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Abstract

The highly pathogenic avian influenza (HPAI) H5N1 influenza virus has been a public health

concern for more than a decade because of its frequent zoonoses and the high case fatality

rate associated with human infections. Severe disease following H5N1 influenza infection is

often associated with dysregulated host innate immune response also known as cytokine

storm but the virological and cellular basis of these responses has not been clearly described.

We rescued a series of 6:2 reassortant viruses that combined a PR8 HA/NA pairing with the

internal gene segments from human adapted H1N1, H3N2, or avian H5N1 viruses and found

that mice infected with the virus with H5N1 internal genes suffered severe weight loss associ-

ated with increased lung cytokines but not high viral load. This phenotype did not map to the

NS gene segment, and NS1 protein of H5N1 virus functioned as a type I IFN antagonist as

efficient as NS1 of H1N1 or H3N2 viruses. Instead we discovered that the internal genes of

H5N1 virus supported a much higher level of replication of viral RNAs in myeloid cells in vitro,

but not in epithelial cells and that this was associated with high induction of type I IFN in mye-

loid cells. We also found that in vivo during H5N1 recombinant virus infection cells of haema-

topoetic origin were infected and produced type I IFN and proinflammatory cytokines. Taken

together our data infer that human and avian influenza viruses are differently controlled by

host factors in alternative cell types; internal gene segments of avian H5N1 virus uniquely

drove high viral replication in myeloid cells, which triggered an excessive cytokine production,

resulting in severe immunopathology.

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006821 January 4, 2018 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Li H, Bradley KC, Long JS, Frise R,

Ashcroft JW, Hartgroves LC, et al. (2018) Internal

genes of a highly pathogenic H5N1 influenza virus

determine high viral replication in myeloid cells and

severe outcome of infection in mice. PLoS Pathog

14(1): e1006821. https://doi.org/10.1371/journal.

ppat.1006821

Editor: Daniel R. Perez, University of Georgia,

UNITED STATES

Received: March 29, 2017

Accepted: December 15, 2017

Published: January 4, 2018

Copyright: © 2018 Li et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: HL was supported by the National

Science Fund for Distinguished Young Scholars

(81425001/H0104). KCB, RF, LCH and HS were

supported by Wellcome Trust https://wellcome.ac.

uk/ programme grant (087039/Z/08Z) awarded to

WSB. JSL is funded by BBSRC http://www.bbsrc.

ac.uk/ sLoLa BB/K002465/1 “Developing Rapid

https://doi.org/10.1371/journal.ppat.1006821
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006821&domain=pdf&date_stamp=2018-01-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006821&domain=pdf&date_stamp=2018-01-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006821&domain=pdf&date_stamp=2018-01-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006821&domain=pdf&date_stamp=2018-01-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006821&domain=pdf&date_stamp=2018-01-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006821&domain=pdf&date_stamp=2018-01-17
https://doi.org/10.1371/journal.ppat.1006821
https://doi.org/10.1371/journal.ppat.1006821
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://wellcome.ac.uk/
https://wellcome.ac.uk/
http://www.bbsrc.ac.uk/
http://www.bbsrc.ac.uk/


Author summary

Some avian influenza viruses, including highly pathogenic H5N1 virus, cause severe dis-

ease in humans and in experimental animal models associated with excessive cytokine

production. We aimed to understand the virological mechanism behind the cytokine

storm, and particularly the contribution of internal gene segments that encode the viral

polymerase and the non-structural proteins, since these might be retained in a pandemic

virus. We found that the internal genes from an H5N1 avian influenza virus allowed virus

to replicate to strikingly higher levels in myeloid cells compared to internal genes of

human adapted strains. The higher viral RNA levels did not lead to higher viral load but

drove excessive cytokine production and more severe outcome in infected mice. The

remarkable difference in viral replication in myeloid cells was not observed in lung epithe-

lial cells, suggesting that cell type specific differences in host factors were responsible.

Understanding the molecular basis of excessive viral replication in myeloid cells may

guide future therapeutic options for viruses that have recently crossed into humans from

birds.

Introduction

The outcome of infection with an influenza virus can vary widely from asymptomatic infection

to death. Although infection outcomes can be influenced by host factors such as age, prior

immunity, genetic susceptibility and comorbidities [1–4], differences in the virus itself

undoubtedly contribute to the variation observed. The most devastating human influenza

virus in recent recorded history was the ‘Spanish influenza’ virus that caused the 1918 pan-

demic. Recombinant influenza viruses reconstructed from the sequences of 1918 influenza are

rapidly lethal in animal models [5]. H5N1 ‘bird flu’ is a highly pathogenic avian influenza virus

that has occasionally infected humans with catastrophic outcome. Of around 856 people

infected by this virus, 52.8% have died. This contrasts starkly with the outcome of infection in

2009 with the new pH1N1 pandemic virus that was associated with just 0.02% case fatality

[4,6].

One feature often associated with the severe disease following H5N1 infection, and also

noted during animal experimental infections with 1918 virus, is a dysregulated host innate

immune response known as the cytokine storm. This response is characterized by excessive

levels of inflammatory cytokines and chemokines such as type I interferons (IFNs; IFN-α and

β), TNF-α, IL-6, IL-8, CCL2, and CXCL10 [7–11], leading to prolonged fever, lymphopenia,

severe pneumonia, and extensive lung damage [12]. Although cytokine storms are not unique

to influenza, they are almost always associated with high mortality rates [13–15]. Therefore, it

is critical to understand the immunological and virological mechanism behind the activation

of these storms, particularly in light of recent evidence that indicates it is possible for H5N1

strains to become airborne transmissible [16–17].

IFNs are important for the antiviral immune response by restricting viral replication. How-

ever, excessive type I IFN responses amplify the early pro-inflammatory cytokine response in

the lung via type I IFN receptor signaling [18–19], and have been associated with lung inflam-

mation in severe influenza infection [20]. Previous studies revealed that lung epithelial cells,

macrophages, conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs) all

express type I IFNs to some extent during influenza infection [21–22]. However, the primary
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source of type I IFNs in response to influenza infection, especially H5N1, and the virological

mechanism behind the cytokine storm remain unknown.

Excessive cytokine production during H5N1 influenza infections occurs in spite of the fact

that, like all natural influenza viruses, it encodes a well-known interferon antagonist, the NS1

protein. NS1 suppresses the host’s antiviral response by direct inhibition of activation of RIG-I

by viral RNAs [23–24], as well as through dsRNA sequestration, and modification of the

expression of induced genes [25–29]. NS1 gene sequences vary between different strains and

subtypes of influenza virus and between viruses isolated from different hosts [30]. It is possible

the cytokine storm triggered by H5N1 influenza virus in humans is the result of an unadapted

avian NS1 protein that does not efficiently antagonize the type I IFN induction pathways in

human cells. However, previous reports have shown that NS1 proteins from a variety of differ-

ent avian influenza virus strains including H5N1 viruses were able to control type I IFN

responses in cells of human origin in vitro [31–34].

