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Globus pallidus (GP) neurons recorded in brain slices show significant variability in intrinsic electrophysiological properties. To inves-
tigate how this variability arises, we manipulated the biophysical properties of GP neurons using computer simulations. Specifically, we
created a GP neuron model database with 100,602 models that had varying densities of nine membrane conductances centered on a
hand-tuned model that replicated typical physiological data. To test the hypothesis that the experimentally observed variability can be
attributed to variations in conductance densities, we compared our model database results to a physiology database of 146 slice record-
ings. The electrophysiological properties of generated models and recordings were assessed with identical current injection protocols and
analyzed with a uniform set of measures, allowing a systematic analysis of the effects of varying voltage-gated and calcium-gated
conductance densities on the measured properties and a detailed comparison between models and recordings. Our results indicated that
most of the experimental variability could be matched by varying conductance densities, which we confirmed with additional partial
block experiments. Further analysis resulted in two key observations: (1) each voltage-gated conductance had effects on multiple mea-
sures such as action potential waveform and spontaneous or stimulated spike rates; and (2) the effect of each conductance was highly
dependent on the background context of other conductances present. In some cases, such interactions could reverse the effect of the
density of one conductance on important excitability measures. This context dependence of conductance density effects is important to
understand drug and neuromodulator effects that work by affecting ion channels.
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Introduction
The external globus pallidus (GP) is a central nucleus in the in-
direct pathway of the basal ganglia and plays an important role in
controlling basal ganglia activity through inhibitory output con-
nections to the subthalamic nucleus, internal pallidum, substan-
tia nigra, and striatum. GP neurons in awake animals have high
spontaneous firing rates and frequently exhibit short spike bursts
and pauses (Delong, 1971). This bursting is irregular and uncor-
related between GP neurons in normal animals but switches to
synchronized bursting with loss of dopamine in Parkinson’s dis-
ease (PD) (Bergman et al., 1994; Nini et al., 1995; Wichmann et
al., 1999). In brain slices, rat GP neurons show spontaneous slow
regular firing with variable intrinsic electrophysiological proper-
ties such as spike adaptation and rebound firing (Nambu and
Llinas, 1994, 1997; Cooper and Stanford, 2000). Transitions to
bursting can be induced with pharmacological interventions in-

cluding the application of apamin, a blocker of small-
conductance calcium-activated potassium (SK) channels (Loucif
et al., 2005). At the present time, it remains unknown to what
degree intrinsic GP neuron properties contribute to the observed
shifts in network activity in PD. It is known, however, that dopa-
mine has direct effects on calcium channels in the GP (Stefani et
al., 2002), and other modulators and mechanisms of excitability
plasticity are likely to be present as well. Such modulation of GP
excitability is, in principle, well suited to strongly affect basal
ganglia network activity because of the high interconnectivity of
this nucleus with other structures.

Recently, measurements have shown that different neurons of
a given type typically show twofold to fivefold variability in the
density of their voltage-gated conductances, resulting in consid-
erable variations of their dynamical behavior (Golowasch et al.,
1999; Prinz et al., 2003; Bucher et al., 2005). In the present study,
we addressed the question of whether such variability in conduc-
tance densities could explain the variability of GP neuron prop-
erties observed in slice recordings, and we examined how inter-
actions between different channel types may have important
consequences on excitability and neuromodulation. Although
experimental studies are well suited to assess the presence and
kinetics of specific membrane conductances and determine the
action of modulators, it is not possible to determine the resulting
interplay of multiple conductances in a spatially complex neuron.
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Conductance-based compartmental neuron models using realis-
tic cell morphologies that build on the detailed knowledge of
experimental studies, in contrast, provide a tool that allows one
to fill in this gap and examine the interactions between multiple
voltage-gated conductances of a neuron in generating complex
activity patterns (Herz et al., 2006). In the present study, we first
obtained recordings from 146 GP neurons in vitro to collect data
on their spiking behavior and variability. We then constructed a
morphologically realistic GP model that included nine mem-
brane conductances found in GP neurons to replicate the most
“typical” physiological properties of our in vitro recordings. We
then used a brute-force parameter search and database (DB) ap-
proach (Prinz et al., 2003) to make a GP neuron model DB of
100,602 models with varying conductance densities centered on
the original model. We analyzed the model DB with automated
Matlab routines to determine how electrophysiological proper-
ties such as spike rate and spike shape depend on multiple con-
ductances. We found that this model DB generally showed
smoothly varying properties replicating physiological variability.
Importantly, the effect of any specific conductance density
change strongly depended on the combination of other conduc-
tances present.

Materials and Methods
Electrophysiology
Coronal slices 300 �m in thickness were prepared from 16- to 21-d-old
male Sprague Dawley rats according to procedures described previously
(Hanson et al., 2004). Briefly, rats were anesthetized with halothane and
decapitated. The brain was rapidly removed and immersed in ice-cold
artificial CSF containing (in mM) 124 NaCl, 3 KCl, 1.9 MgSO4, 1.2
KH2PO4, 26 NaHCO3, 2 CaCl2, and 20 D-glucose, bubbled continuously
with a mixture of 95% O2/5% CO2. After cutting, slices were incubated at
32°C until use. Whole-cell recordings were obtained using an
Axoclamp-2B amplifier (Molecular Devices) at 32°C. Borosilicate pi-
pettes (#8250; AM Systems) were pulled and filled with (in mM) 140
K-gluconate, 6 NaCl, 2 MgCl2, 0.2 EGTA, 4 Na4ATP, 0.4 Na3GTP, 5
glutathione, 0.5 spermine, 0.02 Alexa-568, and 10 HEPES, pH 7.3 with
KOH. All animal procedures complied with the National Institutes of

Health and other federal rules on animal use and were approved by the
Emory University Institutional Animal Care and Use Committee.

