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Abstract

Reinforcement learning has been widely used in explaining animal behavior. In reinforce-

ment learning, the agent learns the value of the states in the task, collectively constituting

the task state space, and uses the knowledge to choose actions and acquire desired out-

comes. It has been proposed that the orbitofrontal cortex (OFC) encodes the task state

space during reinforcement learning. However, it is not well understood how the OFC

acquires and stores task state information. Here, we propose a neural network model based

on reservoir computing. Reservoir networks exhibit heterogeneous and dynamic activity pat-

terns that are suitable to encode task states. The information can be extracted by a linear

readout trained with reinforcement learning. We demonstrate how the network acquires and

stores task structures. The network exhibits reinforcement learning behavior and its aspects

resemble experimental findings of the OFC. Our study provides a theoretical explanation of

how the OFC may contribute to reinforcement learning and a new approach to understand-

ing the neural mechanism underlying reinforcement learning.

Author summary

Many studies employ reinforcement learning models to explain human or animal behav-

ior, in which it is assumed that the animals know the task structure. Yet in the real life, the

task structure also has to be acquired through learning. The orbitofrontal cortex has been

proposed to play important roles in representing task structure, yet it is poorly understood

how it does it and why it can do it. Here, we use a neural network model based on reser-

voir computing to approach these questions. We show that it is critical for the network

to receive reward information as part of its input. Just as the orbitofrontal cortex that

receives converging sensory and reward inputs, the network is able to acquire task struc-

ture and support reinforcement learning by encoding a combination of sensory and

reward events. The importance of reward inputs in the model explains the sophisticate
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representations of reward information in the orbitofrontal cortex and provides a theoretic

account of the current experimental data.

Introduction

Even the simplest reinforcement learning (RL) algorithm captures the essence of operant con-

ditioning in psychology and animal learning [1]. That is, actions that are rewarded tend to be

repeated more frequently; actions that are punished are more likely to be avoided. RL requires

one to understand the structures of the task and evaluate the value of the states in the task state

space. Several studies have investigated the possible brain structures that may be involved in

RL [2–6]. Notably, the orbitofrontal cortex (OFC) has been hypothesized to represent the task

space and encode task states [7]. Several lesion studies showed that the animals with OFC

lesions exhibited deficits acquiring task information for building a task structure [8–10]. Con-

sistent with this idea, single unit recording experiments have revealed that the OFC neurons

encode many aspects of task information, including reward value [11–15], probability [16],

risk [17], information value [18], abstract rules [19], and strategies [20]. Yet, there is a lack of

theoretical understanding how task structures may be encoded and represented by a neural

network, and what sort of neuronal firing properties we expect to find in neurophysiological

experiments. Furthermore, we do not know how to teach a task-agnostic neural network to

acquire the structure of the task just based on reward feedbacks.

In the current study, we provide a solution based on the reservoir network [21–23]. Reser-

voir networks are recurrent networks with fixed connections. Within a reservoir network, neu-

rons are randomly and sparsely connected. Importantly, the internal states of a reservoir

exhibit rich temporal dynamics, which represents a nonlinear transformation of its input his-

tory and can be useful for encoding task state sequences. The information encoded by the net-

work can be extracted with a linear output, which can be trained during learning. Reservoir

networks have been shown to exhibit dynamics similar to that observed in the prefrontal cor-

tex [24–26]. Furthermore, it has been shown that reservoir networks may be combined with

reinforcement learning to learn action values [27].

One key feature of our reservoir-based network model that makes learning task structures

possible is including reward itself as an input to the reservoir. Thereby, the network dynamics

represents a combination of not only the sensory events, but also the reward outcome. Rein-

forcement learning helps to shape the output of the reservoir, essentially picking out the action

that will lead to the event sequences with desired rewards.

We demonstrate with two commonly used learning paradigms how the network model

works. Task event sequences, including reward events, are provided as inputs to the network.

A simple yet biologically feasible reward-dependent Hebbian learning algorithm is used to

adjust its output weights. We show that our network model can solve problems with different

task structures and reproduce behavior experiments previously conducted in animals and

humans. We further demonstrate the similarities between the reservoir network and the OFC.

Manipulations to our network reproduce the behavior of animals with OFC lesions. Moreover,

the reservoir neurons’ response patterns resemble characteristics of the OFC neurons reported

from previous electrophysiological experiments. Taken together, these results suggest a simple

mechanism that naturally leads to the acquisition of task structure and supports RL. Finally,

we propose some future experiments that may be used to test our model.

A neural network model for task space representations in orbitofrontal cortex
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Results

We describe our results in three parts. We start with using our network to model a classical

reversal learning task. We take advantage of the simplicity of the task to explain the principal

ideas behind the network model and why we think the network resembles the OFC. Then we

show such a network may be applied to a more complex scenario, both in the task structure

and in the temporal dynamics, in which the OFC has been shown to play important roles.

Finally, to further illustrate the similarities between our network model and the OFC, we dem-

onstrate how the selectivity of the neurons in the network may resemble experimental findings

in the OFC during value-based decision making.

Reversal learning

In a classical reversal learning task, the animals have to keep track of the reward contingency

of two choice options that may be reversed during a test session [9, 28]. Normal animals were

found to learn reversals faster and faster, which has been used as an indication of their ability

of learning the structure of the task [7]. Such behavior was however found to be impaired in

animals with OFC lesions and/or with lesions that contained fibers passing near the OFC [9,

29]. These animals were not able to learn reversals faster and faster when they were repeatedly

tested. The learning impairments could be explained by a deficit in acquiring and representing

the task structure [7].

Our neural network model consists of a state encoding layer (SEL), which is a reservoir net-

work. It receives three inputs and generates two outputs (Fig 1A). The three inputs from the

input layer (IL) to the SEL are the two choice options A and B, together with a reward input

that indicates whether the choice yields a reward or not in the current trial. The outputs units

in the decision-making output layer (DML) represent choice actions A and B for the next trial.

The inputs are provided concurrently and the neural activity of the SEL at the end of the trial

is used to determine the SEL’s output (Fig 1B). The connections from the IL to the SEL and the

connections within the SEL are fixed. Only the connection weights from the SEL to the DML

are modified during the training with a reward dependent Hebbian rule, in which the weight

changes are proportional to the reward prediction error and the pre- and post-synaptic neuro-

nal activities.