The severe outcome following HPAI H5N1 influenza virus infection may be, to some

extent, dependent on specific genetic features of the H5 HA gene. First, the H5 HA protein

harbours a multibasic cleavage site that facilitates multiple cycles of virus replication outside of

the respiratory tract. Possession of a multibasic cleavage site in HA determines the highly path-

ogenic phenotype in poultry hosts [35] and also contributes to the high pathogenicity in the

mouse model [36–37]. However, other influenza viruses associated with severe disease includ-

ing cytokine storm in animal models, such as 1918 H1N1 influenza, do not carry this motif

[38]. Other features of the H5 HA that might contribute to H5N1 pathogenicity in mice and

humans include a preference to bind α-2,3 sialic acid (SA) receptors thus targeting the virus to

the lung [39], a pH of fusion that is higher than for human-adapted strains that might enhance

entry into endothelial cells [40], and the ability to trigger acute lung injury through a TLR4

dependent pathway [41]. However, receptor binding specificity and pH stability of H5 HA

might be altered if H5 viruses were to gain human transmissibility, so it is important to under-

stand the contribution of internal gene segments to disease severity.

In the following research, we investigated the role of internal genes of an H5N1 influenza

virus in the activation of a cytokine storm and compared the virus-host interaction with that

of human adapted viruses. To avoid the complication that different viral surface proteins, HA

and NA, might affect cell tropism and immune responses in vitro and in vivo, we rescued a

series of viruses that combined a A/Puerto Rico/8/34 (PR8) HA/NA pairing with internal gene

segments from either an H1N1, H3N2 or H5N1 virus [36,39,42–45]. Since the PR8 HA and

NA genes enable efficient infection of mice, we were able to use mice as a tractable in vivo
model to study the outcome of infection with the different RG viruses.

Our results reveal that the internal genes of H5N1 facilitate high replication of viral RNAs

in haematopoetic cells and drive excessive cytokine production that is the hallmark of infection

with these avian influenza viruses.

Results

A set of recombinant influenza viruses that differ only in the origin of the

internal gene segments replicate with similar kinetics in vitro but vary

markedly in pathogenicity in vivo
To address whether the internal gene segments of a highly pathogenic H5N1 avian influenza

virus, associated with a fatal human case, contribute to disease severity, we generated a recom-

binant influenza virus (6:2 Tky/05) with the six internal gene segments from influenza H5N1

A/turkey/Turkey/05/2005 virus (Tky/05) and the HA and NA genes from the laboratory

adapted strain PR8. The H5N1 Tky/05 virus is highly pathogenic in mice [46]. In addition, we
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generated similar recombinant viruses with internal gene segments from a seasonal H3N2

influenza virus A/Victoria/3/1975 (Vic/75) or from a prototypic early pH1N1 pandemic virus

A/England/195/2009 (Eng/09), also combined with HA and NA genes from PR8. Finally to

assess the importance of the NS gene segment, we generated a chimeric virus with five internal

gene segments from the pH1N1 virus (PB1, PB2, PA, NP and M), and the NS segment from

the avian H5N1 virus, combined with the PR8 HA and NA genes (Eng/09:TkyNS) (Fig 1A).

Thus, all four of these viruses had the same tropism determined by the PR8 HA and NA gene

segments. The three 6:2 viruses replicated efficiently in MDCK cells. The virus with Tky/05

internal genes replicated slightly faster than the other two, showing higher titres at 12 and 24

hours. The chimeric virus with Tky/NS gene produced titres around one log less than the

other viruses at 12 and 24 hours post infection, although it attained a high titre by 36 hours

(Fig 1B).

To assess the pathogenicity of the four RG (reverse genetic rescued) viruses, 6–8 week old

BALB/c mice were infected by intranasal inoculation of 104 pfu viruses. All infected mice lost

weight over the following 7 days, but weight loss was most dramatic in mice infected with the

6:2 Tky/05 virus (Fig 2A). Mice in this group rapidly lost weight in the first four days after

infection, reaching almost 20% weight loss by day 4. Interestingly, this dramatic weight loss

did not correlate with a higher lung viral load (Fig 2B) or with increased spread of virus

through the lungs (S1 Fig). Indeed, the viral titre in lung homogenates was highest for mice

infected with the 6:2 Eng/09 virus on both day 2 and day 7 post infection. Day 2 lung titres

were similar between the other three viruses. At the later time point (day 7) two mice surviving

in the 6:2 Tky/05 infected group had cleared the virus from the lung but did not regain weight

(Fig 2A and 2B).

Instead of viral lung titre, the increased weight loss was associated with an early and high

level of cytokines in the lungs of the 6:2 Tky/05 virus infected mice (Fig 2C and S2 Fig). Levels

of type I IFNs, TNF-α, IL-6 and CXCL1 as well as CCL2, and IFN-γ were all significantly

higher in lungs of 6:2 Tky/05 virus infected mice than in the other three groups at day 2 post

infection (Fig 2C).

The dynamics of cytokine detection in the lung tissue (S3 Fig) showed that type I IFNs were

produced earlier than most of the other cytokines. IFN-alpha (IFN-α) was detected in the

lungs of 6:2 Tky/05 virus-infected mice along with IL-6 at day 2, whereas levels of TNF-α,

CXCL1, CCL2 and IFN-γ continued to rise through day 3 post infection.

Fig 1. Reassortant influenza viruses rescued by reverse genetic methods (RG). (A) Gene source of the reassortant influenza viruses. (B) Replication kinetics of the

reassortant influenza viruses in MDCK cells. Data expressed as mean ± SD (n = 3). Area under the curve (AUC) was calculated for each virus. Difference in the AUC

between 6:2 Tky/05 vs. 6:2 Eng/09, 6:2 Tky/05 vs. 6:2 Vic/75, and 6:2 Eng/09 vs. Eng/09:TkyNS was analyzed with one-way ANOVA and Bonferroni’s multiple

comparisons test. ns, not significant. hpi, hours post infection.

https://doi.org/10.1371/journal.ppat.1006821.g001
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6:2 Tky/05 virus does not induce high type I IFN in epithelial cells and NS1

protein of Tky/05 virus functions as an efficient type I IFN antagonist in

these cells

The most abundantly infected cell type in the virus infected lung is the epithelial cell [47–49].

We previously showed that different influenza viruses varied in the extent to which they

induced a type I IFN response in A549 cells, a human lung epithelial cell line [31]. To assess

the induction of type I IFNs by the RG viruses in the present study we utilized a reporter A549

cell line we previously generated that harbors a reporter gene with the IFN-β promoter

upstream of luciferase. The reporter cells were infected with equal titres of the four RG viruses

and luciferase was measured at 24 hours post infection (Fig 3A). In contrast to what was

Fig 2. Pathogenicity of the reassortant influenza viruses. (A) Six to eight week old female BALB/c mice (n = 15 per group) were infected i.n. with 104 PFU virus and

monitored for weight loss daily. (B) Viral titers in the homogenized lung tissue on day 2 and 7 post infection (n = 5 per group). (C) Cytokine and chemokine analysis of

homogenized lung tissue on day 2 post infection Data expressed as mean ± SD (n = 5 per group). The value of 6:2 Tky/05 group was compared with that of 6:2 Eng/09,

and 6:2 Vic/75 groups. Most of the cytokines tested in the Eng/09:TkyNS and mock groups are below the minimum level of detection (MLD, the dash line), so were not

included in the statistical comparison. �P<0.05, ��P<0.01, ���P<0.001, ����P<0.0001.

https://doi.org/10.1371/journal.ppat.1006821.g002
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observed in vivo, infection with the 6:2 Tky/05 virus did not lead to high activation of the IFN-

β promoter. Indeed, it was the 6:2 virus with internal genes from Eng/09 (pH1N1) virus that

stimulated the highest luciferase signal in the A549 cells, as we previously described [50]. The

5:1:2 chimeric virus that combined polymerase gene segments from Eng/09 with the NS gene

segment from Tky/05 did not induce a high luciferase signal from infected A549 reporter cells,

implying that the Tky/05 NS1 protein functioned as an effective type I IFN antagonist (Fig

3A).

