10 (35.7) 11 (34.4) 42 (36.8)

49_57indel 17_19 del 53 (98.1) 26 (92.9) 32 (100.0) 111 (97.4) NA. NA. NA.

17_19 ins GCT CCA AAA (APK) 0 (0) 2 (7.1) 0 (0) 2 (1.8) NA. NA. NA.

17_19 ins GCT CCA AAT (APN) 1 (1.9) 0 (0) 0 (0) 1 (0.9) NA. NA. NA.

Block3c (R1)n(R2)n (R1)(R2)(R2) 1 (1.9) 2 (7.1) 0 (0) 3 (2.6) NA. NA. NA.

(R1)(R2)(R2)(R2) 39 (72.2) 22 (78.6) 21 (65.6) 82 (71.9) 0.532, 1.41 0.520, 0.73 0.267, 0.52

(R1)(R2)(R2)(R2)(R2) 7 (13.0) 3 (10.7) 9 (28.1) 19 (16.7) 0.768, 0.81 0.081, 2.63 0.093, 3.26

(R1)(R2)(R2)(R2)(R2)(R2) 5 (9.3) 1 (3.6) 1 (3.1) 7 (6.1) NA. NA. NA.

(R1)(R1)(R1)(R2) 2 (3.7) 0 (0) 1 (3.1) 3 (2.6) NA. NA. NA.

R1xR2 A 12 1 (1.9) 0 (0) 0 (0) 1 (0.9) NA. NA. NA.

Block 3c A 122 20 (37.0) 15 (53.6) 11 (34.4) 46 (40.3) 0.151, 1.96 0.804, 0.89 0.134, 0.45

A 1222 6 (11.1) 0 (0) 7 (21.9) 13 (11.4) 0.066 0.178, 2.24 0.009

A 132 2 (3.7) 1 (3.6) 0 (0) 3 (2.6) NA. NA. NA.

A 1333 0 (0) 2 (7.1) 0 (0) 2 (1.8) NA. NA. NA.

A 222 3 (5.6) 0 (0) 0 (0) 3 (2.6) NA. NA. NA.

A 333 14 (25.9) 6 (21.4) 10 (31.3) 30 (26.3) 0.653, 0.78 0.595, 1.30 0.391, 1.67

A 3333 0 (0) 0 (0) 2 (6.3) 2 (1.8) NA. NA. NA.

A 33333 5 (9.3) 1 (3.6) 1 (3.1) 7 (6.1) NA. NA. NA.

B 22 0 (0) 2 (7.1) 0 (0) 2 (1.8) NA. NA. NA.

B 2222 0 (0) 1 (3.6) 0 (0) 1 (0.9) NA. NA. NA.

C 2111 1 (1.9) 0 (0) 0 (0) 1 (0.9) NA. NA. NA.

ADD 2 2 (3.7) 0 (0) 1 (3.1) 3 (2.6) NA. NA. NA.

Block 4 58 G/A 20 GAA (E) 43 (79.6) 24 (85.7) 30 (93.8) 97 (85.1) 0.499, 0.65 0.077, 0.26 0.301, 0.4

A � � (K) 11 (20.4) 4 (14.3) 2 (6.3) 17 (14.9)

64 C/A 22 CAA (Q) 44 (81.5) 24 (85.7) 30 (93.8) 98 (86.0) 0.629, 0.73 0.113, 0.29 0.301, 0.4

A � � (K) 10 (18.5) 4 (14.3) 2 (6.3) 16 (14.0)

a Position relative to the first nucleotide / aa. of each block (Fig 2).
b In case of SNPs, alleles found in the msp2 sequence of K1 (FC27-liked) (M59766.1) / another found in our data set was shown and amino acid (aa.) changes were

indicated.
c Variation in number of repeat 1 and 2 [(R1)n(R2)n] generated 5 distinct alleles in block 3, while 13 alleles were detected when sequence variation in repeat units were

considered [R1xR2].
d Allele frequencies were compared between mild (M) and severe (S), mild and cerebral (C), as well as severe and cerebral. For bi-allelic polymorphisms, the odds ratio

(OR) of a minor-frequency allele for risk to severe and cerebral malaria by comparing to a major allele was analyzed. For polymorphisms with more than 2 alleles, the

presence or absence of individual alleles were compared. OR and P-values are shown, with significant values in bold. NA. (not applicable) indicates bi-allelic

polymorphisms with minor allele frequency <10% and individual alleles having frequencies<10% or >90%, in which their associations with malaria severity were not

analyzed. OR was undefined in cases of zero cell count.