The network is able to reproduce animals’ behavior. The number of the error trials that

takes for the network to achieve the performance threshold, which is set at 93% in the initial

learning and at 80% in the subsequent reversals, decreases as the network goes through more

and more reversals (Fig 1C). Interestingly, a learning deficit similar to that found in OFC-

lesion animals is observed if we remove the reward input to the SEL (Fig 1C). As the OFC and

its neighboring brain areas such as the ventromedial prefrontal cortex (vmPFC) are known to

receive both the sensory inputs and reward inputs from sensory and reward circuitry in the

brain [30–32], removing the reward input from our model mimics the situation where the

brain has to learn without functional structures in or near the OFC.

Neurons in the SEL, as expected from a typical reservoir network, show highly heteroge-

neous response patterns. Some neurons are found to encode the stimulus identity, some neu-

rons encode reward, and others show mixed tuning (Fig 2A). A principal component analysis

(PCA) based on the population activity shows that the network can distinguish all four possible

task states: choice A rewarded, choice A not rewarded, choice B rewarded, and choice B not

rewarded (Fig 2B and S1 Fig). The first three principal components capture 92.0% variance of

the population activity.

The ability to distinguish these states is essential for learning. To understand the task acqui-

sition behavior exhibited by our model, we study how neurons with different selectivity

A neural network model for task space representations in orbitofrontal cortex
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contribute to the learning (Fig 2C and S2 Fig). We find that readout weights of the SEL neu-

rons that are selective to the combination of stimulus and reward inputs (e.g. AR and BR) are

mostly affected by the learning. The difference between the weights of their connections to the

Fig 1. Reversal learning task. A. The schematic diagram of the model. The network is composed of three parts: input

layer (IL), the state encoding layer (SEL) and the decision-making output layer (DML). B. The event sequence. The

stimulus and reward inputs are given concurrently at 200 ms after the trial onset and last for 500 ms. After a 200 ms

delay, the decision is computed with the neural activity at 900 ms after the trial onset. C. The number of the error trials

made before the network achieves the performance threshold. The dark line indicates the performance of the network

with the reward input; the light line indicates the performance of the network without the reward input as a model for

animals of OFC lesions. Stars indicate significant difference (One-way ANOVA, p<0.05).

https://doi.org/10.1371/journal.pcbi.1005925.g001
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Fig 2. Network analyses for the reversal learning task. A. Selectivity of three example neurons in the reservoir network. Input units are set to 1 from 200ms to 700ms.

Left panel: an example neuron that encodes choice options; middle panel: an example neuron that encodes reward outcomes; right panel: an example neuron with mixed

selectivity. B. PCA on the network population activity. The network states are plotted in the space spanned by the first 3 PCA components. The activities in different

conditions are differentiated after the cue onset. C. The difference between the SEL neurons’ connection weights to DML unit A and DML unit B. The SEL neurons are

grouped according to their selectivities. For example, AR represents the group of neurons that respond most strongly when the input units A and R are both activated.

The gray and white area indicates the blocks in which the option A and the option B leads to the reward, respectively. D. Left. The proportion of the blocks in which the

network does not reach the performance criterion within a block after we remove 50 neurons that are random chosen (control), A selective, or AR selective. Right. The

number of errors that the network makes before reaching the criterion with the same 3 types of inactivation. Only the data from the A-rewarding blocks are analyzed.

A neural network model for task space representations in orbitofrontal cortex
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outputs A and B keeps evolving despite repeated reversals. In contrast, the weights of the out-

put connections of pure stimulus-selective neurons (e.g. A and B) only wiggle around the base-

line between reversals. Once the network is trained, the expected rewards from AR/BN and

BR/AN inputs are exactly the opposite (S3 Fig).

The difference between these two groups of neurons explains why our network achieves

flexible learning behavior only when the reward input is available. Let us first consider the AR
neurons, which are selective for the situation when choice A leads to reward. In these A-

rewarded blocks, the connections between the AR neurons and the DML neuron of choice A
are strengthened. When the reward contingency is reversed and now choice A leads to no

reward, the connections between the AR neurons and choice A are not affected very much.

That is because the group of AN and then BR neurons instead of the AR neurons are activated

in the blocks when choice A is not rewarded. As the result, the connections between the AN
neurons and the DML neuron of choice B are strengthened and the connections between the

AN neurons and the DML neuron of choice A are weakened. When the reward contingency is

flipped again, the connections between the AR neurons and the DML neuron of choice A are

strengthened further. This way, the learning is never erased by the reversals, and the network

learns faster and faster. In comparison, let us now consider the A neurons, which encode only

the sensory inputs and are activated whenever input A is present. In the A-rewarded blocks,

the connections between the A neurons and the DML neuron of choice A are strengthened. In

B-rewarded blocks, the connections between the A neurons and the DML neuron of choice A
are however weakened when the network chooses A and gets no reward, and the learning in

the previous block is reversed. Thus, the output connections of A neurons only fluctuate

around the baseline with the reversals. They do not contribute much to the learning, and the

overall behavior of the network is mostly driven by neurons that are activated by the combina-

tion of reward input and sensory inputs. Removing R deactivates these neurons and leads to

the structure agnostic behavior.

The importance of the neurons that are selective for the combination of stimulus and

reward inputs can be further illustrated by a simulated lesion experiment. After the network is

well-trained, we stop the training and test the network’s performance with a proportion of

neurons randomly removed at the time of decision (Fig 2D). The neurons that are removed

are either 50 randomly chosen neurons, 50 A neurons, or 50 AR neurons. This inactivation

happens only at the time of decision making, therefore the state encoding in the reservoir is

not affected. The inactivation of AR neurons produces the largest impairment in the network’s

performance. Compared to the network with random inactivation, the network with AR-spe-

cific inactivation cannot reach the criterion we set previously within a block in more than 50%

of the blocks and makes significantly more errors to reach the criterion in the blocks that it

does. Inactivation of A-selective neurons produces much smaller performance deficits.

It is important to note that although the reinforcement learning algorithm employs the

same small learning rate for both the intact network and the “OFC-lesion” network, the former

only requires a few number of trials to acquire a reversal in the later stage of training, indicat-

ing the reversal behavior may not have to be slow with a small learning rate. In fact, once the

network is trained, learning is no longer necessary for the reversal behavior. The network

takes very few trials to adapt to reversals without learning (Fig 2E). That is because the associa-

tion between input AR/BN and decision A and the association between input BR/AN and deci-

sion B have been established in the network.