We also measured induction of type I IFNs in primary mouse tracheal epithelial cells,

MTEC, infected with equal titres of each virus. All four viruses induced IFN-β in a similar pat-

tern to that seen in the human A549 cell line, with the highest levels induced by the 6:2 Eng/09

virus and the lowest by the 5:1:2 Eng/09:TkyNS virus (Fig 3B). IFN-α levels were lower from

MTEC cells but showed a similar pattern (Fig 3C).

To compare the ability of the NS1 proteins of each virus to control induction of the IFN-β
promoter, we expressed them in the A549 IFN-β reporter cells, and then challenged them with

the 6:2 Eng/09 virus, or Newcastle Disease Virus (NDV), to activate the type I IFN induction

cascade. We found that the NS1 protein from Tky/05 virus suppressed IFN-β induction effi-

ciently, as did Vic/75 NS1 and both were more effective than the NS1 protein of the Eng/09

Fig 3. Avian influenza NS1 protein is able to inhibit IFN-β production in A549 cells. (A) Activation of the IFN-β promoter at 24 hpi in A549-Luc cells after

infection with 6:2 RG viruses (MOI = 3). (B, C) IFN-β and IFN-α induction at 24 hpi in MTECs (mouse tracheal epithelial cells) after infection with RG viruses

(MOI = 3) determined by ELISA. The dashed line indicates the minimum detection limit. (D-F) Suppression of IFN-β promoter in A549-Luc cells by the Eng/09,

Vic /75 or Tky/05 NS1 protein. (D, E) 1000 ng plasmid was transfected followed by infection with influenza or NDV. Data are expressed as mean ± SD (n = 3).
�P<0.05, ��P<0.01, ���P<0.001, ����P<0.0001 indicate significant difference compared between 6:2 Eng/09 and Eng/09:TkyNS virus, and between 6:2 Tky/05,

6:2 Eng/09 and 6:2 Vic/75 NS1; unlabeled indicates no significant difference. hpi, hours post infection.

https://doi.org/10.1371/journal.ppat.1006821.g003
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virus (Fig 3D and 3E). Indeed a titration of plasmids encoding Vic/75 and Tky/05 NS1 pro-

teins demonstrated no difference in their efficiency to suppress the IFN-β signal (Fig 3F).

6:2 Tky/05 virus induces high secretion of type I IFN in innate immune

cells in vitro
Although epithelial cells are the primary target of infection and the major producers of

progeny virus, dendritic cells and macrophages have also been reported to be infected by influ-

enza virus, and are believed to be the main producers of cytokines and type I IFNs in vivo
[10,20,51–55]. So far there is not a thorough understanding of which is the major cell type that

contributes to differences in the extent of type I IFN production induced by infection with dif-

ferent viruses, nor the mechanism that defines such differences.

We aimed to find a cell population that could be studied in vitro that reflected the pattern of

type I IFNs produced by our panel of viruses in vivo. To this end we propagated bone marrow

derived cells in different media to produce populations with phenotypes similar to macro-

phages (BMDMs, propagated with L929 conditioned media), dendritic cells (BMDCs propa-

gated in GM-CSF termed GM-DCs) or plasmacytoid dendritic cells (BMDCs propagated with

Flt3 ligand termed FL-DCs). Each cell population was infected at equal multiplicity with the

RG influenza viruses. Strikingly, IFN-α and IFN-β production from GM-DCs and IFN-β pro-

duction from BMDMs propagated using L929 conditioned media, reflected the same pattern

as seen in vivo, in that type I IFN levels were significantly higher from cells infected with the

6:2 Tky/05 virus than for any of the other viruses (Fig 4). In addition to the high type I IFN

responses observed, the GM-DCs infected in vitro with 6:2 Tky/05 virus, but not the other

viruses, also displayed a high induction of TNF-α and IL-6 mRNAs (S4 Fig). In contrast,

FL-DCs produced very low levels of IFN-β upon infection. Levels of IFN-α after infection of

FL-DCs were higher but were not different between 6:2 Vic/75 and 6:2 Tky/05 viruses (S5 Fig).

Increased virus RNA replication in GM-DCs accounts for the high level of

IFN-α production by 6:2 Tky/05 virus

We next carried out experiments to understand the basis of the high type I IFN induction

observed in vitro in infected GM-DCs. We found that IFN-α production induced by infection

with any of the recombinant influenza viruses depended on virus replication since there was

no signal following UV inactivation of input virus (Fig 5A).

To test the hypothesis that high levels of RNA generated during replication by the 6:2 Tky/

05 virus drove the high type I IFN response in myeloid cells, we measured the accumulation of

viral RNAs by qRT-PCR in different cell types. In GM-DCs, by 8 hours post infection levels of

mRNA and vRNA of the Tky/05 virus were 7.7 and 17.0 fold higher than that of the human

adapted viruses, respectively (Fig 5B and 5C). In contrast, in MTEC levels of viral RNAs were

not higher for the Tky/05 virus (Fig 5D and 5E). In other epithelial cells tested, human A549

cells or mouse LA4 (lung epithelial) cells, there was also little or no difference between levels of

viral RNAs produced (S6 Fig). At 8 hours post infection of LA-4 cells the Tky/05 virus pro-

duced just 2 fold more vRNA than the other viruses (S6 Fig).

We also generated a mutant virus that would be compromised in replication in mammalian

cells by engineering the mutation K627E in the Tky/05 PB2 gene segment. Indeed accumula-

tion of v and mRNAs in GM-DCs infected with this virus were greatly decreased compared to

the ‘wild type’ 6:2 Tky/05 virus with the mammalian-adapting 627K motif (Fig 6A and 6B).

The mutant virus with PB2 627E no longer induced IFN-α mRNA in infected GM-DCs (Fig

6C). In order to ensure the PR8 HA and NA of the Ty/05 virus was not misrepresenting the

ability of an H5N1 virus to infect and replicate in GM-DCs, we generated PR8:TkyHAsbNA,

H5N1 influenza virus internal genes determine high replication in myeloid cells and severe outcome
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that contained the six internal genes from PR8 and the H5 HA and N1 NA from A/turkey/

Turkey/05/2005 virus. To make it biologically safe, the multi-basic cleavage site of H5 HA was

removed. We compared the infection of GM-DCs by this virus with infection by whole PR8

virus and found them to be similar (S7 Fig). The m, c, and vRNA accumulation were also simi-

lar between PR8 and PR8:TkyHAsbNA infected GM-DCs, and significantly lower than in

GM-DCs infected with 6:2 Tky/05 virus (Fig 6D–6F). Accordingly, neither the PR8:Tky-

HAsbNA virus nor the whole PR8 virus induced high IFN-α expression (Fig 6G).

To probe the pathway that led to high type I IFN induction in GM-DCs, we infected

GM-DCs derived from Mavs-/- mice and assessed the IFN-α response. In the absence of

MAVS, none of the viruses induced a type I IFN response despite there being high levels of

viral RNA following infection with the 6:2 Tky/05 virus (S8 Fig).