Construction of the baseline GP neuron model
Membrane properties. The procedures used to match the passive electrical
properties of reconstructed rat GP neurons were described in a previous
publication (Hanson et al., 2004), and additional details are given in the
supplemental material (available at www.jneurosci.org). The resulting
passive parameter values were as follows: CM � 0.024 F/m 2, RM � 1.47
�m 2, and RA � 1.74 �m, which were used throughout this study. Eight
different types of voltage-dependent conductances and one calcium-
dependent conductance based on experimental evidence for these chan-
nel types in GP neurons were included in the simulations. All voltage-
dependent gates were assumed to be independent and were modeled
using standard Hodgkin–Huxley equations. The calcium-dependent
gate was modeled using the Hill equation. The voltage-gated conduc-
tance kinetics were modeled to match kinetics described in the following
sources: fast transient sodium (NaF) (Raman and Bean, 2001; Khaliq et
al., 2003; Hanson et al., 2004); persistent sodium (NaP) (Magistretti and
Alonso, 1999, 2002); fast delayed rectifier potassium of the Kv3 family
(Baranauskas et al., 1999, 2003); slow delayed rectifier potassium of the
Kv2 family (Baranauskas et al., 1999); A-type, transient potassium of the
Kv4 family (Tkatch et al., 2000); M-type potassium of the KCNQ family
(Gamper et al., 2003; Prole and Marrion, 2004); calcium-dependent po-
tassium of the SK family (Hirschberg et al., 1998, 1999; Keen et al., 1999);
high-threshold, noninactivating calcium (CaHVA) reflecting a mixture
of L, N, and P/Q-type calcium channel types (Surmeier et al., 1994); and
HCN, which gives rise to the hyperpolarization-activated, cyclic
nucleotide-modulated, mixed cation conductance (Wang et al., 2002;
Chan et al., 2004). Kv4 was modeled as two separate channel populations
with identical activation and deactivation properties but different inac-
tivation kinetics (Tkatch et al., 2000). HCN was also modeled as two
separate channel populations, which differed in both their steady-state
and kinetic properties (Chan et al., 2004). The equations and parameters
defining the simulation of each conductance type are fully listed in sup-
plemental Tables 1 and 2 (available at www.jneurosci.org as supplemen-
tal material).

Incorporation of conductances into reconstructed morphologies. Three
morphological reconstructions of differently sized GP neurons (Fig. 1 B)
were used interchangeably to model GP neuron properties to cover the

Figure 1. The baseline GP neuron model reflects typical features of GP neurons. A, A representative GP neuron (s34) and the baseline model (t9842) that matches its electrophysiological
characteristics such as firing rate, AP shape, and envelope of AP amplitude decay during a depolarizing current injection. B, Anatomical heterogeneity in the GP is represented in our DB study by three
reconstructed GP neuron morphologies. The length of the axons is truncated in this depiction.
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range of input resistances found in our slice recordings of GP neurons.
Using the CVAPP software (www.compneuro.org), these reconstruc-
tions were divided into 585, 643, and 615 compartments, respectively, to
obtain a near-equal passive electrotonic length of 0.02 lambda for each
compartment. A value of 0.1 lambda is small enough to approximate the
continuous cable solution for dendritic cylinders (Holmes et al., 1992),
and our value of 0.02 allows for a fivefold membrane conductance in-
crease attributable to voltage-gated conductance activation.

The compartments in the reconstructed neurons were grouped into
three functional regions: soma, axon, and dendrites. Axonal reconstruc-
tions were not available from our dye-filled cells, and instead a default
axon was used (Shen et al., 1999) that contained two different compart-
ment types: myelinated compartments, which had no ion channel con-
ductances but a 100-fold reduced capacitance attributable to myelin, and
unmyelinated compartments (including the axon initial segment and
nodes of Ranvier) that were highly excitable.

The dendrites contained three subdivisions based on dendritic diam-
eter: thick dendrites had diameters �1 �m, medium dendrites had di-
ameters ranging from 0.5 to 1 �m, and thin dendrites had diameters
�0.5 �m. These subdivisions differed in only one parameter: the calcium
channel density was 3 times higher in the thin dendrites than the thick
dendrites, and 1.5 times higher in the medium dendrites than the thick
dendrites (Hanson and Smith, 2002). The somatic, dendritic, and axonal
regions were allowed to have different conductance densities from each
other, whereas conductance densities were uniform within each region,
except for the differences mentioned above.

We constrained the GP model neuron to have uniform densities of
sodium and KDR channels (Kv2 and Kv3) throughout the soma and
dendrites after our recent study demonstrating voltage-gated sodium
channel expression in rat GP dendrites with immunolabeling, and with
whole-cell recordings from rat brain slices indicating that excitatory syn-
aptic inputs could trigger propagating sodium spikes in GP dendrites
(Hanson et al., 2004). The exact densities and distributions of channels
were obtained by a semiautomated tuning process to match electrophys-
iological characteristics such as spike shape and spike rate– current (fI)
curves from rat brain slice recordings [a representative neuron (s34) is
shown in Fig. 1 A]. See supplemental material (available at www.
jneurosci.org) for the details of this tuning process and the resulting
parameter settings.

DB construction
Stimulation protocol. Both experiments and simulations used a current
injection pulse (CIP) stimulation protocol. In this protocol, a current
injection period would follow an initial period of spontaneous activity.
This allowed us to track electrophysiological changes when a depolariz-
ing or hyperpolarizing current was applied. Simulations consisted of a 4 s
recording, in which the first second before reaching the steady state was
discarded. The remaining 3 s consisted of 1 s for spontaneous activity,
followed by a 1 s CIP period and a 1 s recovery period.