https://doi.org/10.1371/journal.pone.0190418.t003
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Association of msp2 with malaria severity

Frequency distributions of FC27 and 3D7-like msp2 based on malaria severity are shown in

Table 2. No significant differences were observed. Table 3 and Table 5 show allele frequencies

of polymorphisms in the FC27 and 3D7-like msp2 sequences of P. falciparum isolates from

mild, severe and cerebral malaria patients. When allele frequenices in the severe and mild

malaria groups were compared, a significantly higher frequency of the block 2-8N alelle of

FC27-like msp2 was found in patients with severe malaria (46.4%) compared to mild malaria

(24.1%) with an odds ratio of 2.73 (P = 0.039). No significant difference was detected for alleles

of 3D7-like msp2. However, when comparing the cerebral and mild malaria groups, a signifi-

cant 2-fold higher frequency of the K allele was found for block 4-17K/N of 3D7-like msp2 in

patients with cerebral malaria (23.9%) compared to mild malaria (12.5%). The odds ratio for

the K allele in patients with cerebral malaria was 3.52 (P = 0.024). These findings suggest that

block 2-8N of FC27 family and block4-17K of the 3D7 family may represent virulent genotypes

for severe, and cerebral malaria, respectively. Moreover, bias in allele frequency distribution

between severe and cerebral malaria was also observed for block 2-8N allele of FC27 family, as

well as other loci in FC27 and 3D7–like msp2 (Tables 3 and 5).

Table 4. Haplotype frequencies of P. falciparum FC27-like msp2 of from mild, severe and cerebral malaria patients in Thailand, comprising polymorphisms in

block 2, 3 and 4.

FC27 haplotype Amino acid changesa Mild

(%)

Severe

(%)

Cerebral

(%)

Total

(%)

M vs Sc

P-value, OR

M vs C

P-value, OR

S vs C

P-value, OR

BI.2 - BI.3 - BI.4

Haplotype 1b
8 -9 -11 -13 -16 -indel -R1R2 -20 -22

14 (25.9) 6 (21.4) 10 (31.3) 30 (26.3) 0.653, 0.78 0.595, 1.30 0.39, 1.67K S G N K del A333 E Q

2 � � � � � del A33333 � � 0 (0) 0 (0) 2 (6.3) 2 (1.8) NA. NA. NA.

3 � � � � � del A33333 � � 5 (9.3) 1 (3.6) 1 (3.1) 7 (6.1) NA. NA. NA.

4 T � � � � del A122 � � 3 (5.6) 0 (0) 2 (6.3) 5 (4.4) NA. NA. NA.

5 T � � � N del A122 � � 1 (1.9) 3 (10.7) 1 (3.1) 5 (4.4) NA. NA. NA.

6b T � � � N del A1222 � � 5 (9.3) 0 (0) 7 (21.9) 12 (10.5) 0.097 0.103, 2.75 0.009

7 T � � � N del A132 � � 2 (3.7) 1 (3.6) 0 (0) 3 (2.6) NA. NA. NA.

8 T � � � N del A1222 K � 1 (1.9) 0 (0) 0 (0) 1 (0.9) NA. NA. NA.

9 T � � � N del A12 K K 1 (1.9) 0 (0) 0 (0) 1 (0.9) NA. NA. NA.

10b T � � � N del A122 K K 8 (14.8) 4 (14.3) 2 (6.3) 14 (12.3) 0.949, 0.96 0.231, 0.38 0.301, 0.4

11 T R � � N del A122 � � 1 (1.9) 0 (0) 0 (0) 1 (0.9) NA. NA. NA.

12 N � � � N APN A222 K K 1 (1.9) 0 (0) 0 (0) 1 (0.9) NA. NA. NA.

13 N � � D � del C2111 � � 1 (1.9) 0 (0) 0 (0) 1 (0.9) NA. NA. NA.

14 N � D K � del ADD2 � � 1 (1.9) 0 (0) 0 (0) 1 (0.9) NA. NA. NA.

15 N � D K � del B22 � � 0 (0) 2 (7.1) 0 (0) 2 (1.8) NA. NA. NA.

16 N � D K � del A222 � � 1 (1.9) 0 (0) 0 (0) 1 (0.9) NA. NA. NA.

17 N � D K � del B2222 � � 0 (0) 1 (3.6) 0 (0) 1 (0.9) NA. NA. NA.

18 N � D K N del ADD2 � � 1 (1.9) 0 (0) 1 (3.1) 2 (1.8) NA. NA. NA.

19b N R � � � del A122 � � 7 (13.0) 8 (28.6) 6 (18.8) 21 (18.4) 0.083, 2.69 0.469, 1.55 0.370, 0.58