Fig 4. IFN-β and IFN-α induction in myeloid cells after infection with reassortant influenza viruses. IFN-β and IFN-α induction

at 24 hpi in GM-DCs (A, C) and BMDMs (B, D) after infection with MOI = 10 of RG viruses determined by ELISA. Data are

expressed as mean ± SD (n = 3). The value of 6:2 Tky/05 group was compared with that of 6:2 Eng/09 or 6:2 Vic/75 groups. �P<0.05,
��P<0.01, ���P<0.001, ���� P<0.0001; unlabeled indicates no significant difference. The dashed line indicates the minimum

detection limit. hpi, hours post infection.

https://doi.org/10.1371/journal.ppat.1006821.g004
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Fig 5. IFN-α production from GM-DCs requires viral replication. (A) IFN-α induction at 24 hpi in GM-DCs infected

with RG viruses at MOI = 10 or exposed to the same viruses after UV-inactivation. Bone marrow derived GM-DCs (B,

C) and MTEC (D, E) were infected with the indicated virus at MOI = 10 and 3, respectively. Total RNA from the

H5N1 influenza virus internal genes determine high replication in myeloid cells and severe outcome
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Cells of haematopoetic origin are a source of IFN-α in 6:2 Tky/05 virus

infected mice

To confirm that cells of haematopoetic origin contribute to the excessive IFN-α in vivo in 6:2

Tky/05 virus infected mice, we FACS purified CD45-positive cells from lungs harvested 2 days

post infection and performed qRT-PCR for viral RNAs and for IFN-α and IL-6 mRNAs. We

found evidence of vRNA and mRNA in this cell population as well as a type I IFN and IL-6

cytokine response (S9 Fig).

To further demonstrate that cells of hematopoetic origin were important in the cytokine

response and severe outcome of infection with the 6:2 Tky/05 virus, we engineered a recombi-

nant virus (NPr142-Tky/05) that harboured four copies of a microRNA target sequence in the

NP gene for a microRNA specifically expressed in cells of haematopoetic origin, MiR142, as

GM-DCs at 2 hpi, 4 hpi or 8 hpi (B, C) and from MTEC at 8hpi (D, E) was extracted. RT-PCR was performed using

specific primers targeting segment 4 (HA) for each species of virally derived RNA. Bars represent mean ± SD (n = 3). The

value of 6:2 Tky/05 group was compared with that of 6:2 Eng/09 or 6:2 Vic/75 groups, and the difference between the 6:2

Eng/09 and Eng/09:TkyNS was also assessed. �P<0.05, ��P<0.01, ���P<0.001, ����P<0.0001; unlabeled indicates no

significant difference. The dashed line indicates the minimum detection limit. hpi-hours post infection.

https://doi.org/10.1371/journal.ppat.1006821.g005

Fig 6. Higher replication and IFNα induction in GM-DCs of the 6:2 Tky/05 virus depends on mammalian adaptation of RdRp and was not seen for virus with

internal genes from PR8. Bone marrow derived GM-DCs were infected with the indicated virus at MOI = 10. Total RNA was harvested at 8 hpi. RT-PCR was

performed using primers targeting segment 4 (HA) (A-C) and segment 7 (M) (D-G) respectively. Bars represent mean ± SD (n = 3). Differences between groups

were analyzed with one-way ANOVA and Bonferroni’s multiple comparisons test. �P<0.05, ��P<0.01, ���P<0.001, ����P<0.0001; unlabeled indicates no

significant difference.

https://doi.org/10.1371/journal.ppat.1006821.g006
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previously described by Langlois et al [56]. This would result in cell type specific reduction in

virus replication since levels of NP protein required to support replication would be specifi-

cally reduced in myeloid cells. A control virus contained an inserted sequence at the same loca-

tion that was not a MiR target (NPctrl-Tky/05) (Fig 7A). NPr142-Tky/05 and NPctrl-Tky/05

viruses showed similar replication in MDCK cells (Fig 7B). However, in GM-DCs, vRNA accu-

mulation following infection with the virus containing MiR142 target sites was significantly

reduced compared to control virus (Fig 7C) and this led to a decreased level of IFN-α mRNA

in these cells (Fig 7D).

Mice were infected with 105 pfu of each recombinant virus, and monitored for weight loss,

lung titre and IFN-α in lung homogenates at day 2 (Fig 7E–7G). The insertion of the MiR142

target sequence, that reduced the extent of replication in cells of hematopoietic origin, resulted

in reduced weight loss that correlated with a lower IFN-α level in the lung (Fig 7E and 7G).

Virus titre in the lung was not affected (Fig 7F), suggesting that the majority of infectious virus

is produced from epithelial cells, but that replication in cells of haematopoetic origin is the

source of the excess type I IFN produced by the 6:2 Tky/05 virus.

Finally, we attempted to attribute the high cytokine inducing phenotype to a particular viral

polymerase or NP gene by creating a set of recombinant viruses based on the 6:2 Tky/05 virus

in which each RNA segment was exchanged for that from the Eng/09 virus (S10A Fig).

Although several of these viruses replicated to high titres in mouse lung, none induced rapid

weight loss as seen for the 6:2 Tky/05 virus (S10B and S10C Fig). Furthermore, exchanging any

one polymerase or NP segment for that of Eng/09 abrogated the high cytokine induction in

the lungs of infected mice suggesting that a single gene of the Tky/05 virus is not responsible

for the high cytokine phenotype but rather the particular replication activity of the Tky/05

polymerase and NP complex. (S10D Fig).

Discussion

The severity of the next influenza virus pandemic will be determined by the nature of the virus

that emerges from an animal source and acquires an airborne transmissible phenotype. The

HPAI H5N1 virus has been a public health concern for more than a decade because of frequent

zoonoses and the high case fatality rate associated with human infections [57–59]. At least part

of the high virulence of this virus can be explained by features of the H5 HA protein such as a

propensity to bind to α-2,3-SA receptors in the lungs, an ability to enter endothelial cells, and

a multi-basic cleavage site that might enable systemic spread and infection of cell types not

usually infected by seasonal influenza viruses [35,42,60–63]. Indeed recent work by Tundup

et al. used a similar approach to that employed here to control virus tropism in vivo by engi-

neering MiR target sites into RG H5N1 virus, and highlighted the importance of endothelial

cell infection in H5N1 pathogenesis in mice [37]. However, some features of the H5 HA that

support the extended tropism of H5N1 avian influenza would likely be lost if the virus gained

airborne transmissibility, and so it is important to understand how other genes of the virus

also affect pathogenesis if we are to predict the likely severity of an H5N1 pandemic.