The error bars are s.e.m. based on 10 simulation runs. A one-way ANOVA is used to determine the significance (p<0.05). E. The number of errors needed to reach the

performance criterion is maintained after the training stops at the 50th reversal. The error bars are s.e.m. calculated based on 10 simulation runs.

https://doi.org/10.1371/journal.pcbi.1005925.g002
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Two-stage Markov decision task

We further test our network with a two-stage decision making task. The task is similar to the

Markov decision task used previously in several human fMRI studies and used to study the

model-based reinforcement learning behavior in humans [6, 33–36]. In this task, the subjects

have to choose between two options A1 and A2. Their choices then lead to two intermediate

outcomes B1 and B2 at different but fixed probabilities. The choice of A1 more likely leads to

B1, and the choice of A2 is more likely followed by B2. Importantly, the final reward is contin-

gent only on these intermediate outcomes, and the contingency is reversed across blocks (Fig

3A). Thus, the probability of getting a reward is higher for B1 in one block and becomes lower

in the next block. The probabilistic association between the initial choices and the intermediate

outcomes never changes. The subjects are not informed of the structure of the task, and they

have to figure out the best option by tracking not only the reward outcomes but also the inter-

mediate outcomes.

We keep our network model mostly the same as in the previous task. Here, we have two

additional input units that reflect the intermediate outcomes (Fig 3B). To demonstrate our net-

work model’s capability of encoding sequential events, the input units are activated sequen-

tially in our simulations as they are in the real experiment (Fig 3C). We also add a non-reward

input unit whose activity is set to 1 when a reward is not obtained at the end of a trial. The

additional non-reward input facilitates learning but does not change the results qualitatively.

For a simple temporal difference learning strategy without using any knowledge of task

structure, the probability of repeating the previous choice only depends on its reward outcome.

The probability of repeating the previous choice is higher when a reward is obtained than

when no reward is obtained. The intermediate outcome is ignored. However, this is no longer

the case when the task structure is taken into account. For example, consider the situation

when the subject initially chooses A1, the intermediate outcome happens to be B2, and a

reward is obtained. If the subject understands B2 is an unlikely outcome of choice A1 (rare),

but a likely outcome of choice A2 (common), a reward obtained after the rare event B2 should

actually motivate the subject to switch from the previous choice A1 and choose A2 the next

time. The subject should always choose the option that is more likely to lead to the intermedi-

ate outcome that is currently associated with the better reward.

To quantify the learning behavior, we first evaluate the impact of the previous trial’s out-

come on the current trial. We classify all trial outcomes into four categories: common-

rewarded (CR), common-unrewarded (CN), rare-rewarded (RR) and rare-unrewarded (RN).

Here, common and rare indicate whether the intermediate outcome is the more likely out-

come of the chosen option or not. Glascher et al [6] showed that the model based learning led

to a higher probability of repeating the previous choice in the CR and RN conditions. This is

also what we observe in our network model’s behavior (Fig 4A).

To illustrate how the network acquires the task structure, we define the task-structure

index, which represents the tendency of employing task structure information (see the

Method). The task-structure index grows larger as the training goes on (Fig 4B). It indicates

that the network learns the structure of the task gradually and transits to a more efficient

behavior from an initially task-agnostic behavior.

Similar to our findings in the first task, the network without the reward input in the

SEL behaves in a task-agnostic manner. It does not show the transition that indicates the learn-

ing of the task structure (Fig 4B). We further quantify the contribution of task structure infor-

mation to the network behavior using a model fitting procedure previously described by

Glascher et al. [6], and the network without the reward input shows a significantly smaller

weight for the usage of task structure, suggesting it is worse at picking up the task structure

A neural network model for task space representations in orbitofrontal cortex
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Fig 3. Two-stage Markov decision task. A. Task structure of the two-stage Markov decision task. Two options A1 and

A2 are available, they lead to two intermediate outcomes B1 and B2 at different probabilities. The width of the arrows

indicates the transition probability. Intermediate outcomes B1 and B2 lead to rewards at different probability, and the

reward contingency of the intermediate outcomes is reversed between blocks. B. The schematic diagram of the model.

It is similar to the model in Fig 1A. The only difference is that there are more input units. C. The event sequence. Units

in the input layer are activated sequentially. In the example trial, option A1 is chosen, B1 is presented, and a reward is

obtained.

https://doi.org/10.1371/journal.pcbi.1005925.g003
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Fig 4. Network analyses for the Two-stage Markov decision task. A. Factorial analysis of choice behavior. The network is more likely to repeat the choice under the

conditions common-rewarded (CR) and rare-unrewarded (RN) than under the conditions common-unrewarded (CU) and rare-rewarded (RR). B. The task structure

index keeps growing in the intact network (blue line), but stays at a low level when the reward input is missing (red line). Stars indicate significant difference (One-way

ANOVA, p<0.05). C. Fitting the behavioral performance with a mixture of task-agnostic and task-aware algorithms. The weight parameter w for learning with the

knowledge of the task structure is significantly larger for the intact network (blue data points) than the network without the reward input (red data points). Each data

point represents a simulation run. A one-way ANOVA is used to determine the significance (p<0.05). D. PCA on the network population activity. The network states

are plotted in the space spanned by the first 3 PCA components. The network can distinguish all 8 different states. E. The weight differences between the connections

between SEL neurons and the DML unit A1 and DML unit A2. The gray and white areas indicate the blocks in which intermediate outcome B1 is more likely to lead to a

reward and the blocks in which B2 is more likely to lead to a reward, respectively. F. Logistic regression shows that only the last trial’s state affect the choice. The

regression includes four different states (intermediate outcome x reward outcome) for each trial up to 10 trials before the current trials. Error bars show s.e.m. across

simulation runs. G. Logistic regression reveals that only the combination of the intermediate states and the reward outcome in the last trial affects the decision. The

factors being evaluated are: Correct—a tendency to choose the better choice in current block; Reward—a tendency to repeat the previous choice if it is rewarded; Stay—a

tendency to repeat the previous choice; Transition—a tendency to repeat the same choice following common intermediate outcomes and switch the choice following

rare intermediate outcomes; Trans x Out–a tendency to repeat the same choice if a common intermediate outcome is rewarded or a rare intermediate outcome

unrewarded, and to switch the choice if a common intermediate outcome is unrewarded or a rare intermediate outcome rewarded.

https://doi.org/10.1371/journal.pcbi.1005925.g004
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(Fig 4C and S4 Fig). When the network time constant is sufficiently long, the task-structure

dependent behavior is not because the intermediate outcomes occur after the first stage out-

comes so that the former having a stronger representation in the network at the time of deci-

sion (S5 Fig).