Measurements of electrophysiological characteristics. Measurements
from recorded or simulated voltage traces were obtained automatically
with our custom PANDORA Toolbox (available from the SimToolDB
repository; http://senselab.med.yale.edu/SimToolDB) (C. Günay and D.
Jaeger, unpublished observation) within the Matlab environment
(MathWorks). Approximately 20 primary measurements were collected
from different periods of the CIP protocol and for different levels of
injected current, yielding a total of �300 measures for each real or model
neuron. The firing rate for each period (spontaneous, CIP, recovery) was
calculated as the inverse of averaged interspike intervals (ISIs). Action
potential (AP) amplitude was measured as the voltage from the AP
threshold (see supplemental material, available at www.jneurosci.org) to
the peak voltage of the AP. The afterhyperpolarization (AHP) depth was
measured as the difference between the AP threshold and the voltage
minimum during the AHP. The half-width of the AP was measured at the
half-amplitude voltage. Spike frequency adaptation was calculated as the
ratio of ISIs from the beginning and end of the 100 pA CIP period,
indicating the change in firing rate. A sag during �100 pA CIP was
measured as the voltage difference between the lowest voltage reached
early in the CIP response and the steady-state voltage reached at the end.

The rebound ratio was measured as the ratio between the initial firing
rate during the recovery period after a �100 pA hyperpolarizing CIP and
the spontaneous firing rate. For AP shape measurements, each AP was
measured separately and averaged to give a mean and SD for that mea-
sure. For each measure, we selected a sample of near-average and extreme
outcomes from the DB and visually checked the original raw data traces
to test for correct performance of the respective Matlab algorithm. This
testing, in particular, led to a fine-tuning process of the spike-threshold
detection, because the standard method of 15 mV/ms threshold crossing
of the first voltage derivative (slope) produced poor results for some
spike waveforms (see supplemental material, available at
www.jneurosci.org).

Conductance parameter space to create model DB. The model DB was
created by changing conductances by factors of 2, 5, or 10, from values in
the baseline model. Only three or four values were selected for each
parameter to create a coarse-grained search grid that could be completed
in a reasonable amount of time with available computational resources.
The chosen conductance values bracketed the values used in the baseline
model, and in each case added higher and lower than baseline values that
were still within physiologically plausible ranges (Table 1). Each conduc-
tance density combination was also simulated with three different mor-
phologies (Fig. 1 B). However, the lowest values for NaF, KCNQ, and
HCN were used only for the two morphologies with higher input resis-
tances, resulting in some missing combinations of parameter values. The
total number of models was 100,602, which is less than the number of all
possible conductance density combinations, 3 7 � 4 3 � 139,968. To
avoid a combinatorial explosion of parameter combinations, the relative
axonal, somatic, and dendritic densities were kept constant throughout
all simulations. See supplemental material (available at www.
jneurosci.org) for additional details.

DB construction of 146 GP neurons recorded in brain slices. A physiology
DB was constructed by evaluating current-clamp data from 146 GP neu-
rons, which were subjected to a CIP injection protocol as described above
for simulations. The same Matlab analysis routines were used to deter-
mine measures of physiological properties in the pool of recorded neu-
rons as in the simulations. The analysis routines had to be improved for
processing noisy experimental data compared with noiseless simulation
data, and thus we tested and fine tuned analysis procedures such as
finding the AP threshold that can behave differently in the presence of
recording noise. Because physiological responses to a given CIP stimulus
can be variable, we used an average measure across several trials. The
physiology DB was analogous to the model DB, except that additional
values were inserted to keep track of the SD of measures across trials.

Neuron-matching algorithm and distance metrics. To find best match-
ing model candidates to a given physiological recording, a matching
algorithm was used to rank model neurons according to their similarity
to that recording. The matching algorithm worked by calculating a dis-
tance metric between a set of corresponding measures for two neurons,
which could be either simulations or recordings. The metric was defined
as the sum of absolute differences between corresponding measures, each
normalized by the inverse of the SD of the measure found in our physi-
ology DB of 146 neurons. Each normalized measure difference gives the
distance between the two neurons in number of SDs. This normalization
allows balancing contributions from measures with different units and

Table 1. Conductance density parameter values used to generate the model DB

Parameters Name Values (S/m2)

NaF Fast, transient Na 125, 250, 500, 1000
NaP Persistent Na 0.5, 1, 2
Kv2 Slow delayed rectifier 0.1, 1, 10
Kv3 Fast delayed rectifier 2, 10, 50
Kv4f A-current 10, 20, 40
KCNQ M-current 0.08, 0.4, 2, 10
SK Ca-activated AHP K 2, 4, 8
HVA High-threshold Ca 0.03, 0.3, 3
HCN H-current 0.04, 0.2, 1, 5
Morph Morphology 1, 2, 3
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different scales of amplitude (e.g., AP width in few milliseconds versus
AP amplitude in tens of millivolts). This normalization also had the effect
that highly variable features in our recordings did not need to be mapped
very accurately in our simulations to provide a reasonable match. For
example, the spontaneous firing rate of neurons had a SD of 5.9 Hz, so
our distance metric would be increased only by 1.0 if a model neuron had
a spontaneous spike rate 5.9 Hz higher than a given recorded neuron. See
supplemental material (available at www.jneurosci.org) for a complete
list of measurements included in the calculation of the distance metric.