Although the ferret model is considered the gold standard for influenza infection and trans-

mission, the HA/NA pairing employed in these studies to normalise viral entry would not

facilitate significant viral replication in the ferret respiratory tract due to receptor specific

incompatibilities [64]. Therefore, we focused on the mouse model of influenza. In contrast to

the ferret model, the mouse model of influenza benefits from a plethora of established proto-

cols and immunological reagents, as well as a fully annotated genome. In particular, the lack of

annotation of the ferret genome makes it uncertain as to whether the NPr142-Tky/05 virus

would be restricted in hematopoetic cells. A recent article, as well as our own nucleotide
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Fig 7. Inhibition of viral replication of 6:2 Tky/05 in haematopoetic cells decreased both IFN-α production in lung and disease severity. (A) Schematic of the NP

segment of the engineered viruses. (B) Replication kinetics of the NPwt-Tky/05, NPctrl-Tky/05, and NPr142-Tky/05 viruses in MDCK cells. Viral replication (C) and

IFN-α induction (D) in GM-DCs 24 hpi, quantified with SYBR Green. Values were calculated by the 2ΔCt method. Six to eight week old female BALB/c mice (n = 10

per group) were infected i.n. with 105 PFU virus and weight loss was monitored daily (G). IFN-α production (E) and viral titers (F) in lung tissue on day 2 post

infection. � P<0.05, �� P<0.01, ���P<0.001, ����<0.0001; ns, not significant. In Fig E-G, only significant differences between NPctrl-Tky/05 and NPr142-Tky/05 virus

infected mice were labeled.

https://doi.org/10.1371/journal.ppat.1006821.g007
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BLAST analysis, have revealed a high degree of similarity between mouse miRNA-142 and an

unannotated miRNA in the ferret genome, but further research is necessary to understand

whether this putative miRNA-142 displays similar cell-type specific effects in ferrets as it does

in mice [37].

Here we assessed the contribution of internal gene segments that encode the viral RNA

dependent RNA polymerase (RdRp), nucleoprotein, matrix and nonstructural proteins to the

outcome of H5N1 influenza virus infection. Using a reverse genetics strategy, we engineered

viruses that had an identical ability to bind and enter cells because they encoded the same HA/

NA pairing, but differed in their interaction with factors inside the infected cells depending on

the human or avian virus origin of the segments encoding the internal genes. This revealed

that the internal genes of the H5N1 virus contribute to the severe outcome in vivo. Upon infec-

tion of mice with the virus with H5N1 internal genes, dramatic body weight loss was accompa-

nied by high levels of type I IFNs and other inflammatory cytokines in the lungs, although

titres of virus were not higher than in mice infected with human adapted viruses. Two previous

studies also found that the polymerase genes of H5N1 influenza virus determined the high

cytokine response in human macrophages and in mice but did not solve the underlying mech-

anism [65–66].

Recent microarray analysis has confirmed prior genetics and biochemistry studies, which

implicate type I IFNs as the main driver of many other cytokines during influenza infection

[67]. However, the cell type that is the primary source of type I IFN, especially during H5N1

infection in vivo was not clear. Previous work has shown that CD11c+ cells, which constitute

macrophages, monocytes and dendritic cells, produce the bulk of IFN-β in vivo following

infection with a mouse adapted influenza virus [51]. Our data suggest that H5N1 triggers an

unusual and excessive cytokine response compared to human adapted viruses in cells of hae-

matopoetic origin (Figs 4–6). In vitro, using GM-DCs, which are thought to represent a mix-

ture of monocyte derived and conventional DCs [68], we found that the 6:2 H5N1 virus

induced significantly more type I IFNs than the equivalent human adapted viruses. In contrast,

in epithelial cells, the 6:2 H5N1 virus was not a potent type I IFN inducer. Conflicting reports

in the literature about the propensity of H5N1 influenza viruses to trigger high type I IFNs

might be explained by our cell type specific findings: Cheung et al. first reported high cytokines

induced by H5N1 viruses using human monocyte derived macrophage populations, whereas

Zeng et al. found that H5N1 viruses effectively controlled type I IFNs in human bronchial epi-

thelial cells [10,69]. Although GM-derived dendritic cells are not perfect analogues for den-

dritic cells found in the lung, it is striking that the pattern of type I IFNs production in these

cells closely resembled that produced in vivo during infection by the three strains of RG 6:2

influenza viruses. Moreover the decrease in lung type I IFN levels during infection with the

Mir142 targeted RG virus confirms that a proportion of the cytokines that contribute to the

proinflammatory response during H5N1 virus infection were secreted in vivo by infected hae-

matopoetic cells.

One explanation for the high levels of type I IFNs during H5N1 virus infection would be

that virally encoded IFN antagonists from the avian derived Tky/05 virus did not control the

type I IFN response in mammalian cells. Three pieces of evidence from our study ruled out

that the H5N1 NS1 protein was deficient in this regard: first, there were low levels of cytokines

in lungs of mice infected with the 5:1:2 Eng/09:TkyNS virus, second, the 6:2 Tky/05 virus effec-

tively controlled type I IFN induction in epithelial cells and third, exogenously expressed Tky/

05 NS1 protein could efficiently suppress an IFN stimulus, at least in epithelial cells. Since sev-

eral other viral gene products are implicated in controlling the innate immune response,

including two of the polymerase proteins, PB2 and PA, as well as the accessory proteins

PB1-F2, and PA-X, it may be that one or more of these functions are defunct in the Tky/05
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virus, although sequence analysis based on current knowledge does not support this [70]. Per-

haps some IFN antagonists of the avian influenza virus do not function in mammalian myeloid

cells. We were not able to test directly whether exogenously expressed Tky/05 NS1 protein or

any other virally encoded IFN antagonists were able to control type I IFN induction in the

GM-DC cells we employed here. However, using a panel of RG viruses in which individual

polymerase gene segments were swapped between Tky/05 and Eng09, we did not find any sin-

gle viral gene to which we could attribute the high cytokine inducing phenotype (S10 Fig). The

alternative and more plausible explanation for our data is that the higher levels of a viral RNA

species produced during H5N1 infection in myeloid cells, which are more sensitive to viral

pathogen associated molecular patterns (PAMPs) than epithelial cells, outweighed the potency

of the H5N1 virus-encoded IFN antagonists.

We suggest that the PAMP responsible is a replication product of the viral polymerase. We

found that viruses with H5N1 internal genes had an unusual propensity to drive high levels of

RNA replication in the GM-derived DC cells infected in vitro. The conventional pathway by

which influenza virus triggers a type I IFN response is by RIG-I detection of replicated viral

RNAs and subsequent signaling through MAVS [71–73]. Infection of GM-DCs derived from

Mavs-/- mice did not result in any type I IFN production despite similar levels of virus replica-

tion (S8 Fig) suggesting the pathways triggered by H5N1 virus are the conventional ones. Type

I IFN induction in MAVS positive cells was dependent on replication and correlated with the

amount of viral RNAs generated. We hypothesize that one or more host cell factors that are

differentially expressed in myeloid cells vs. epithelial cells affect the behavior of the RNA

dependent RNA polymerase (RdRp) of the avian and the human adapted virus differently.

Thus the severe disease resulting from infection with H5N1 virus stems from excessive RNA

polymerase activity in mammalian myeloid cells. High viral replication has been previously

linked with the clinical outcome of H5N1 infection in mice [36]. The inappropriate early type

I IFN response is not dampened by viral IFN antagonists and drives a downstream production

of inflammatory cytokines in the lung that leads to severe weight loss. Whether the lack of con-

trol of virus replication in myeloid cells is a common feature of other avian influenza viruses

associated with severe human infections, whether there is a specific virus signature responsible

and the identity of host factors that determine these differences, remain to be established.

Materials and methods

Cells, plasmids and viruses

LA4 cells were acquired from Prof. Robert Snelgrove (Leukocyte Biology Section, National

Heart and Lung Institute, Imperial College London) and were originally obtained from Ameri-

can Type Culture Collection (ATCC). LA4 cells were maintained in Ham’s F12 medium con-

ditioned with 2mM L-glutamine and 15% FBS. Human embryonic kidney (293T) (ATCC),

human lung adenocarcinoma epithelial cells (A549) (ATCC) and Madin-Darby canine kidney

(MDCK) cells (ATCC) cells were maintained in Dulbecco’s modified Eagle’s medium

(DMEM; Gibco, Invitrogen) supplemented with 10% FBS and 1% penicillin/streptomycin

(Sigma-Aldrich). A549-Luc cells were constructed and maintained as previously described

[74]. L929 cells were a gift from Caetano Reis e Sousa, The Francis Crick Institute, UK, and

were cultured with 10% FBS, 0.05mM β-mercaptoethonal and 1% penicillin/streptomycin in

conditioned RPMI 1640 medium.