Again, a PCA on the SEL population activity shows that the SEL distinguishes different task

states (Fig 4D). The first three principal components explain 83.97% variance of the population

activity. Because the structure of the task in which the contingency between the first stage

options and the intermediate outcomes is fixed, the network only needs to find out the current

reward contingency of the intermediate outcomes. We found that the learning picks out the

most relevant neurons that encode the contingency between the intermediate outcomes and

the reward outcomes (B1R, B2R, etc.). Their connection weights to the DML neurons show

better and better differentiation of the two choices throughout the training (Fig 4E). In con-

trast, the connection weights of the neurons that encode the association between the first stage

options and the reward outcomes (A1R, A2R, etc.) are less differentiated.

These results suggest that the network acquires the task structure. It understands that the

contingency between intermediate outcomes and reward outcomes is the key to the perfor-

mance. Thus, its choice only depends on the interaction between the intermediate outcome

and the reward outcome of the last trial, but not on the other factors (Fig 4F and 4G). The net-

work behavior is similar to the Reward-as-cue agent described by Akam et al. [37].

Value representation by the OFC

Previous electrophysiology studies have shown that OFC neurons encode value during eco-

nomic choices [11, 13]. In a series of studies carried out by Padoa-Schioppa and his colleagues,

monkeys were required to make choices between two types of juice in different amounts. The

monkeys’ choices depended on both their juice preference and the reward magnitude. Record-

ings in the OFC revealed multiple classes of neurons encoding a variety of information, includ-

ing the value of individual offers (offer value), the value of the chosen option (chosen value),

and the identity of the chosen option (chosen identity) [38, 39].

Here we show that our network model may explain this apparent heterogeneous value

encoding in the OFC. We model the two-alternative economic choice task by providing two

inputs to the SEL, representing the reward magnitude of each option with range adaption (Fig

5A). The input dynamics are similar to that of the sensory neurons [40]. The network model

reproduces the choice behavior of monkeys (Fig 5C)[11].

Then we study the selectivity of the SEL neurons. Just as in the previous experimental find-

ings in the OFC, we find not only neurons that encode the value of each option (offer value

neurons, middle panel in Fig 6A), but also neurons that encode the value of the chosen option

(chosen value neurons, left panel in Fig 6A). Furthermore, a proportion of neurons show the

selectivity for the choice as previously reported (chosen identity neurons, right panel in Fig

6A). We classify the neurons in the reservoir network into 10 categories as described in Padoa-

Schioppa and Assad [11]. Interestingly, we are able to find neurons in the reservoir in 9 of the

10 previous described categories (Fig 6B and 6C). The only missing category (neurons encod-

ing other/chosen value) was also rarely found in the experimental data. Although the propor-

tions of neurons encoding each category are not an exact copy of the experimental data, but

the similarity is apparent. This is surprising given that we do not tune the internal connections

of the SEL to the task. The results are robust across different input connection gains, noise lev-

els in the SEL, and dynamics of the input profiles (S6 Fig). The heterogeneity that is naturally

expected from a reservoir network takes much more effort to explain with recurrent network

models that have a well-defined structure [40, 41].
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Fig 5. Value-based decision-making task. A. The schematic diagram of the model. B. The event sequence. The

stimuli are presented between 300 ms and 1300 ms after the trial onset. The decision is computed with the neural

activity at 1400 ms after the trial onset. The input neurons’ activity profiles mimic those of real neurons (see Methods).

C. Choice pattern. The relative value preference calculated based on the network behavior is indicated on the top left,

and the actual relative value preference used in the simulation is 1A = 2B.

https://doi.org/10.1371/journal.pcbi.1005925.g005
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Discussion

So far, we have shown that a simple reservoir-based network model may acquire task struc-

tures. The more interesting question is that why the network is capable of doing so and how

this network model may help us to understand the functions of the OFC.

Encoding of the task space

We place a reservoir network as the centerpiece of our model. Reservoir networks are large,

distributed, nonlinear dynamical recurrent neural networks with fixed weights. Because of

recurrent networks’ complicated dynamics, they are especially useful in modeling temporal

sequences including languages [42, 43]. Neurons in reservoir networks exhibit mixed selectiv-

ity that maps inputs into a high dimensional space. Such selectivity has been shown to be cru-

cial in complex cognitive tasks, and experimental works have provided evidence that neurons

in the prefrontal cortex exhibit mixed selectivity [44–46]. In our model, the reservoir network

encodes the combinations of inputs that constitute the task state space. States are encoded by

the activities of the reservoir neurons, and the learned action values are represented by the

weights of the readout connections.

There are several reasons why we choose reservoir networks to construct our model. First

reason is that we would like to pair our network model with reinforcement learning. Reservoir

networks have fixed internal connections; the training occurs only at the readout. The number

Fig 6. Value selectivity of the network neurons. A. Three example neurons in the SEL. Left panel: a neuron that encodes chosen value; middle panel: a

neuron that encodes offer value; right panel: a neuron that encodes chosen juice. B. The proportions of the neurons with different selectivities from a

previous experimental study [11]. C. The proportions of the neurons in the reservoir network with different selectivities.

https://doi.org/10.1371/journal.pcbi.1005925.g006
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of parameters for training is thus much smaller, which could be important for efficient rein-

forcement learning. Generality is another benefit offered by reservoir networks. Because the

internal connections are fixed, we may use the same network to solve a different problem by

just training a different readout. The reservoir can serve as a general-purpose task state repre-

sentation network layer. Lastly, our results as well as several other studies show that neurons in

reservoir networks–even with untrained connections weights–show properties similar to that

observed in the real brain [24, 25, 47], suggesting training within the network for specific tasks

may not play a role as important as previously thought.