20 N R � � � del A222 � � 1 (1.9) 0 (0) 0 (0) 1 (0.9) NA. NA. NA.

21 N R � � N APK A1333 � � 0 (0) 2 (7.1) 0 (0) 2 (1.8) NA NA. NA.

a Position relative to the first aa. of each block (Fig 2).
b Major haplotypes (frequency� 10%) observed in the parasite population that were analyzed for association with malaria severity.
c Haplotype frequencies were compared between mild (M) and severe (S), mild and cerebral (C), and severe and cerebral.P-value and Odds ratios (OR) are shown, with

statistically significant differences in bold. NA. (not applicable) indicates haplotypes with frequencies>10% whose association with malaria severity was not analyzed.

OR was undefined in cases of zero cell count.

https://doi.org/10.1371/journal.pone.0190418.t004
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Given several polymorphisms detected in msp2, relevant msp2 haplotypes were also ana-

lyzed for their association with malaria severity. For FC27-like msp2, twenty-one distinct hap-

lotypes containing all polymorphisms of block 2, 3, and 4 were observed among 114 samples

with FC27-like msp2 (Table 4). Of these, four major haplotypes with frequencies� 10% (hap-

lotypes 1, 6, 10, and 19) were found and analyzed. No differences in frequency were detected

between mild vs. severe malaria or mild vs. cerebral malaria. However, a significantly increased

frequency of haplotype 6 was found in patients with cerebral malaria (21.9%), compared to

absence of this haplotype in severe malaria (P = 0.09). For 3D7-like msp2 which exhibited

much greater diversity, haplotypes of each block were analyzed separately. For block 3, haplo-

types contained only the NR and R2 region. R1 was not included given large variation (54

types) which obviated meaningful comparisons. Distinct haplotypes of 5, 15 and 12 were iden-

tified for block 2, 3, and 4, respectively (Table 6). We found a significant difference in the fre-

quency of block 4 haplotype 9 (PKEKEKP) between mild and cerebral malaria. This haplotype

was associated with cerebral malaria (OR = 3.52, P = 0.02). The apparent association seems to

come from the presence of the block 4-17K allele in this haplotype since the P value and OR

were equal to those obtained for the block 4-17K allele alone.

LD structure of msp2
Pairwise LD structure between the 10 bi-allelic polymorphisms with minor allele

frequency� 10% in 3D7-like msp2 sequences was analyzed based on r2 values (Fig 4). There

Fig 3. Sequence alignment of Msp2 3D7 family of Plasmodium falciparum showing polymorphisms in each block.

Changes in nt. / aa. are shaded gray / yellow. The Msp2 sequence for 3D7 (GenBank accession number: PFB0300c) was

used as a reference for alignment of Block 2, 4, and the non-repetitive region (NR) of block 3. (A) Block 2: first 6 nt.

residues of 21 (7 aa.) are not analyzed. Four non-synonymous SNPs are shown. (B) Block 4: only residues from nt. 31

to 100 of 270 (90 aa.) are presented. Eight non-synonymous SNPs and 2 indel are shown. (C) Block 3, non-repeat

region (NR): all 54 nt. (18 aa.) are presented, showing 6 non-synonymous SNPs and 3 indel. (D) Block 3, repeat region

2 (R2): 2, 3, and 4 copies of nanomer (ACT ACC ACA) followed by ACT ACT producing Threonine 8, 11, and 14

residues, respectively.

https://doi.org/10.1371/journal.pone.0190418.g003
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Table 5. Allele frequencies of polymorphisms in the 3D7-like msp2 sequences of P. falciparum isolates from mild, severe and cerebral malaria patients in Thailand.

Region Polymorphic positiona Mild Severe Cerebral Total M vs Se M vs C S vs C

Nucleotide Codon (aa.) (%) (%) (%) (%) P-value, OR P-value, OR P-value, OR

Block 2 12 G/Tb 4 AAG (K) 26 (43.3) 24 (45.3) 16 (37.2) 66 (42.3) 0.835, 1.08 0.533, 0.77 0.425, 0.72

� � T (N) 34 (56.7) 29 (54.7) 27 (62.8) 90 (57.7)

13 C/A 5 CCT (P) 48 (78.7) 47 (83.9) 36 (83.7) 131 (81.9) 0.469, 1.41 0.521, 1.39 0.978, 0.98

14 C/T A � � (T) 11 (18.0) 8 (14.3) 7 (16.3) 26 (16.3) 0.583, 0.76 0.816, 0.88 0.784, 1.17

� T � (L) 2 (3.3) 1 (1.8) 0 (0) 3 (1.9) NA. NA. NA.