Plasmids used in this study to rescue viruses have been previously described [75–76]. NS1

expression plasmids utilized in Fig 3D–3F were described previously[50].

All the viruses used in this research were rescued by reverse genetics. Briefly, 12 plasmids,

comprising of 8 polI plasmids encoding the indicated virus segments and 4 helper expression
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plasmids encoding A/Victoria/3/75 polymerase components and NP expressed by the

pCAGGS vector, were transfected into the 293-T cells that were then co-cultured with MDCK

cells. Virus stocks were grown on MDCK cells using serum free DMEM supplemented with

1ug/mL of TPCK trypsin. Viruses were stored in -80˚C and titrated on MDCK cells by plaque

assay.

NP-r142, NP-ctrl plasmid design

The modified Tky-NP segment was generated by PCR and ligation. We added a BamHI site

62bp upstream of the 3’ terminus of the complimentary sequence by site directed mutagenesis.

Utilizing a naturally occurring BstBI restriction site 257bp upstream of the 3’terminus, we

were able to insert a synthesized 478bp-length BamHI and BstBI flanked sequence (GeneArt).

The sequence contained 231bp of codon optimized open reading frame upstream of the stop

codon, four tandem copies of miRNA142 target sequence or scrambled control sequence, and

146bp duplicated segment 5 packaging sequence. Thus we created a plasmid, which conserved

both the amino acid composition of the NP protein and the packaging sequence of the segment

[56,77]. The miRNA142 target was the same as previous described [56]. The scrambled control

sequence was provided by Lucy Thorne (University College London): AGACAATACGTCAC

ATATAACGA. The modified NP plasmids and RG virus were sequence verified.

Growth kinetics of viruses in cells

MDCK cells were infected with the indicated virus at MOI = 0.001 and overlaid with serum

free DMEM containing 1μg/ml TPCK trypsin. Supernatants were collected at a given time

point after infection and stored at -80˚C. Virus was titrated by plaque assay in MDCK cells.

Inactivation of viruses

Inactivation of virus was performed by UV radiation. Indicated viruses were exposed on ice to

short wave UV radiation at 254nm for 10 min at a distance of 15cm. Virus integrity and loss of

infectivity was confirmed by Haemagglutination test with chicken erythrocytes (Envigo RMS

(UK) Ltd) and plaque assay, respectively.

Plaque assay and Haemagglutination assay

Plaque assays were performed as previously described [76]. Briefly, 100% confluent MDCK

cell monolayers were inoculated with 100 μl of serially diluted virus and overlaid with 2% aga-

rose (Oxoid) in supplemented MEM with 2.6 μg/ml trypsin (Worthington) and incubated at

37˚C for 3 days.

For Haemagglutination assay, 0.5% chicken erythrocytes (Envigo RMS (UK) Ltd) were

mixed with serially diluted virus in a 96-well plate. After half an hour’s incubation on ice, the

results were read by eye.

A549 transfection with NS1 and viral infection

A549-IFNβ cells were transfected with NS1-pCAGGS plasmid. Briefly, fully confluent cells

were incubated with 1000ng/well of either Eng/09, Vic/75, or Tky/05 NS1-pCAGGS plasmid

in Opti-MEM and lipofectamine (Invitrogen) for 2–4 hours. Opti-MEM was removed and

replaced with 10% DMEM overnight. Viral challenge of transfected cells was performed at

either an MOI 3 (influenza infections), or with a final dilution of 1:100 (NDV). Eighteen hours

post infection, cells were lysed and harvested with 200μl passive lysis buffer (Promega), then

assayed for luciferaseusing FLUOstar Omega Plate Reader (BMG Labtech).
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Mice and infections

Six to eight week old female BALB/c or C57B6 mice (Charles River UK Ltd or Envigo RMS

UK Ltd) were maintained in pathogen-free conditions until used for viral infection or cell iso-

lation. Mavs-/- mice were a kind gift from Professor S. Akira [18,78].

Mice were infected intranasally with the indicated PFU of virus or serum free DMEM

(mock) in a 25ul volume under isofluorane. Animals were monitored and weighed daily.

Lungs were harvested on Day 1, 2, 3, 4, or 7, or when weight loss dropped below 80% of the

original weight on Day 0. Lungs were suspended in 1ml of PBS and homogenized using

1.3mm beads, homogenates were frozen in -80˚C before testing the virus titer and cytokine

expression.

Generation of mouse bone marrow derived GM-DC, FL-DC, and

macrophages

To isolate bone marrow cells, femur and tibia of three-to-six week old female BALB/c mice

were excised and cleaned of flesh. Bone marrow cells were flushed out, filtered through a

nylon cell strainer (Falcon, 2350) and washed with PBS. Cells were resuspended and differenti-

ated in RPMI 1640 medium (10% FBS, 0.05mM β-mercaptoethanol and 1% penicillin/strepto-

mycin) supplemented with GM-CSF (R&D, cat 415-ML-010: final concentration 40 ng/ml), or

Flt3-L (R&D, cat 427-FL-025: final concentration 250 ng/ml), or 20% L-929 cell supernatant.

On day 3 or 4 of culture, non-adherent cells, which are mostly granulocytes, were removed

and fresh medium containing the same concentration of GM-CSF or Flt3-L or L929 cell super-

natant was added. On day 7, cells were harvested for further experimental use [79–81].

Primary mouse tracheal epithelial cell culture (MTEC)

Mouse tracheal cells were isolated from three-to-six week old female BALB/c mice by pronase

digestion. The cells were seeded in a petri dish and incubated for 3–4 hours to adhere fibro-

blasts. Then non-adherent cells were collected and reseeded in a 10cm petri dish and cultured

with DMEM/F12 medium supplemented with 10% FBS, 15 mM HEPES (Gibco), 0.03%

NaHCO3 (Gibco), 0.01uM Retinoic acid (Sigma, cat R-2625), Amphotericin B (Gibco, cat

A2942: final concentration 250ng/ml), EGF (BD, cat 354001: final concentration: 25ng/ml), D-

valine (Sigma, V1255: final concentration: 0.1mg/ml), bovine pituitary extract (Gibco, cat

13028–014: final concentration: 30 ug/ml), Cholera Toxin (Sigma, cat C8052: final concentra-

tion: 0.1ug/ml), Insulin-Transferrin-Selium (Gibco, cat 41400045: 1:100). Medium was

changed every two days. After 14 days incubation and differentiation, the epithelial cells were

harvested for experimental use.

Measurement of viral RNA from infected cells

Bone marrow derived GM-DCs, FL-DCs and macrophages, LA4, A549, or MTEC cells were

seeded on 96-well plates (about 1.25×105 cells/well) and infected with virus diluted in serum

free DMEM for 1hr at 37˚C (MOI as indicated in the relevant figure legends) and replaced

with culture supplemented with 2% FBS. Cell supernatants were harvested at the indicated

time points post-infection. Infected cell lysates were washed with PBS and then used to extract

RNA according to the protocol below.