The fact that the internal connections are fixed in a reservoir network means that the selec-

tivity of the reservoir neurons is also fixed. This may seem at odds with the experimental find-

ings of many OFC neurons shifting their encodings rapidly during reversals [48]. However,

these observations may be interpreted differently when we take into account rewards. The neu-

rons that were found to have different responses during reversals might in fact encode a com-

bination of sensory events and rewards. On the other hand, there is evidence that OFC

neurons with inflexible encodings during reversals might be more important for flexible

behavior [49].

The choice of a reservoir network as the center piece of task event encoding may appear

questionable to some. We do not train the network to learn task event sequences. Instead, we

use the dynamic patterns elicited by task event sequences as bases for learning. This approach

has obvious weaknesses. One is that the chaotic nature of network dynamics limits how well

the task states can be encoded in the network. We have illustrated the network works well for

relatively simple tasks. However, when we consider tasks that have many stages or many

events, the combination of possible states grows quickly and may exceed the capacity of the

network. The fact that we do not train the internal network connections does not help in this

regard. However, the purpose of our network model is not to solve very complicated tasks.

Instead, we would like to argue this is a more biologically-realistic model than many other

recurrent networks. First, it does not depend on supervised learning to learn task event

sequences [47, 50]. Second, although the network performance may appear to be limited by

task complexity, the real brain, however, also has limited capacity in learning multi-stage tasks

[37]. Lastly, we show that a reservoir network can describe OFC neuronal responses during

value-based decision making. Several other studies have also shown that reservoir networks

may be a useful model of the prefrontal cortex [24, 25].

Reward input to the reservoir

One key observation is that reward events must also be provided as inputs to the reservoir

layer for the network model to perform well. Including reward events allows the network to

establish associations between sensory stimuli and rewards, thus facilitates task structure

acquisition. Although reward modulates neural activities almost everywhere in the cortex, the

OFC plays a central role in establishing the association between sensory stimuli and rewards

[9, 48, 51, 52]. Anatomically, The OFC receives visual sensory inputs from inferior temporal

and perirhinal cortex, as well as reward information from the brain areas in the reward cir-

cuitry, including the amygdala and ventral striatum, allowing it to have the information for

establishing the association between visual information and reward [30–32]. Removing the

reward input to the reservoir mimics the situation when animals cannot rely on such an associ-

ation to learn tasks. In this case, the reservoir is still perfectly functional in terms of encoding

task events other than rewards. This is similar to the situation when animals have to depend

on their other memory structures in the brain–such as hippocampus or other medial temporal

lobe structures–for learning. Consistent with this idea, it has been shown both the OFC and
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the ventral striatum are important for model-based RL [53]. The importance of the reward

input to the reservoir explains the key role that the OFC plays in RL.

Several recent studies reported that selective lesions in the OFC did not reproduce the

behavior deficits in reversal learning previously seen if the fibers passing through or near the

OFC were spared [29]. Since these fibers probably carry the reward information from the mid-

brain areas, these results do not undermine the importance of reward inputs. Presumably,

when the lesion is limited to the OFC, the projections that carrying the reward information are

still available to or might even be redirected to other neighboring prefrontal structures, includ-

ing ventromedial prefrontal cortex, which might take over the role of the OFC and contribute

to the learning in animals with selective OFC lesions.

Model-based reinforcement learning

The acquisition of task structure is a prerequisite for model-based learning. Therefore, it is

interesting to ask whether our network model is able to achieve model-based learning. The

two-stage task that we model has been used in human literature to study model-based learning

[5, 6, 33–36]. Our model, although exhibiting behavior similar to human subjects, can be cate-

gorized as the Reward-as-cue agent that was described and categorized as a form of model-free

reinforcement learning agent by Akam et al. [37]. Yet, with reward incorporated as part of the

task state space, goal-directed behavior can be achieved by searching in the state space for a

task event sequence that ends with the desired goal and associating the sequence with appro-

priate actions. Thus, our network could in theory support model-based learning by providing

the task structure to the downstream network layers.

Extending the network

The performance of our network depends on several factors. First, it is important that reservoir

should be able to distinguish between different task states. The number of possible task states

may be only 4 or 8 as in our examples, or may be impossibly large even if the number of inputs

increases only modestly. The latter is due to the infamous combinatorial explosion problem.

One may alleviate the problem by introducing learning in the reservoir to enhance the repre-

sentation of relevant stimulus combinations and weed out irrelevant ones. A recent study

showed that the selectivity pattern in the prefrontal neurons may be better explained by a ran-

dom network with Hebbian learning [54]. Second, the dynamics of the reservoir should allow

information to be maintained long enough in a decipherable form until the decision is made.

The recent developed gated recurrent neural networks may provide a solution with units that

may maintain information for long periods [55]. Third, the model exhibits substantial variabil-

ity between runs, suggesting the initialization may impact its performance. Further investiga-

tion is needed to make the model more robust. Last, we show that a reinforcement learning

algorithm is capable of solving the relatively simple tasks in this study. However, it has been

shown that reinforcement learning is in general not very efficient for extracting information

from reservoir networks. Especially, when the task demands the information to be held for an

extended period, for example, across different trials, the current learning algorithm fails to

extract such relevant information from the reservoir. A possible solution is to introduce addi-

tional layers to help with the readout [25].

Testable predictions

Our model makes several testable predictions. First, because of the reservoir structure, the

inputs from the same source should be represented evenly in the network. For example, in a

visual task, different visual stimuli should be represented at roughly the same strength in the
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OFC, even if their task relevance may be drastically different. Second, we should be able to find

neurons encoding all relevant task parameters in the network, even when a particular combi-

nation of task parameters is never experienced by the brain. Third, reducing the number of

inputs may make the network to be more efficient in certain tasks. This may seem counter-

intuitive. But removing inputs reduces the number of states that the network has to encode,

thus improves learning efficiency for tasks that do not require those additional states. For

example, if we remove the reward input to the SEL, which is essential for learning tasks with

volatile rewards, the network should however be more efficient at learning tasks in a more sta-

ble environment. Indeed, animals with OFC lesions were found to perform better than control

animals when reward history was not important [56].

Summary

Our network does not intend to be a complete model of how the OFC works. Instead of creat-

ing a complete neural network solution of reinforcement learning or the OFC, which is

improbable at the moment, we are aiming at the modest goal of providing a proof of concept

that approaches the critical problem of how the brain acquires the task structure with a biologi-

cally realistic neural network model. By demonstrating the network’s similarity to the experi-

mental findings in the OFC, our study opens up new possibilities in future investigation.