Results
Physiological heterogeneity of GP neurons
The electrophysiological heterogeneity among neurons in a brain
structure is likely to have important consequences on signal pro-
cessing. To quantitatively characterize the electrophysiological
heterogeneity among GP neurons, we formed a DB of measured
electrophysiological properties from 146 neurons recorded in
brain slices. Properties such as AP threshold, AP amplitude, AP
width, spike rate, spike rate adaptation, etc., were quantified from
current-clamp data using custom Matlab (MathWorks) scripts
(see Materials and Methods). The neurons exhibited a high de-
gree of variability in these physiological properties (Fig. 2A,B).
The frequency of spontaneous firing ranged between 0 and 25.51
Hz (mean, 5.45 Hz; SD, 5.89 Hz), and measures such as spike
frequency adaptation, rebound, and sag attributable to HCN also
showed severalfold ranges of variation (Fig. 2B). However, each

measure showed a broad unimodal distribution that did not al-
low for a clear classification into distinct cell types. Thus, al-
though we confirm the spread of different physiological proper-
ties in GP neurons reported in previous studies (Nambu and
Llinas, 1994, 1997; Cooper and Stanford, 2000), we found no
clear separation of the recorded pool of neurons into distinct
physiological classes. In part, this difference to previous studies
may be attributable to a selection bias in our recordings. In par-
ticular, we avoided recording from very large neurons indicative
of cholinergic cells present in GP (Schwaber et al., 1987; Gritti et
al., 1993); thus it is plausible that type C neurons as defined by
Cooper and Stanford (2000) and similarly type III neurons de-
scribed by Nambu and Llinas (1994) are absent from our DB.
Because cholinergic cells in GP belong to a different functional
circuit than the GABAergic output neurons, this absence does not
limit the use of our data in examining heterogeneity in the indi-
rect pathway of the basal ganglia.

GP physiological heterogeneity can be replicated with models
of varying conductance densities
To test the hypothesis that electrophysiological heterogeneity in
GP may be attributable to variations in channel densities, we
constructed a computer model of a GP neuron with nine ion
channel types (eight voltage gated and one calcium gated) known
to be present in GP neurons to match typical in vitro properties

Figure 2. Electrophysiological and anatomical heterogeneity in the GP is replicated in the model DB. A, Electrophysiological heterogeneity in the GP is shown by two example neurons (s25 and
s61) that exhibit distinct characteristics such as the occurrence of a voltage “sag” with hyperpolarizing current stimulus and different spontaneous firing rates. B, C, Histograms of electrophysiological
measurements from the physiology neuron DB (B) compared with the histograms of measurements from the model DB (C). The bins representing models with no spontaneous spiking were omitted
for clarity in the rate and rebound histograms. spont. rate, Spontaneous rate; AP amp., AP amplitude; SFA, spike frequency accommodation.
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(Fig. 1A) (see Materials and Methods for details). Three morpho-
logical reconstructions were used (Fig. 1B) that spanned the typ-
ical range of input resistances found in recordings. To simulate
physiological heterogeneity of GP neurons, we varied the nine
conductance densities for all possible combinations of three to
four selected values (see Materials and Methods). This brute-
force approach to scan all parameter combinations resulted in
100,602 distinct models, the measured properties of which were
collected in a model DB. The range of data values for our physi-
ological measures in the model DB (Fig. 2C) was similar to the
distributions found in the physiology DB (Fig. 2B). As in the
physiology DB, individual measured properties such as AP am-
plitude, AP width, AHP depth, and firing rates in spontaneous
activity and in response to CIPs showed broad distributions in
the model DB (Fig. 2C). However, the proportion of models
without spontaneous spike activity (56%) was much higher than
the proportion of physiological recordings without spontaneous
spiking (19%). This finding is congruent with previous studies
indicating that biological neurons use homeostatic plasticity
mechanisms that keep neurons within specific excitability ranges
(Desai et al., 1999) and thus would avoid random conductance
density combinations found in our brute-force DB that lead to
nonspiking behaviors. In contrast to the physiological data, our
simulations also showed only very few models (250 of 100,602)
with very low spontaneous spike rates between 0 and 3 Hz (Fig.
2B,C). This could again be attributable to biological plasticity
mechanisms that encourage conductance densities leading to
such activity, but may also suggest that the complement of
voltage-gated kinetics used in our model is missing a feature that
would stabilize very slow firing. Most measures, however, showed
good matches not only in the range of values seen but in the peak
and shape of the distributions found. It may be surprising at first
that measured properties were distributed smoothly in our sim-
ulations despite the coarse grid of only three to four density val-
ues used for each conductance. Two main factors contributed to
the smoothing of measured properties. First, the same conduc-
tance density combinations led to different outcomes in the three
morphologies used. This mechanism, in particular, smoothed
distributions of spike amplitude and sag during negative CIPs,
which were otherwise dominated by the discrete settings of the
NaF and HCN densities, respectively (supplemental Fig. 1, avail-
able at www.jneurosci.org as supplemental material). Second,
most measured properties were influenced by multiple conduc-
tances (see below), thus no single discrete conductance setting
dominated such measures. In some cases, however, a particular
value of one conductance could result in non-unimodal distribu-
tions of measured properties. The clearest case we observed was
the control of spike width at half-amplitude. The half-width his-
togram showed a peak of narrow spike width values (Fig. 2C),
which was entirely attributable to the highest density of Kv3 used
(supplemental Fig. 2, available at www.jneurosci.org as supple-
mental material).

Most physiological properties were controlled by
multiple conductances
An influence of multiple conductances on physiological proper-
ties has been observed previously in single-compartment models
using multiple Hodgkin–Huxley conductances (Foster et al.,
1993). In our full morphological GP neuron model, we found a
similar dependence of physiological properties on multiple con-
ductances (Fig. 3). For example, the spike width was strongly
affected by both NaF and Kv3 channels (Fig. 3A); the spike AHP
involved CaHVA, Kv2, and NaF channels (Fig. 3B); and the spike

rate during a depolarizing current injection was dependent on
both KCNQ and SK channels (Fig. 3C).