RNA extraction, reverse transcription and quantitative PCR

Viral RNA was extracted from the infected cells using RNA extraction kits (QIAGEN, RNeasy

Mini Kit, cat. 74106) following the manufacturer’s instructions. Complementary DNA
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(cDNA) was synthesized in a reverse transcription step using different polarity specific prim-

ers. Primers for generating cDNA from segment 4 (HA) vRNA and mRNA were 5’-ACAGCC

ACAACGGAAAACTATG-3’ and Oligo-dT, respectively. Primers for generating cDNA from

segment 7 (M) vRNA, cRNA, and mRNA were 5’-CTTGAAGATGTCTTTGCAGG-3’, 5’-

AGCAGAAACAAGGTAGT-3’, and Oligo-dT, respectively. To quantify the vRNA, cRNA and

mRNA levels, real-time quantitative PCR analysis with a gene specific primer pair using SYBR

green PCR mix (Applied Biosystems) was performed and data was analyzed on the Applied

Biosystems ViiATM 7 Real-Time PCR System. For HA vRNA and mRNA analysis, the follow-

ing primers were used: forward primer, 5’-GGCCCAACCACAACACAAAC-3’, reverse

primer, 5’-AGCCCTCCTTCTCCGTCAGC-3’. For M vRNA and mRNA analysis, the follow-

ing primers were used: forward primer, 5’- CCAATCCTGTCACCTCTGAC-3’, reverse

primer, 5’- TGGACAAAGCGTCTACGC-3’. β-actin was detected as a reference gene using

the following primers: Forward primer, 5’-GTACGCCAACACAGTGCTG-3’, Reverse primer,

5’-CGTCATACTCCTGCTTGCTG-3’ [82]. The gene expression was calculated by normaliz-

ing target gene expression to β-actin for each sample and expressed as 2ΔCt. Analyses were per-

formed using 7500 Fast System SDS software (Applied Biosystems).

Chemokine and cytokine detection

Cytokine quantities for IL-6, TNF-a, IL-10, CXCL1, IL-12p40, and IFN-g in the lung tissue

were determined by the mouse proinflammatory 7-plex tissue culture kit (Meso Scale Discov-

ery, cat K15012B-1) using 25ul of homogenized lung tissue according to manufacturer’s

instructions. The concentration of IFN-α and IFN-β from mouse cell supernatant and mouse

lung tissue was measured with VeriKine mouse IFN-α ELISA kit (PBL, cat 42400) and Veri-

Kine mouse IFN-β ELISA kit (PBL, cat 42400), respectively.

The mRNA level of TNF-α, IFN-β, IL-6, and IFN-α in GM-DCs were tested with SYBR

green method as described above. Primers used for the cytokine test were the following:

TNF-α-F, 5’-GGCAGGTCTACTTTGGAGTCATTG-3’, TNF-α-R, 5’-ACATTCGAGG

CTCCAGTGAATTCGG-3’; IFN-β-F, 5’- AAGAGTTACACTGCCTTTGCCATC-3’, IFN-β-R,

5’- CACTGTCTGCTGGTGGAGTTCATC-3’; IL-6-F, 5’-GACAAAGCCAGAGTCCTTCAG

AGAG-3’, IL-6-R, 5’-CTAGGTTTGCCGAGTAGATCTC-3’; IFN-α-F, 5’-CGCAGGAGAAG

GTGGATGCCCAG-3’, IFN-α-R, 5’-CAGCACATTGGCAGAGGAAGACAGG-3’ [19].

Immunohistochemistry

Six to eight week old BALB/c mice were infected with 104 or 105 PFU of either 6:2 Eng/09, or

6:2 Tky/05 virus intranasally. Two to three days post infection mice were culled; the lungs

inflated with 1mL PBS, and placed in 4% PFA solution overnight. Lungs were embedded in

paraffin, and mounted on slides by the Inflammation, Repair, and Development group, NHLI

at Imperial College London.

For immunohistochemistry, The Francis Crick Experimental Histopathology STP used for-

malin fixed paraffin embedded sections that were de-waxed in xylene then dehydrated by pas-

sage through graded alcohols to water. For antigen retrieval, sections were microwaved in

sodium citrate, pH 6 for 15 minutes and then transferred to PBS. Endogenous peroxidase was

blocked using 1.6% hydrogen peroxide in PBS for 10 minutes followed by washing in distilled

water.

Biotinylated goat anti-NP antibody was used as primary antibody (USA biological, cat

I7650) diluted to 1:100 in 1% BSA and incubated for 1 hour at room temperature. Sections

were washed in PBS prior to applying ABC (Vector Laboratories, cat PK-6100) for 30 minutes.

Following washing in PBS, DAB solution was applied for 2–5 minutes with development of the
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colour reaction being monitored microscopically. Slides were washed in tap water, stained

with a light haematoxylin, dehydrated, cleared and then mounted.

Images were obtained by an Olympus VS120 slide reader, and analyzed by Image J

software.

Immunofluorescence microscopy

GM-DCs were seeded on Poly-L-Lysine treated glass coverslips and incubated for overnight.

The cells were infected with the indicated viruses at a MOI = 4. After 4h and 8h infection, the

GM-DCs were fixed for 20 min with 4% paraformaldehyde, permeabilized for 5 min with 0.1%

TritonX 100 (Sigma, cat X100RS-5G), and blocked with 5% BSA for 1h in room temperature

(RT). Cells were incubated with NP-FITC antibody (ThermoFisher, cat D67J, diluted with 1%

BSAS at 1:20) for 1h at RT. DNA was stained with 4’,6’-diamino-2phenylindole (DAPI) for 10

min. After washing with PBST, samples were mounted with Mowiol under a coverslip. Multiple

images were obtained for each sample by a Zeiss Axiovert 40CFL, and analyzed by AxioVision

SE64 Rel software. Nuclei and FITC positive cells were counted for each image.

Fluorescent-Activated Cell Sorting (FACS)

Mice were sacrificed and the lungs perfused with PBS. To obtain lung leukocytes, lung lobes

were collected into a C-Tube (Miltenyi Biotech) containing complete DMEM (cDMEM; sup-

plemented with 10% fetal bovine serum, 2mM L-glutamine, 100U/ml penicillin and 100μg/ml

streptomycin), Collagenase D (1mg/ml; Roche) and DNase I (30μg/ml; Invitrogen) and pro-

cessed with a gentleMACS dissociator (Miltenyi Biotech) according to the manufacturer’s pro-

tocol. Shredded tissue was incubated for 1h at 37˚C. After lysis of red blood cells, cells were

strained through a 100μm filter (BD Bioscience). For CD45+ lung cell sorting cells were incu-

bated for 20 min with a purified rat IgG2b anti-mouse CD16/CD32 receptor antibody (BD

Bioscience) to block Fc binding. Cells were then stained with fluorochrome-conjugated anti-

bodies against CD45 (30-F11, eFluor780, eBiosciences) in PBS containing 1% BSA and 5mM

EDTA for 25 min at 4˚C. 1ng/ml of Hoeschst 3358 (Pentahydrate (bis-Benzimide); Thermo

Scientific) was added just before running the sample for exclusion of dead cells. Cells were

sorted using a standard Becton Dickinson Aria-II and stored in RLT buffer until RNA extrac-

tion was performed. The purity of CD45+ cells was>98%.