Methods

Neural network model

The model is composed of three layers: an input layer (IL), a state encoding layer (SEL), and a

decision-making output layer (DML) (Fig 1A).

The units in the input layer represent the identities of sensory stimuli and the obtained

reward. The input neurons are sparsely connected to the SEL units. The connection weights

wð1Þi are set to 0 at a probability of 1-pIR. Nonzero weights are assigned independently from a

Gaussian distribution with zero mean and a variance of gIR
2

In the SEL, there are N = 500 neurons. The neurons in the SEL are connected with a low

probability p = 0.1 and the connections are randomly and independently set from a Gaussian

distribution with zero mean and a variance of g2/(p�N), where the gain g acts as the control

parameter in the SEL. Connections in the SEL could be either positive or negative; a neuron

may project both types of connections.

Each neuron in the SEL is described by an activation variable xi for i = 1, 2, . . ., N, which is

initialized according to a normal distribution N(0, σini
2) at the beginning of each trial. xi is

updated at each time step (dt = 1ms) as follows:

t
dxi
dt
¼ � xi þ g

PN
j¼1
wijyj þ wð1Þi I þ snoisedWi ð1Þ

where τ represents the time constant, wij is the synaptic weight between neurons i and j, dWi

stands for the white noise, which is sampled from a uniform distribution [0, 1], and σnoise is its

variance. The firing rate yi of neuron i is a function of the activation variable xi relative to a

minimal firing rate ymin = 0 and the maximal rate ymax = 1:

y ¼

(
y0 þ y0tanhðx=y0Þ x � 0

y0 þ ðymax � y0Þ � tanhðx=ðymax � y0ÞÞ x > 0
ð2Þ

Here y0 = 0.1 is the baseline firing rate.
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The SEL neurons project to the DML. The two competing neurons in the DML represent

the two choices respectively. The total input of neuron k in the DML is

vk ¼
P

iw
ð2Þ

ik yi for k ¼ 1; 2 ð3Þ

where wik
(2) is the weight of the synapse between neuron i in the SEL circuit and neuron k in

the DML. The synaptic weights between the SEL and DML are randomly initialized according

to uniform distribution [0, 1], and normalized to keep the squared sum of synaptic weights

projecting to the same DML unit equal to 1.

The synaptic weights between the SEL and DML are updated based on the choice and the

reward outcome during the training phase. The decision is based on the activities of output

neuron. The stochastic choice behavior of our model is described by a softmax function:

pk ¼ E rk½ � ¼
e� bvk
P

le� bvl
ð4Þ

where E[rk] denotes the expected value of choice ak, pk represents the probability of choosing

choice ak, and the other choice is chosen with probability 1- pk. β adjusts the competition

strength of two choices, and vk is the summed input of the DML unit k. The firing rate of the

unit k, zk, is set to 1 if choice ak is chosen, otherwise it is set to 0.

Reinforcement learning

At the end of each trial, the weights between the SEL and the DML neurons are updated based

on the choice and the reward feedback.

The plastic weights in Eq (3) in trial n+1 are updated as follows:

wð2Þik ðnþ 1Þ ¼ wð2Þik ðnÞ þ Dwik ð5Þ

The update term Δwik depends on the reward prediction error and the responses of the neu-

rons in the SEL circuit and DML:

Dwik ¼ Zðr � E½r�Þðyi � ythÞzk ð6Þ

where η is the learning rate, and r is the reward. E[r] denotes the expected value of the chosen

option, which is equal to the probability of choosing choice ak and calculated with Eq 4 [57,

58]. When the reward r is larger than E[r], the connections between the SEL neurons whose

firing rate is above the threshold yth and the neurons in the DML would be strengthened, and

the connections between the neurons whose firing rate is below yth and the neurons in the

DML would be weakened. After each update, the weights wð2Þik ðnÞ are normalized:

wð2Þik nð Þ ¼
wð2Þik ðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1
½wð2Þik ðnÞ�

2

q ð7Þ

so that the vector length of wð2Þik ðnÞ remains constant. The normalization stops the weights

from growing infinitely [59].

In the very first trial of a simulation run, the choice input is randomly selected, and the

reward input is set according to the reward contingency in the block. The weights are not

updated in the first trial. The choice output from the first trial and its associated reward out-

come are then fed into the network as the 2nd trial’s input, which are used to calculate the deci-

sion for the 2nd trial and update the weights as described above.
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Behavior task

Reversal learning. The network has to choose between two options. One option leads to a

reward, and the other does not. The stimulus-reward contingency is reversed every 100 trials.

The criterion for learning is set to 28 correct trials in 30 successive trials for the initial learning

and 24 correct trials in 30 successive trials for subsequent reversals.

The input layer units represent the identities of the two options and the reward. An option

unit’s response is set to 1 for if the corresponding option is chosen in the current trial, other-

wise it is set to 0. The reward unit’s response is set to 1 if the choice is rewarded in the current

trial. The output of the network indicates its choice for the next trial. The input units repre-

senting choice options and reward are activated between 200 and 700ms after the trial onset.

There is a delay period of 200 ms, at the end of which (900 ms after the trial onset) the neurons’

activities at 900ms are used for decision making (Fig 1C).

The network parameters are set as follows. Time constant τ = 100ms, network gain g = 2,

training threshold yth = 0.2, temperature parameter β = 4, learning rate η = 0.001, noise gain

σnoise = 0.01, initial noise gain σini = 0.01, input connection gain gIR = 4, input connection

probability pIR = 0.2.

The selectivity of neurons in the SEL is determined at 900ms after the trial onset. A unit is

defined as selective to a certain input or a combination of inputs if its responses are signifi-

cantly higher under the condition when the input or all inputs of the combination are set to 1

than the other conditions (one-way ANOVA with multiple comparison and Bonferroni

correction).

Two-stage Markov decision task. The network has to make a choice between options A1
and A2. A1 leads to intermediate outcome B1 at the probability of 80%, and B2 at the probabil-

ity of 20%. Vice versa, option A2 leads to B2 at the probability of 80%, and B1 at a lower proba-

bility of 20%. The contingency between options (A1, A2) and intermediate outcomes (B1, B2)

is fixed. Initially, B1 leads to a reward at the probability of 80% and B2 leads to reward at the

probability of 20%. The reward contingency is reversed every 50 trials.