16 T/C 6 TCT (S) 7 (11.5) 7 (12.5) 7 (16.3) 21 (13.1) 0.865, 1.10 0.480, 1.50 0.593, 1.36

C � � (P) 54 (88.5) 49 (87.5) 36 (83.7) 139 (86.9)

Block 3 R1 region c 162: GAVAGS 14 (23.0) 11 (19.6) 11 (23.9) 36 (22.1) 0.663, 0.82 0.907, 1.06 0.602, 1.29

185: GASGSA 10 (16.4) 8 (14.3) 8 (14.3) 26 (16.0) 0.752, 0.85 0.891, 1.07 0.668, 1.26

1852: GASGSAGS 7 (11.5) 13 (23.2) 5 (10.9) 25 (15.3) 0.092, 2.33 0.922, 0.94 0.104, 0.40

18585: GASGSASGSA 6 (9.8) 6 (10.7) 6 (13.0) 18 (11.0) 0.876, 1.11 0.603, 1.38 0.716, 1.25

2165: GSGAVASA 6 (9.8) 3 (5.4) 2 (4.3) 11 (6.7) NA. NA. NA.

27165: GSRDGAVASA 6 (9.8) 6 (10.7) 2 (4.3) 14 (8.6) NA. NA. NA.

35: GGSA 5 (8.2) 2 (3.6) 4 (8.7) 11 (6.7) NA. NA. NA.

385: GGSGSA 6 (9.8) 7 (12.5) 8 (17.4) 21 (12.9) 0.647, 1.31 0.251, 1.93 0.488, 1.47

385_35: GGSGSA GGSA 1 (1.6) 0 (0) 0 (0) 1 (0.6) NA. NA. NA.

NR region

1_30 indel 1_10 ins GNGANPGADA 18 (29.5) 12 (21.4) 13 (28.3) 43 (26.4) 0.317, 0.65 0.888, 0.94 0.425, 1.44

1_10 ins RNGANPGADA 13 (21.3) 19 (33.9) 7 (15.2) 39 (23.9) 0.126, 1.90 0.423, 0.66 0.031, 0.35

3_6 del GN—— GADA 14 (23.0) 11 (19.6) 11 (23.9) 36 (22.1) 0.663, 0.82 0.907, 1.06 0.602, 1.29

1_8 del- - - - - - - - DA 9 (14.8) 6 (10.7) 9 (19.6) 24 (14.7) 0.514, 0.69 0.510, 1.41 0.209, 2.03

1_10 del- - - - - - - - - - 7 (11.5) 8 (14.3) 6 (13.0) 21 (12.9) 0.650, 1.29 0.806, 1.16 0.856, 0.90

31 G/A 11 GAG (E) 46 (75.4) 44 (78.6) 33 (71.7) 23 (75.5) 0.685, 0.84 0.669, 1.21 0.425, 1.44

A � � (K) 15 (24.6) 12 (21.4) 13 (28.3) 40 (24.5)

34 A/G 12 AGA (R) 35 (57.4) 30 (53.6) 31 (67.4) 96 (58.9) 0.679, 1.17 0.292, 0.65 0.157, 0.56

G � � (G) 26 (42.6) 26 (46.4) 15 (32.6) 67 (41.1)

40 C/T 14 CCA (P) 41 (67.2) 35 (62.5) 37 (80.4) 113 (69.3) 0.594, 1.23 0.128, 0.50 0.048, 0.41

T � � (S) 20 (32.8) 21 (37.5) 9 (19.6) 50 (30.7)

50 C/G 17 CCC (P) 60 (98.4) 56 (100.0) 44 (95.7) 160 (98.2) NA. NA. NA.

� G � (R) 1 (1.6) 0 (0) 2 (4.3) 3 (1.8)

52 G/A 18 GCT (A) 61 (100) 56 (100) 45 (97.8) 162 (99.4) NA. NA. NA.

A � � (T) 0 (0) 0 (0) 1 (2.2) 1 (0.6)