Statistical analysis

All data are presented as mean ± SD of three or more experiments. For viral replication kinet-

ics and weight loss in Fig 2A and S10B Fig, area under the curve (AUC) for each virus was cal-

culated. Difference in the AUC between viruses was analyzed with one-way ANOVA and

Bonferroni’s multiple comparisons test. For weight loss of the NP mutant virus infected mice

(Fig 7G), two-way ANOVA test with post-tests for multiple comparisons was performed to

determine P-value. One-way ANOVA analysis was used for the other comparisons among

groups. Pearson correlation test was performed for the correlation analysis. P-value<0.05

wasnconsidered significantly different. All data analyses and preparation of all graphs were

carried out with GraphPad Prism (GraphPad Software, San Diego, CA).
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Supporting information

S1 Fig. Area of lung infection is similar between 6:2 Tky/05 and 6:2 Eng/09 viruses. Infected

lungs harvested 3 days after infection with 104 PFU of the viruses indicated were analysed for

viral infection by an anti-influenza NP antibody. Biotinylated goat-anti-NP antibody was used

as a primary antibody, and developed by ABC, followed by haematoxylin counterstain. Areas

stained brown indicate influenza NP positive regions in the panels. (A, B) Mock infected

mouse lungs. (B, C) 6:2 Eng/09 virus infected lungs. (D, E) 6:2 Tky/05 virus infected lungs.

(TIF)

S2 Fig. Weight loss of the mice is associated with cytokine production in lung tissue. AUC

for the weight in each group of influenza virus infected mice (Fig 2A) was calculated. The asso-

ciation between the AUCs and cytokine level on Day 2 were analyzed with Pearson correlation

test. Red refers the AUC of weight curve of 6:2 Tky/05 virus infected mice; Yellow for 6:2 Vic/

75 virus infected mice; Blue for 6:2 Eng/09 virus infected mice Green for 5:1:2 Eng09/TkyNS

virus infected mice.

(TIF)

S3 Fig. Dynamic cytokine and chemokine expression profile in the lung tissue early after

infection. Six to eight week old female BALB/c mice (n = 20 per group) were infected i.n. with

104 PFU RG viruses. At each indicated time point in each group, lungs of five mice were har-

vested and homogenized. Cytokine and chemokine protein level was determined by MSD or

ELISA analysis. Bars represent mean ± SD (n = 5). Blue �, 6:2 Tky/05 vs. 6:2 Eng/09; orange �,

Tky/05 vs. 6:2 Vic/75. �P<0.05, �� P<0.01, ��� P<0.001, ���� P<0.001; dpi, days post infection.

Most of the cytokines tested at 1dpi were below the minimum level of detection (the dashed

line in the figures), so statistic al analysis was not performed.

(TIF)

S4 Fig. IFN-α, IFN-β and other cytokines production from bone marrow derived GM-DCs

tested by qRT-PCR. Cytokine induction in GM-DCs (bone marrow derived dendritic cells

propagated using GM-CSF) at 8 hpi (MOI = 10). Bars represent mean ± SD (n = 3). �P<0.05,
��P<0.01, ���P<0.001, ���� P<0.0001 indicate significant difference between 6:2 Tky/05 vs.

6:2 Eng/09, 6:2 Tky/05 vs. 6:2 Vic/75, as well as 6:2 Eng/09 vs. Eng/09:Tky/NS infected cells.

hpi, hours post infection.

(TIFF)

S5 Fig. IFN-β and IFN-α induction in FL-DCs (BMDC propagated using Flt3 ligand) after

infection with reassortant influenza viruses. IFN-α/β induction in FL-DCs at 24hpi

(MOI = 10). Bars show mean ± SD. The value of 6:2 Tky/05 group was compared with that of

6:2 Eng/09 or 6:2 Vic/75 groups. Statistical significance of difference between 6:2 Eng/09 and

Eng/09:Tky/NS groups was also assessed.���P<0.001, ���� P<0.0001. The dashed line indicates

the lower detection limit.

(TIF)
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S6 Fig. Viral replication in A549 and LA4 cells. (A, B) A549 and (C, D) LA4 cells were

infected with RG virus at MOI = 10. m and vRNA level in these cells at 2, 4 and 8 hpi were

quantified with SYBR Green. Values were calculated by the 2ΔCt method with β-actin as the

control. Bars represent mean ± SD (n = 3). Blue �, 6:2 Tky/05 vs. 6:2 Eng/09; orange �, Tky/05

vs. 6:2 Vic/75; green �, 6:2 Eng/09 vs. Eng/09:Tky/NS. �� P<0.01, ����<0.0001. hpi, hours post

infection.

(TIFF)

S7 Fig. Surface protein from PR8 did not enhance virus’ ability to enter GM-DCs.

GM-DCs were infected with the whole PR8 or PR8:TkyHAsbNA virus at MOI = 4. Cells were

fixed at 4hpi and 8hpi, respectively. Nuclei were stained with DAPI (blue) and virus infected

cells were stained for nucleoprotein (NP; green). Representative images are shown and the per-

centage of NP-positive cells was calculated. Bars represent mean ± SD. �P<0.05.

(TIFF)

S8 Fig. IFN-α production from GM-DCs requires MAVS. Bone marrow derived GM-DCs

from wild type C57/B6 (A) and MAVS knockout mice (B-D) were infected with the indicated

RG viruses at MOI = 10, or treated with PolyIC. (A, B) Supernatant was collected at 24 hpi and

IFN-α measured by ELISA. (C, D) m and vRNA level at 24 hpi were quantified with SYBR

Green and the values were calculated by the 2ΔCt method with β-actin as the control. Bars rep-

resent mean ± SD (n = 3). �P<0.05, ��P<0.01, ���� P<0.0001 indicate significant difference of

6:2 Tky/05 vs. 6:2 Eng/09, 6:2 Tky/05 vs. 6:2 Vic/75, as well as 6:2 Eng/09 vs. Eng/09:Tky/NS.

The dashed line (A, B) indicates the minimum detection limit.

(TIFF)

S9 Fig. Viral RNA, IFN-α and IL-6 transcripts detected in CD45 cells in vivo by qRT-PCR.

6–8 week old Balb/c mice were infected with 3x104 (Black) or 105 (Red) PFU of 6:2 Tky/05

virus or Mock control. CD45 cells were isolated from infected lungs 2 days post infection by

FACS sorting.Total RNA was extracted from pooled CD45 positive cells, and qRT-PCR analy-

sis was carried out for vRNA (A) mRNA (B) IFN-α (C) and IL-6 (D) transcripts. Data are dis-

played as relative expression compared to Mock calculated by 2Δct to cellular β-actin. There are

three technical replicates for each group and error is plotted as SD. ����P< 0.0001.

(TIFF)

S10 Fig. Individual polymerase and NP genes of Tky/05 do not account for the high cyto-

kine induction in vivo. (A) A panel of RG viruses with PR8 HA and NA gene segments com-

bined with Tky/05 NS, polymerase and NP genes but where each polymerase or NP segment

were exchanged for the equivalent segments from Eng09 virus was generated. (B) 6–8 week

old Balb/c mice were infected with 105 PFU each virus and weight loss monitored daily Lungs

harvested from mice at day 2 post infection were assayed for viral titre (C) and cytokines IFN-

α, IL-6, and TNF-α (D). ��P<0.01, ���P<0.01, ���� P<0.0001.

(TIFF)
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