A full analysis of the model DB with respect to average effects
of channel density increases on each measured property revealed
a complex matrix of each channel influencing multiple measures
(Fig. 4C). In fact, the only property that we found to be almost
entirely controlled by a single conductance was the sag of the
voltage trajectory during a negative CIP, which was attributable
to HCN. Rebound spiking after hyperpolarization was increased
both by NaP and by HCN conductances, but not others. Thus,
our analysis predicts that in GP, an increase in these two conduc-
tances could be important for network-bursting behavior be-
cause of rebound spiking. The spontaneous spike rate was posi-
tively influenced primarily by NaP conductance but also by Kv3,
whereas it was primarily negatively influenced by KCNQ conduc-
tance, but also by Kv4, SK, and CaHVA. Notably, the control of
the steady-state spike rate during �100 pA current injection was
different from the control of the spontaneous spike rate, indicat-
ing a difference in channel contributions to spike rates at differ-
ent membrane potentials. In particular, during CIP-induced de-
polarization, NaF played an increased role in enabling higher
spike rates, and the Kv2 conductance actually reversed its effect of
slowing down spontaneous spiking to allowing faster spiking
during positive current injection. Further analysis of this effect
showed that Kv2 prevented the development of depolarization
block during 100 pA current injection. From the total population
of 100,602 models, depolarization block developed in 25,688
(26%) during 100 pA current injection, therefore an impact on
depolarization block became an important effect of conductance
manipulations. Our results indicate that an increase in Kv2 con-
ductance would also lead to an increase in AP amplitude, an
increase in AHP depth, and a decrease in spike width and would
affect other physiological properties as well (Fig. 4C). This mul-
tiplicity of effects leads to the prediction that channel modula-
tion, even when limited to a single conductance type, will have
complex consequences on single-neuron dynamics.

Context dependence of channel effects in the control of spike
shape and excitability
Although information on averaged conductance density effects
on physiological properties (Fig. 4C) is highly desirable for un-
derstanding the effects of channel modulation, this information
is inadequate for predicting the outcome of such modulation
when the density levels of other voltage-gated conductances are
different. A simple example of this sort is the strong effect of
CaHVA on deepening the AHP (Fig. 4B), which is mediated by
the activation of a SK. Thus, the high variability of the effect of
CaHVA on AHP depth (Fig. 4B) was mostly caused by the vari-
able density of the SK conductance (supplemental Fig. 3, avail-
able at www.jneurosci.org as supplemental material). Channel
interactions, however, were usually more complex than a pair-
wise dependency. When we examined the effects of different con-
ductances on AP half-width (Fig. 4B, second row), we found that
NaF had a large mean effect when its density was increased from
125 to 250 S/m 2, but for many individual backgrounds of other
conductances, this increase actually had almost no effect (Fig.
4A). Because a large effect on spike width was also caused by Kv3
(Fig. 4B), it was interesting to understand how NaF and Kv3
interacted in controlling spike width. Scatter plots of AP ampli-
tude versus half-width for different levels of Kv3 and NaF (sup-
plemental Fig. 2) revealed a nonlinear interaction of effects. NaF
had a primary effect on AP amplitude, whereas Kv3 had a primary
effect on AP half-width. However, AP amplitude and half-width
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were related to each other because larger spikes activated much
more Kv3 because of its depolarized activation range. Thus, high
levels of NaF resulted in large spikes, and the voltage dependence
of Kv3 led to a pronounced narrowing of large spikes, but only
when Kv3 was also at a high density.

The control of spike rate by active properties is of particular
functional relevance because it determines overall excitability
and responsiveness to synaptic input. Thus, we more closely an-

alyzed the average effects of different channel types on spike rate
described above. We focused our analysis on the spike rate during
�100 pA current injection, which had a mean value of 36 Hz in
our model DB, closely resembling the 31–36 Hz average spike rate
of GP neurons in awake rats (Ruskin et al., 1999; Urbain et al.,
2000). The largest effect on this measure by a single conductance
change was found for an increase in the level of KCNQ from
medium to high. This KCNQ increase resulted, on average, in a

Figure 3. Examples of how a change in the density of a particular conductance affects multiple individual measurements of model neuron properties and how each property is affected by multiple
conductances. A, Effects of NaF and Kv3 on the AP half-width. B, Effects of CaHVA, Kv2, and NaF on AHP magnitude. C, Effects of KCNQ and SK on firing rate (see supplemental Table 3, available at
www.jneurosci.org as supplemental material, for the conductance density parameters of these example models).
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large reduction in spike rate (Fig. 4B). However, for individual
combinations of other conductances present, this effect varied
smoothly from large to nonexistent (Fig. 4A, right). In a few
cases, the effect was even in the opposite direction, and the spike

rate increased slightly with added KCNQ. In fact, every conduc-
tance in the model could show opposite effects on spike rate when
it was increased depending on the background of other conduc-
tances present. In the cases of KCNQ, NaP, Kv3, and SK, only a