R2 regiond

(ACT ACC ACA)2 ACT2 ACT (T)8 42 (68.9) 37 (66.1) 35 (76.1) 114 (69.9) 0.748, 0.88 0.410, 1.44 0.269, 1.63

(ACT ACC ACA)3 ACT2 ACT (T)11 8 (13.1) 4 (7.1) 7 (15.2) 19 (11.7) 0.288, 0.51 0.757, 1.19 0.191, 1.33

(ACT ACC ACA)4 ACT2 ACT (T)14 11 (18.0) 15 (26.8) 4 (8.7) 30 (18.7) 0.255, 1.66 0.168, 0.43 0.020, 0.26

(Continued)
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was not a noticeable difference in LD structure between parasites from the mild, cerebral and

severe malaria groups. This suggests that differences in allele frequencies did not affect the LD

profile of malaria parasites. Since no LD was found between 3D7 block 4-17N/K and other poly-

morphisms, the association of the block 4-17K allele with cerebral malaria is unlikely to be caused

by LD from other polymorphisms. LD between FC27 block 2-8K/N/T which associated with

severe malaria and other loci could not be analyzed, since this associated locus is a multi-allelic

polymorphism. Therefore, analysis of LD structure for FC27-like msp2 sequences was omitted.

Association of msp2 with parasitemia

To clarify the contribution of virulence-associated alleles to disease progression of severe and

cerebral malaria, their associations with parasitemia were analyzed. No association was

detected for block 2-8K/N/T of FC27-like msp2 and block 4-17N/K of 3D7-like msp2. There

were not significant differences in parasitemia between patients infected with different para-

sites genotypes (median parasitemia = 24,150, 26,250, and 25,380/μL for FC27 block 2-8K, N,

T allele, respectively, P-value = 0.462; median parasitemia = 31,540 and 50,900 /μL for 3D7

block 4-17N and K, respectively, P-value = 0.563).

Table 5. (Continued)

Region Polymorphic positiona Mild Severe Cerebral Total M vs Se M vs C S vs C

Nucleotide Codon (aa.) (%) (%) (%) (%) P-value, OR P-value, OR P-value, OR

Block 4 40 C/T 14 CCA (P) 55 (90.2) 50 (89.3) 44 (95.7) 149 (91.4) NA. NA. NA.

T � � (S) 6 (9.8) 6 (10.7) 2 (4.3) 14 (8.6)

51 A/T 17 AAA (K) 5 (8.2) 7 (12.5) 11 (23.9) 23 (14.1) 0.443, 1.60 0.024, 3.52 0.132, 2.20

� � T (N) 56 (91.8) 49 (87.5) 35 (76.1) 140 (85.9)

58 G/A 20 GAA (E) 38 (62.3) 39 (69.6) 31 (67.4) 108 (66.3) 0.403, 0.72 0.586, 0.80 0.807, 1.11

A � � (K) 23 (37.7) 17 (30.4) 15 (32.6) 55 (33.7)

78 A/T 26 AAA (K) 30 (53.6) 35 (64.8) 28 (68.3) 93 (61.6) 0.231, 0.62 0.144, 0.54 0.722, 0.86

� � T (N) 26 (46.4) 19 (35.2) 13 (31.7) 58 (38.4)

82 G/C/A 28 GAA (E) 29 (51.8) 34 (63.0) 27 (65.9) 90 (59.6) 0.236, 1.58 0.166, 1.80 0.771, 1.13

83 A/G � G � (G) 17 (30.4) 12 (22.2) 10 (24.4) 39 (25.8) 0.333, 0.66 0.517, 0.74 0.804, 1.13

C � � (Q) 7 (12.5) 4 (7.4) 2 (4.9) 13 (8.6) NA. NA. NA.

A � � (K) 3 (5.4) 4 (7.4) 2 (4.9) 9 (6.0) NA. NA. NA.

91_93 indel 31 ins GAA (E) 26 (46.4) 27 (50.0) 15 (36.6) 68 (45.0) 0.867, 1.07 0.078, 2.08 0.110, 1.95

ins AAA (K) 24 (42.9) 24 (44.4) 25 (61.0) 73 (48.3) 0.837, 1.08 0.332, 0.67 0.242, 0.62

del 6 (10.7) 3 (5.6) 1 (2.4) 10 (6.6) NA. NA. NA.

95 C/A 32 CCA (P) 51 (91.1) 43 (79.6) 37 (90.2) 131 (86.8) 0.089, 2.61 0.890, 1.10 0.160, 0.42

� A � (Q) 5 (8.9) 11 (20.4) 4 (9.8) 20 (13.2)

67_99 indel 23_33 insert 56 (91.8) 54 (96.4) 41 (89.1) 151 (92.6) NA. NA. NA.