The input layer contains 6 units, representing the identities of two first stage options A1
and A2, two intermediate outcomes B1 and B2, and the reward and non-reward conditions,

respectively. The activity of option unit A1 or A2 is set to 1 when the respective option is cho-

sen. The activity of intermediate outcome unit B1 or B2 is set to 1 when the respective interme-

diate outcome is presented. The reward unit’s activity is set to 1 when a reward is obtained,

and the non-reward unit’s activity is set to 1 when no reward is obtained. The units are acti-

vated sequentially, reflecting the sequential nature of the task. The A units are activated

between 200 and 700ms after the trial onset, the B units between 700 and 1200ms, and the

reward units between 1200 and 1700ms. Decision is made based on the neurons’ activity at

1900ms after the trial onset (Fig 3C).

The network parameters are set as follows. Time constant τ = 500ms, Network gain

g = 2.25, training threshold yth = 0.2, temperature parameter β = 2, learning rate η = 0.001,

noise gain σnoise = 0.01, initial noise gain σini = 0.01, input connection gain gIR = 2, input con-

nection probability pIR = 0.2.

The selectivity of neurons in the SEL is determined at the time point when the decision is

made. There are 8 conditions in this task, namely A1B1R,A1B1N,A2B1R,A2B1N,A1B2R,

A1B2N,A2B2R, and A2B2N. For example, A1B1R indicates the condition when A1 is chosen,

intermediate outcome B1 is presented, and a reward is obtained. A neuron’s preferred condi-

tion is the condition under which its activity is the largest and significantly higher than its

activity under any other conditions (one-way ANOVA with multiple comparison and Bonfer-

roni correction). Then the neurons are grouped into different categories based on their
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preferred conditions. The neurons in category A1R are the neurons whose preferred condition

may be A1B1R,A1B2R, A2B1N, or A2B2N. All the preferred conditions of the neurons in cate-

gory A1R provide evidence for associating A1 with the reward. Similarly, the preferred condi-

tions of the neurons in the category B1N are A1B1N,A1B2R,A2B1N and A2B2R. They provide

evidence that B1 is not associated with the reward.

In order to test how well the network uses the task structure information, we fit our data

based on a simplified version of the model introduced by Daw et al. [5]. The model fits the

behavioral results with a mixture of model-free (task-agnostic) and model-based (task-aware)

learning algorithm. In our simplified task, the network makes only one choice in each trial.

The network first undergoes 2,000 trials of training before the analysis.

For the model-free agent, the state values for B1/B2 and A1/A2 are updated as follows:

VMF ðsobserved B; tÞ ¼ VMF ðsobserved B; t � 1Þ þ a1 � ðrt � VMF ðsobserved B; t � 1ÞÞ ð8Þ

VMF ðschosen A; tÞ ¼ VMF ðschosen A; t � 1Þ þ a1 � l � ðVMFðsobserved B; tÞ � VMF ðsobserved B; t � 1ÞÞ ð9Þ

where VMF (schosen_A, t) and VMF (sobserved_B, t) are the value of states Ai and Bi that are observed

in trial t, rt represents the reward feedback in trial t, α1 is the learning rate of the model-free

learning algorithm, and the eligibility λ represents how large the proportion of credit from the

reward can be given to states Ai and actions in our task paradigm. The state value for unob-

served states is not changed.

For the model-based agent, the state values for B1/B2 and A1/A2 are updated as follows:

VMB ðsobserved B; tÞ ¼ VMB ðsobserved B; t � 1Þ þ a2 � ðrt � VMB ðsobserved B; t � 1ÞÞ ð10Þ

VMB ðsA1; tÞ ¼ PA1� B1 � VMB ðsB1; tÞ þ PA1� B2 � VMB ðsB2; tÞ ð11Þ

VMB ðsA2; tÞ ¼ PA2� B1 � VMB ðsB1; tÞ þ PA2� B2 � VMB ðsB2; tÞ ð12Þ

where α2 is the learning rate of the model-based learning algorithm. PAi-Bi indicates the proba-

bility of transition from state Ai to state Bi. The state value for unobserved states is not

changed.

The net state value is defined as the weighted sum of the action values from the model-free

agent and the model-based agent:

Vnet ¼ w � VMB þ ð1 � wÞ � VMF ð13Þ

where w is the weight. When w equals 1, the behavior uses full task information. When w
equals 0, the behavior is completely task agnostic. The fitting is done by a maximum likelihood

estimation procedure.

Finally, the probability of choosing option i is a softmax function of Vnet.

p at ¼ Aið Þ ¼
expðb½VnetðsAi ;tÞ� þ p � repðAiÞÞ
P

a0expðb½Vnetðsa0 ;tÞ� þ p � repða0ÞÞ
ð14Þ

where rep(a) is set to 1 if action a is chosen in the previous trial. The inverse temperature

parameter β is set to 2, which equals to the β term in e.q. (4) that generates the behavior. The

parameter p, which captures the tendency for perseveration and switching, is set to 0. This is

because we reset the network activity every trial. The conclusions hold when p is allowed to

vary. Thus, there are only four free parameters, α1, α2, λ and w. Sessions with w deviating more

than 3 standard deviations from the mean are excluded in Fig 4C for cosmetic reasons.
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Including them increases the significance of weight difference between the two models without

affecting the conclusion.

Inspired by the factorial analysis from Daw et al. [5], we define a task-structure (TS) index

(Eq 15) to quantify how much task structure information is used in the network behavior. It is

based on the tendency of repeating the choice in the last trial under different situations. The

combination of the two reward outcomes and the two intermediate outcomes, common and

rare, gives us four possible outcomes: common-rewarded (CR), common-unrewarded (CN),

rare-rewarded (RR) and rare-unrewarded (RN). When the task structure is known, the agent is

more likely to repeat the previous choice if the last trial is a CR or an RN trial. Higher TS index

means that the behavioral pattern takes into account more task structure information.

TS index ¼
pðstayjCRÞ þ pðstayjRNÞ � pðstayjCNÞ � pðstayjRRÞ
pðstayjCRÞ þ pðstayjRNÞ þ pðstayjCNÞ þ pðstayjRRÞ

ð15Þ

The task state analysis is similar to what was used by Akam et al. [37]. Briefly, a logistic

regression is used to estimate how states of past trials influence the current choice. The regres-

sion includes four different states (2 intermediate outcomes x 2 reward outcomes) for each

trial up to 10 trials before the current trials.