Figure 4. Context dependence of channel effects on measures in the entire model DB. A, As an example of context-dependent effect, this model had a smaller effect of NaF on AP half-width (left)
than the model shown in Figure 3A. The histogram of change in AP half-width with NaF conductance increases (middle) shows that the effect of NaF on the AP half-width varied between �1.5 and
0 ms based on the background context. As another example, the histogram of changes in firing rate during �100 pA CIP with KCNQ over all combinations of background conductances also showed
broadly distributed values. The S/m 2 ranges above the plots indicate the change in the conductance value. B, Error-bar plot representing mean and SD of the distribution of the effect caused on some
important measures by change in conductance (including the examples from A). Each bar indicates the effect caused by a conductance increase of the magnitude indicated on the x-axis (i.e., the bar
labeled with 125 S/m 2 NaF shows the effects of increasing the conductance from 125 to 250 S/m 2). C, Table representing context-independent total effect on measure value with change of
conductance value from its lowest to highest level. The color of each box represents the sum of mean effect in B for each measure– conductance pair. Each row of the table is normalized to a maximal
value of �1.0 or �1.0 for the largest absolute change seen for the respective measure.
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few outliers showed opposite effects compared with the mean,
but for NaF, Kv2, Kv4f, and CaHVA conductances, this was the
case for �10% of all models (see supplemental Table 6, available
at www.jneurosci.org as supplemental material, for percentage of
models with opposite effects). This type of context dependence of
channel modulation effects could present a basis for bidirectional
effects of neuromodulation, such as the upregulation or down-
regulation of spike rate in different neurons by serotonin in sub-
stantia nigra pars reticulata (Invernizzi et al., 2007), which bear
many similarities to GP neurons. It should be noted, however,
that our model DB covered all permutations of different conduc-
tance settings in a coarse search grid. Some areas of this parame-
ter space may not be visited by biological neurons because of
homeostatic plasticity rules (see Discussion).

Another possible explanation for inconsistent drug effects is
given when two successive increases of one conductance (low to
medium, then medium to high) produce opposite effects on
spike rate although all other conductances remain the same. NaF
presented a good candidate for a conductance producing such
effects, because many more models showed an increase in spike
rate when NaF was increased from 125 to 250 S/m 2 than for an
additional increase to 500 S/m 2 (supplemental Table 6, available
at www.jneurosci.org as supplemental material). We specifically
queried the DB for models in which the spike rate increased for a
conductance increase to 250 S/m 2, but for an additional increase
to 500 S/m 2 showed a decrease of at least 20%. We found that
these conditions were predominantly fulfilled by model conduc-
tance backgrounds with a high level of Kv3 (n � 663 of 10,206
backgrounds; 6.5%) (Fig. 5A). To examine this reversal of spike
rate change at a NaF density near 250 S/m 2 and its dependency on
Kv3 more closely, we picked one of the models showing this effect
and used it as a starting point to create a finer-grained model DB

to fill in the coarse search grid of the orig-
inal DB. To create this finer-grained DB,
we used 20 levels of both NaF and Kv3
densities on a logarithmic scale covering
the density range of the coarse-grained
DB. Even at the finer resolution, we found
that the increase and then decrease in spike
rate with increasing NaF were dominated
by sudden boundaries in spiking behavior
(Fig. 5B). Representative raw data traces
show that the model first underwent a
change from depolarization block to fast
spiking with increasing NaF and then un-
derwent a second transition to a slower
spiking mode with a different spike shape.

Multiple combinations of channel
density could lead to similar activity
Experimental studies have shown that ho-
meostatic plasticity can lead to neurons
showing similar electrophysiological
properties by choosing different combina-
tions of conductance densities (Golow-
asch et al., 1999; Bucher et al., 2005). Sim-
ilarly, in computer simulations, different
combinations of conductance densities
can lead to similar electrophysiological
properties (Bhalla and Bower, 1993; Foster
et al., 1993; DeSchutter and Bower, 1994;
Goldman et al., 2001; Prinz et al., 2003;
Achard and De Schutter, 2006). Thus,

constructing an “ideal” computer model of a given type of neu-
ron with the “correct” set of conductances presents an ill-posed
problem. A more general approach to understand which conduc-
tance densities can result in a desired behavior is to assess the
space of solutions in close proximity to a given electrophysiolog-
ical set of properties. We used a systematic approach to find GP
models in our DB that were maximally disparate in parameters
but minimally different in measured properties to our original
model. To quantify the similarity in neuronal activity, we defined
an overall “distance” metric between neuron representations in
our DB by combining measured distances of a comprehensive set
of electrophysiological properties. Each measure was weighted in
inverse proportion to its SD in the physiology DB with the option
of weighting particular properties more heavily (see supplemen-
tal material, available at www.jneurosci.org). We then calculated
distances of all model neurons to the baseline model that repli-
cated typical GP neuron properties. We plotted these data as a
distance matrix along the dimensions of parameter distance and
measured property distance (Fig. 6A). This overall landscape of
parameter distance versus measure distance relative to our refer-
ence model confirmed that measure distance generally increased
with parameter distance. It also showed that many models existed
with a relatively high parameter distance and a low measure dis-
tance seen from the light-colored areas on the left of the distance
matrix. From this distance landscape of the model DB, we
searched for models with a large parameter distance (e.g., 10) and
low measure distance. Of 7121 models with parameter distance
10, 54 models had �1 SD of measure distance. From the top 10
models with lowest measure distances, we picked an example
model with highly similar spiking activity to the baseline model,
whereas eight of nine of its conductance parameters differed (Fig.
6B,C). Although a general analysis of how similar activity can