23_33 deletion 5 (8.2) 2 (3.6) 5 (10.9) 12 (7.4)

a Position relative to the first nucleotide / aa. of each block (Fig 3)
b In case of SNPs, alleles found in the msp2 sequence of 3D7 (PFB0300c) / another allele found in our data set was shown, and amino acid (aa.) changes are indicated.
c For The R1 region in block 3, sequences can be grouped into nine types according to the presence of different types of numerically coded dipeptide motifs (S1 Table).
d For the R2 region, there were 8, 11, and 14 Threonine repeats encoded by 2–4 copies of nanomer (ACT ACC ACA) followed by ACT ACT.
e Allele frequencies were compared between mild (M) and severe (S), mild and cerebral (C), and severe and cerebral. For bi-allelic polymorphisms, the odds ratios (OR)

of minor-frequency alleles compared to major alleles associated with severe and cerebral malaria were analyzed. For polymorphisms with more than 2 alleles, the

presence/absence of individual alleles were compared. OR and P-values are shown, with significant differences in bold. NA. (not applicable) indicates bi-allelic

polymorphisms with a minor allele frequency <10% and individual alleles with frequencies <10% or >90%, in which their association with malaria severity were not

analyzed.

https://doi.org/10.1371/journal.pone.0190418.t005
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Discussion

Parasite virulence is thought to be responsible for severity of P. falciparum infection. Although

several studies have tried to characterize virulent strains using polymorphic genes as markers,

they analyzed only size variation and bi-allelic families of genes which is insufficient to identify

suitable virulence markers [2, 3, 5, 6, 24–27]. Therefore, conclusive virulence markers have not

Table 6. Haplotype frequencies of 3D7 like msp2 of P. falciparum from mild, severe and cerebral malaria patients in Thailand, with each block analyzed separately.

3D7 haplotype Amino acid changesa Mild

(%)

Severe

(%)

Cerebral

(%)

Total

(%)

M vs Sc

P-value, OR

M vs Cc

P-value, OR

S vs Cc

P-value, OR

Block 2 4–5–6

Haplotype 1b N P P 27 (45.0) 22 (41.5) 20 (46.5) 69 (44.2) 0.709, 0.87 0.879, 1.06 0.623, 1.23

2b � � S 7 (11.7) 7 (13.2) 7 (16.3) 21 (13.5) 0.804, 1.15 0.501, 1.47 0.672, 1.28

3b K � � 13 (21.7) 17 (32.1) 9 (20.9) 39 (25.0) 0.211, 1.71 0.928, 0.96 0.222, 0.56

4b K T � 11 (18.3) 6 (11.3) 7 (16.3) 24 (15.4) 0.298, 0.57 0.787, 0.87 0.480, 1.52

5 K L � 2 (3.3) 1 (1.9) 0 (0) 3 (1.9) NA. NA. NA.

Block 3 NR-R2 1_10indel -11–12–14–17–18 - [T]

Haplotype 1b Ins G E R P P A 8 11 (18.0) 8 (14.3) 10 (21.7) 29 (17.8) 0.583, 0.76 0.633, 1.26 0.326, 1.67

2 Ins G � G S � � 14 4 (6.6) 3 (5.4) 0 (0) 7 (4.3) NA. NA. NA.

3 Ins G � G S � � 11 1 (1.6) 0 (0) 0 (0) 1 (0.6) NA. NA. NA.

4 Ins G � G S R � 11 1 (1.6) 0 (0) 2 (4.3) 3 (1.8) NA. NA. NA.

5 Ins G K � � � � 8 1 (1.6) 1 (1.8) 1 (2.2) 3 (1.8) NA. NA. NA.

6 Ins R � � � � � 11 0 (0) 1 (1.8) 0 (0) 1 (0.6) NA. NA. NA.

7 Ins R � G S � � 8 6 (9.8) 6 (10.7) 2 (4.3) 14 (8.6) NA. NA. NA.

8b Ins R � G S � � 14 6 (9.8) 12 (21.4) 4 (8.7) 22 (13.5) 0.083, 2.50 0.841, 0 .87 0.079, 0.35

9 Ins R � G S � � 11 1 (1.6) 0 (0) 1 (2.2) 2 (1.2) NA. NA. NA.

10b Del3_6 K � � � � 8 14 (23.0) 11 (19.6) 11 (23.9) 36 (22.1) 0.663, 0.82 0.907, 1.06 0.602, 1.29

11 Del1_8 � � � � � 8 4 (6.6) 6 (10.7) 4 (8.7) 14 (8.6) NA. NA. NA.

12 Del1_8 � � � � � 11 5 (8.2) 3 (5.4) 4 (8.7) 12 (7.4) NA. NA. NA.

13 Del1_8 � G S � � 14 1 (1.6) 0 (0) 0 (0) 1 (0.6) NA. NA. NA.

14 Del1_8 K � � � T 8 0 (0) 0 (0) 1 (2.2) 1 (0.6) NA. NA. NA.

15b Del1_10 � G � � � 8 6 (9.8) 5 (8.9) 6 (13.0) 17 (10.4) 0.867, 0.90 0.603,1.38 0.505, 1.53