Another logistic regression is used to estimate how several other potentially relevant factors

affect choices. The factors considers include: Correct—a tendency to choose the better choice

in current block; Reward—a tendency to repeat the previous choice if it is rewarded; Stay—a

tendency to repeat the previous choice; Transition—a tendency to repeat the same choice fol-

lowing common intermediate outcomes and switch the choice following rare intermediate

outcomes; Trans x Out–a tendency to repeat the same choice if a common intermediate out-

come is rewarded or a rare intermediate outcome unrewarded, and to switch the choice if a

common intermediate outcome is unrewarded or a rare intermediate outcome rewarded.

Value-based economic choice task. Unlike the two previous paradigms, both options in

this paradigm lead to a reward. Two input units represent the rewards associated with the two

options, respectively. The input strength is proportional to reward magnitude. In our simula-

tions, the reward A is valued twice as much as reward B for the same reward magnitude. The

relative value preference between the two options is not provided as an input to the network

directly. It is only used for calculating the expected value. Thus, it does not affect the SEL. The

value of the reward is defined as the product of the relative value and the reward magnitude.

The reward options are presented between 300 and 1300 ms after the trial onset. After a 100

ms delay period, the network activity is used to calculate decisions (Fig 5B).

The activity of the input unit f(t) during the stimulus period (between 300ms and 1300ms

after the trial onset), is described by the following equations [40].

gðtÞ ¼ 1=ðð1þ expð� ðt � 475Þ=30ÞÞ � ð1þ expððt � 700Þ=100ÞÞÞ ð16Þ

fðtÞ ¼ ðmagr i � minðmagriÞÞ � gðtÞ=ðmaxðmagr iÞ � minðmagr iÞÞ �maxðgðtÞÞ ð17Þ

where t is the time in the unit of ms within a trial, magri is the magnitude of the reward type i
in each trial, maxðmagriÞ is the maximal reward magnitude of reward type i within the block,

and minðmagr iÞ represents the minimal reward magnitude of reward type i, which is always 0

in our simulations.

The network activity at 1400ms is used for decision making and network training. The

expected value is the sum of the product of the probability of choosing the option and
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corresponding reward magnitude.

EðrÞ ¼ p1ðg �m1Þ þ p2m2 ð18Þ

where pi and mi are the probability of choosing option i and its reward magnitude, and γ = 2 is

the relative value preference between the two reward options. Only the data from the trials

after 8000 trials training are included for the analyses. The network parameters are set as fol-

lows. Time constant τ = 100ms, Network gain g = 2.5, training threshold yth = 0.2, temperature

parameter β = 4, learning rate η = 0.005, noise gain σnoise = 0.05, initial noise gain σini = 0.2,

input connection gain gIR = 2, input connection probability pIR = 0.2.

As in Padoa-Schioppa and Assad [11], the following variables are defined for further analy-

sis: total value (the sum of the value of two options), chosen value (the value of the chosen

option), other value (the value of the unchosen option), value difference (chosen-other value),

value ratio (other/chosen value), offer value (the value of the one option), chosen juice (the

identity of the chosen option), value A chosen (the value of the option A when option A is cho-

sen), and value B chosen (the value of the option B when option B is chosen).

We use an analysis similar to that in Padoa-Schioppa and Assad [11] to study the selectivity

of SEL units during the post-offer period (0-500ms after the stimulus onset). Linear regressions

are applied to each variable to fit the neural responses in this time window for each SEL unit

separately.

yi ¼ a � var þ b;

where var represents the variables previously mentioned. A variable is considered to explain

the response of a neuron in the SEL if the slope of the fitting linear function, a, is significantly

different from zero (p<0.05, one-way ANOVA with Bonferroni correction).

Supporting information

S1 Fig. PCA on the population activity of the sub-networks AR (grey traces) and BR (blue

traces). The sub-networks AR and BR consist of neurons that are selective to AR and BR,

respectively. The network states are plotted in the space spanned by the first 3 PCA compo-

nents, which are from the same PC space as in Fig 2B and are calculated from all neurons in

the network. Each trace represents a different stimulus condition.

(TIF)

S2 Fig. Connection weight evolution. A. The difference between the connection weights of

the AN and BN neurons in the SEL layer to DML unit A and DML unit B. Positive values indi-

cate an SEL neuron has a stronger connection to DML unit A than to DML unit B and sup-

ports choice A. The gray and white area indicates the blocks in which the option A and the

option B leads to the reward, respectively. B. Top row: AN neurons’ connections weight to

DML unit A (left) and DML unit B (right). Bottom row: BN neurons’ connections weight to

DML unit A (left) and DML unit B (right).

(TIF)

S3 Fig. E[r] for choice A in AR and BN trials (top panel) and AN and BR trials (bottom

row) in A blocks. Shade area indicates the standard s.e.m. E[r] at 900 ms (decision time) is

used for updating the weights.

(TIF)

S4 Fig. Factorial analysis of choice behavior for the full network model (left panel) and the

model without reward input (right panel). The full model exhibits stronger task-structure

A neural network model for task space representations in orbitofrontal cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005925 January 4, 2018 20 / 24

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005925.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005925.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005925.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005925.s004
https://doi.org/10.1371/journal.pcbi.1005925


effects.

(TIF)

S5 Fig. The model-based behavior in networks with different settings. A. tau = 100 ms, A1/

A2 occurs first at 200ms after the trial onset, and B1/B2 occurs at 700ms after the trial onset. B.

tau = 500 ms, B1/B2 occurs first at 200ms after the trial onset, and A1/A2 occurs at 700ms after

the trial onset. C. tau = 100 ms, B1/B2 occurs first at 200ms after the trial onset, and A1/A2

occurs at 700ms after the trial onset. Left column: the model structure index. Right column:

weights for the model-based behavior. All the significance is evaluated by one-way ANOVA.

See Fig 4B and 4C for details.

(TIF)

S6 Fig. The proportions of the neurons in the reservoir network with different selectivities

are stable across network models with different network parameters stable. A. input con-

nection gain = 0.5. B. noise gain = 0.5. C. A step function is used to model the reward inputs.

The step function’s onset is 300 ms and its offset is 1300 ms after the trial onset. All results are

based on 10 simulation runs.

(TIF)
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