Figure 5. Analysis of the effect of NaF and Kv3 channels on the firing rate. A, Change of spike rate with four NaF and three Kv3
levels, averaged over the 663 models with strongly reversing effects in the DB. Rate is measured during the 100 pA current
injection period. avg., Average. B, Left, Same landscape from A, in a DB created with finer-grade values of 20 steps each for NaF and
Kv3 for one of the 663 models (see supplemental Table 4 for the selected model parameters). Right, Line plot of spiking frequency
for increasing values of NaF when Kv3 is held at 50 S/m 2. C, Example voltage traces from the three distinct regions of spike
frequencies shown in B.
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emerge from different parameter settings is beyond the scope of
this study, an examination of conductance density differences
between the example and baseline models (Fig. 6C) in reference
to the average effect of each conductance (Fig. 4C) suggests some
specific compensatory mechanisms. For example, the picked
model differed by an increase in CaHVA conductance and a de-
crease in SK conductance from the baseline one. The increased
CaHVA conductance will activate the remaining SK conductance
more strongly and may lead to a comparable overall SK current.
Thus, many different matched combinations of CaHVA and SK
current could result in similar model behaviors. Similarly, the
observed reduction in NaP is expected to lead to a decrease in
spike rate, as well as affect other measures. These effects could be
compensated for by the observed decrease in KCNQ, because
these two conductances have opposite effects on most mea-
sures (Fig. 4C). It is important to note that disparate parame-
ter combinations leading to similar electrophysiological prop-
erties are not an artifact of computer simulations but have
been observed experimentally as well (Golowasch et al., 1999).
Nevertheless, these neurons or models are not functionally
identical, because the different background conductances
would cause them to respond differently to neuromodulation

that upregulates or downregulates specific channels (see
above). Our analysis here specifically predicts that conduc-
tance densities in GP could be highly variable while overall
behavior is maintained because of compensatory changes. The
presence of variability in GP conductances can be experimen-
tally tested by using current-clamp and voltage-clamp analysis
in brain slices. Our modeling results also indicate that such an
analysis is important to understand the variability in the effect
of drugs on different GP neurons.

The model DB approach allows finding models that best
match the properties of individual recordings
As shown in Figure 2, our physiology DB of 146 recorded GP
neurons shows a large range in property distances. To better un-
derstand how conductance density differences could explain the
physiological properties of individual neurons, we used the dis-
tance metric defined above to compare recordings and models. In
particular, we identified the best matches in the model DB for the
two distinct GP neurons shown in Figure 2A by their minimal
property distance to the recordings. These best matches in the
model DB fit the distinguishing features in the two real neurons
such as the sag, firing rate, the fI relationship, and rate adaptation

Figure 6. Models with different channel densities could lead to similar behavior. A, The landscape of relationship between distances in model parameters and in electrophysiological properties
of all models compared with the starting model showed regions where models were similar in activity but disparate in parameters. The grayscale color in this two-dimensional histogram indicated
the percentage of models out of all models with a parameter distance that fall within the range of property distance denoted on the x-axis. Each row in the histogram was normalized by the bin with
maximal number of models indicated with the brightest white (see supplemental Table 5, available at www.jneurosci.org as supplemental material, for the normalization coefficients). For example,
there are only very few models with a very small parameter distance to the original model, and all of these show a small distance in properties (bottom left corner of plot). There are also only a small
number of models with a maximal distance in parameter space, and most of these show an intermediate property distance (top row). There are many models with intermediate parameter distances,
and these show a large range of property distances, among them the largest observed total property distances (middle rows). STD, Standard deviation. B, C, The baseline model is compared with the
model found from the landscape in A (white arrow) with the largest discrepancy between parameter distance (10) while showing a small property distance (0.7) to the baseline model. Raw traces
show the overall similarity between these two models (B). Nevertheless, eight of the nine conductance parameters are substantially different between the two models, whereas only the level of NaF
and the morphology of the neuron remained the same (C).
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quite well (Fig. 7A,B). A comparison of the conductance param-
eters of the DB models best matching each recording showed
differences in eight of nine channel density parameters (Fig. 7C).
An understanding of some of the conductance differences be-
tween the best matching models can be gained by comparing
density changes with the matrix in Figure 4C that predicts the
mean effect of conductances on physiological properties. Sag
during hyperpolarization was greater in neuron s25 than neuron
s61, and this greater sag was matched by a model with higher
HCN density, as expected. Similarly, but less intuitively, the
higher spontaneous spike rate of neuron s61 was matched by a
model with higher NaP and Kv3 conductance and lower CaHVA
conductance, because these were the major conductances affect-
ing this measure in the average effect matrix. However, KCNQ
was not lower in this model despite its strong influence on spon-
taneous spike rate. This demonstrates that best matches between

recordings and models cannot be obtained from just combining
average channel effects on individual properties, because each
channel also influences multiple other properties.

Despite the overall good match between recorded neurons
and best-matching models, a detailed comparison of the mea-
surements showed remaining quantitative differences between
the selected neurons and matching models (Fig. 7D). These dif-
ferences may be partly attributable to the coarse granularity of
our search grid, and matches might be improved with gradient
descent searches in the local parameter neighborhood of our
identified best matches. Nevertheless, we expect remaining dif-
ferences even after such searches because of inherent model lim-
itations such as simplified intracellular Ca 2� handling and miss-
ing pump currents. In contrast to just creating a single
“optimized” model, the DB approach allows the identification of
mismatches that are not caused by conductance density settings,

Figure 7. Models that best match the distinguishing features of the two GP neurons s25 and s61 from Figure 2 A. A, B, Comparison of the two recorded neurons and models selected for best
matching their pronounced differences in physiological properties. The raw data traces for 	100 pA CIP are aligned with instantaneous firing rate plots shown below. Additional plots show the
shapes of the second AP during the �100 pA CIP period and a graph of the firing rate versus injected current (fI curve). C, Comparison of conductance values between the two models matching the
two different recordings highlight their distinctions. D, Comparison of measures between the neurons and matching models. The mean and standard deviation (STD) of the physiology DB is shown
in the first column to allow a comparison of the selected neurons with the sample mean and variance. The STD of the physiology DB also indicates the relative weight of the measure used in our
matching algorithm (see Materials and Methods).
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and it facilitates the eventual incorporation of additional pro-
cesses into the model that best address such mismatches.