Block 4 14–17–20–26–28–31–32

Haplotype 1b P N E K E K P 7 (11.5) 8 (14.3) 6 (13.0) 21 (12.9) 0.650, 1.29 0.806, 1.16 0.856, 0.90

2b � � � � � E Q 5 (8.2) 11 (19.6) 4 (8.7) 20 (12.3) 0.072, 2.74 0.927, 1.07 0.120, 0.39

3 � � � � Q E � 7 (11.5) 4 (7.1) 2 (4.3) 13 (8.0) NA. NA. NA.

4 � � � N K � � 1 (1.6) 0 (0) 0 (0) 1 (0.6) NA. NA. NA.

5 � � � N K E � 2 (3.3) 1 (1.8) 1 (2.2) 4 (2.5) NA. NA. NA.

6 � � K � � � � 6 (9.8) 5 (8.9) 5 (10.9) 16 (9.8) NA. NA. NA.

7 � � K N G � � 5 (8.2) 4 (7.1) 3 (6.5) 12 (7.4) NA. NA. NA.

8b � � K N G E � 12 (19.7) 8 (14.3) 7 (15.2) 27 (16.6) 0.439, 0.68 0.551, 0.73 0.895, 1.08

9b � K � � � � � 5 (8.2) 7 (12.5) 11 (23.9) 23 (14.1) 0.443, 1.60 0.024, 3.52 0.132, 2.20

10 S � � N � del � 6 (9.8) 3 (5.4) 1 (2.2) 10 (6.1) NA. NA. NA.

11 S � � N K � � 0 (0) 3 (5.4) 1 (2.2) 4 (2.5) NA. NA. NA.

12 � � �—— 23_33 del—— 5 (8.2) 2 (3.6) 5 (10.9) 12 (7.4) NA. NA. NA.

a Position relative to the first aa. of each block (Fig 3).
b Major haplotypes (frequency� 10%) observed in the parasite population that were analyzed for association with malaria severity.
c Haplotype frequencies were compared between mild (M) and severe (S), mild and cerebral (C), as well as severe and cerebral. P-values and odds ratios (OR) are shown,

with significant differences in bold. NA. (not applicable) indicates haplotypes with frequencies >10% whose associations with malaria severity were not analyzed.

https://doi.org/10.1371/journal.pone.0190418.t006
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been described to date. In this study, we analyzed sequence variations of the most polymorphic

merozoite surface protein, MSP2, in detail, and found the msp2_FC27_block 2-8N allele and

3D7_block 4-17K allele associated with severe and cerebral malaria, respectively, in Thailand.

Lack of linkage disequilibrium between the associated alleles and other polymorphisms in

msp2 indicated that the association is independent of other polymorphisms. This is the first

study to reveal allelic sequences that could be potential markers for severe and cerebral

malaria. In addition to virulence-associated alleles, interestingly, a number of polymorphic

loci including severe malaria associated locus FC27_block 2-8N showed differences in allele

frequencies between severe and cerebral malaria. This implies that parasite genetic factors

responsible for cerebral malaria are distinct from those that cause severe symptoms involving

other organs. Moreover, we found a clinical association of multiple infections with increased

risk for non-cerebral severe malaria, but a much lower frequency of multiple infections

observed in cerebral malaria patients. These findings correspond with previous studies where

the epidemiological observations and parasite genetic characterization demonstrated the asso-

ciation of cerebral malaria with emergence of a few distinct virulent strains [1, 3, 8, 34].

While it remains unclear whether these associated alleles were the primary cause of viru-

lence or just markers based on LD to a causal variant in another locus, their contribution to

severe malaria pathogenesis is hypothesized. Amino acid changes from positively charged

lysine (K) to an uncharged asparagine (N) or vice versa may have effects on protein function.

Given msp2’s well characterized role in RBC invasion, the virulent allele is located in a specific

RBC binding region [13] and may have an effect on invasion efficiency. Nonetheless, associa-

tion with parasitemia was not detected. In addition to the role in parasite invasion, MSP2 is a

target of naturally acquired clinical immunity to malaria [15, 16]. Antibodies induced by this

antigen predominantly recognize its variable regions, and display strain-specific immunity

[35]. A prior study showed that antibody responses to epitopes within the 3D7 dimorphic

Fig 4. Linkage disequilibrium (LD) structures of 3D7-liked msp2 of P. falciparum in Thailand. Pairwise LD plots

based on r2 between the 10 bi-allelic polymorphisms with minor allele frequency� 10% were calculated for P.

falciparum from mild (A), severe (B), and cerebral malaria patients (C). White, shades of grey, and black squares

indicate no LD (r2 = 0), intermediate LD (0< r2 < 1), and strong LD (r2 = 1), respectively. LD structures were plotted

using haploview software and amino acid changes are shown. The polymorphisms associated with cerebral malaria are

labeled with a red star.

https://doi.org/10.1371/journal.pone.0190418.g004
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region have a protective role for malaria infection [36]. Virulence of associated alleles could be

explained by the particular folding of the MSP2 protein that might contribute to the immune

response. Immune-mediated pathogenicity of severe outcomes such as excessive production of

certain cytokines has been raised [37, 38]. Thus, improper responses acquired by virulence-

associated alleles may eventually cause severe or cerebral malaria.

Although the present study demonstrates the use of candidate gene association analysis to iden-

tify parasite genetic determinants of malaria severity, factors complicating study interpretation

should be considered. Theoretically, when several polymorphic markers within a given candidate

region are examined for association with a disease of interest, correction for multiple testing should

be taken to account for spurious associations (type I error). However, multiple correction remains

a problematic issue, especially for markers having several polymorphic loci or multiple alleles, as

msp2 [39]. By reducing the chance of type I error, the chance of type II error is increased, reducing

the power to detect the true effect size of causal variants. Although this issue might be solved by

increasing sample size, this would be difficult or impossible in practice due to the relatively rare

occurrence of severe and cerebral malaria in Thailand and Southeast Asia. In addition, there is

prior evidence for associations between msp2 and virulence, and this served as the basis for our

analysis to this gene. Therefore, type I error (false positive result) was less of a concern than type II

error (false negative). Given these caveats, correction for multiple comparisons was omitted here,

but replicating the study may be required to confirm our results [40, 41]. In addition to concerns

with multiple comparisons, a spurious association may also be caused by parasite population strati-

fication between groups with differing malaria outcomes. Genotyping at unlinked markers such as

microsatellites in mitochondrial genes would help to better understand population stratification of

samples. Absence of association with the unlinked markers would help to verify the significant

associations of candidate markers seen here [41–43].

Here we discerned the limitations of employing msp2 family and size variation to character-

ize parasite genetics associated with malaria severity. The study provided limited information

on the dimorphic family and overall variant size of the gene. Sequence variations that might be

related to disease severity were not revealed. We observed limited capacity of gel electrophore-

sis to differentiate distinct variants with similar length, as described previously [10]. Our analy-

sis revealed sequence variations among same-sized variants. These suggests that genetic

diversity based on msp2 family and size variation is likely to be underestimated, and may

explain inconclusive results from previous studies attempting to determine allelic variants

based on family/size variation. Recently, massively parallel pyrosequencing tools have been

used to characterize parasite diversity in individual infections [44]. This tool can identify

uncommon variants, increasing resolution for studying parasite diversity. Next generation

sequencing and genome-wide association analysis has become an important approach to

uncover the genetic basis of malaria biology. Genome-wide patterns demonstrate evidence of

drug or immune selection, helping to identify markers for antimalarial resistance and candi-

date genes for vaccine development [45–47]. Although genome-wide analysis is a high resolu-

tion tool to characterize the genetic complexity of P. falciparum within clinical infection [48,

49], the association with parasite virulence hasn’t been studied. It is likely that not only msp2,

but other unidentified markers contribute to malaria pathogenesis. Genome-wide association

analysis would be a powerful tool to discover other markers associated to malaria severity, and

identify parasite factors which contribute to severe and cerebral malaria.

Conclusion

The present study characterized sequence variants of msp2 in P. falciparum isolates from

patients with different clinical presentations, suggesting that the K allele at codon17 of block 4
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in 3D7 family and the N allele at codon8 of block 2 in FC27 family may be associated with

increased risk for cerebral malaria and other severe complications, respectively. Differences in

allele frequencies of several polymorphic loci between cerebral malaria and non-cerebral

severe malaria implied parasite genetic factors responsible for cerebral malaria may be distinct

from those that cause severe symptoms involving other organs. Their interactions with poten-

tial host factors for severe disease should also be explored. Functional study of this polymor-

phism may help to better understand parasite virulence leading to severe complications. This

is the first study to our knowledge that identifies msp2 sequence polymorphisms as candidate

virulence markers.
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