Comparison of multiple models that match specific
recorded neurons
Given our above findings of multiple models with similar physi-
ological properties, we expected to find multiple good candidate
models in our DB that match the behavior of particular recorded
neurons. Many candidate models were indeed similar, because
the distance between the example target neuron s61 and match-
ing models only increased from a mean of 0.93 SDs (SD deter-
mined from variance in DB of 146 recorded neurons) for the
selected set of properties to 0.98 SD for the 50th ranked model
(Fig. 8A) and to 1.15 SD for the 1000th ranked model (Fig. 8C).
The distances of these top-ranking candidate models were signif-
icantly lower than the mean distance of 2.5 and its SD of 1.1
obtained from all matches to this neuron in the model DB. The

individual measure distances showed that all top 50 ranking
models tended to best match the same properties of the target
neuron s61 (Fig. 8A). For this neuron, the most closely matched
feature was the sag at �100 pA CIP period throughout the ranks,
whereas the worst matched feature, by far, was the AP threshold
during the �100 pA current injection period. This threshold had
only a small SD in the physiology DB (Fig. 8B), and models in the
DB generally showed a lower AP threshold, which is potentially
attributable to a mismatch in the NaF kinetics or voltage depen-
dence. The matches to this neuron also showed an interesting
interaction between the AP half-width and AHP depth measures
because no model was able to match both of these measures well
at the same time, and thus different models switched between
solutions that satisfied one or the other (Fig. 8A). To determine
the range of conductance densities that could account for model
behaviors similar to neuron s61, we plotted the conductance level
distribution of the top 50 matches (Fig. 8D). We found that some

Figure 8. Multiple similar models matching neuron s61 were found. A, Color plot of measure distances of top 50 ranking models to the recorded neuron shows the similarities between models.
The colors are scaled by the standard deviation (STD) of the respective measure in the DB of 146 recorded neurons. The measures on the y-axis were sorted to have better matching measures at the
top. The superimposed white-line plot shows the cumulative distance measure of each of the models, the scale bar of which appears to the right. B, Quantitative comparison of actual measure values
between the physiology DB, neuron s61, best-matching model t1768, and the mean and SD of the top 50 models. avg., Average. C, Plot of sorted cumulative measure distance for the 1000
best-matching models shows that distance to the target neuron increases more steeply in the lower ranks. D, Differences in conductance densities found in the top 50 models are shown with
distribution plots of conductance parameters.

7486 • J. Neurosci., July 23, 2008 • 28(30):7476 –7491 Günay et al. • Effects of GP Neuron Conductance Density Variability



conductances were constrained primarily to one (NaF, Kv3,
HCN) or two (NaP, Kv4, CaHVA) levels, whereas the remaining
ones (Kv2, KCNQ, SK) took on all three possible conductance
levels in a considerable number of models matching neuron s61.
Again, these findings highlighted the point that multiple conduc-
tance combinations could result in similar physiological proper-
ties because each property is controlled by multiple
conductances.

To test the hypothesis that manipulating channel conduc-
tance densities can completely explain the observed variability in
GP neuron recordings, we applied the best-matching algorithm
to each of the 146 recorded GP neurons (Fig. 9). The results
indicated that we were able to match �80 recordings within 1.0
SD averaged across properties. Thus, the model DB approach is
generally suited to find models for individual recordings and to
generate future network models that incorporate the natural het-
erogeneity of recorded populations of neurons.

Experimental testing of a key modeling prediction: variability
of channel block outcomes
A key finding of our modeling results was that the effect of chang-
ing the density of an individual conductance on a given measure,
such as spike width or spike rate, should be quite variable because
of the interaction with the combination of other conductances
present (Figs. 3, 4A,B, 5). Even conductances that are generally
expected to have a consistent effect on spiking behavior, such as
NaF and delayed rectifiers (e.g., Kv3), showed highly variable
effects on these behaviors in the presence of different conduc-
tance backgrounds. The prediction of variable effects of reduced
channel densities is testable by applying partial block concentra-
tions of toxins in a set of biological neurons, which presumably
would also display some variability in conductance density back-
grounds. Because Na� current is a major contributor to spiking
behavior and showed conductance background-dependent ef-
fects in our model, we undertook partial block experiments of
Na� current by adding low concentrations of tetrodotoxin (TTX;
7–15 nM; n � 7) to the slice perfusate during a GP recording after
having established baseline spiking behavior. TTX blocks both
fast and persistent Na� current (Crill, 1996), therefore the
matching model comparison to partial TTX block consists of a
joint reduction in NaF and NaP conductances. At the concentra-
tions used, the Na� conductance should be reduced by 50 – 80%
(Osorio et al., 2005; Mercer et al., 2007). In the model, a joint
reduction in NaF and NaP conductance led to a variable reduc-
tion in spike rate during 100 pA current injection (Fig. 10A,C),
but only in very rare cases to an increase. Our experiments re-
vealed a similar distribution of effects (Fig. 10C) ranging from no

effect to a dramatic reduction (see supplemental Fig. 4, available
at www.jneurosci.org as supplemental material, for effects on
individual cells). The most extreme reductions in spike rate oc-
curred both in experiments and in the model because of develop-
ing depolarization block for low effective Na� conductance den-
sities (Fig. 10A). A similar match between experiments and
simulations was also observed for variable reductions in spike
amplitude and increases in spike width (Fig. 10B,C). Thus, over-
all a good match between NaF/NaP reductions in the model and
partial TTX block in slice recordings was found. This supports the
notion that neuromodulators that upregulate or downregulate
Na � channels will have different effects on different neurons
and affect many aspects of spiking dynamics simultaneously.
Nevertheless, cases of reversing effects that were present in a
very small population of models were generally not found in
our experiments, possibly because one might need hundreds
of recordings to find such cases. It is also possible that the
conductance backgrounds associated with reversing effects of
Na � channel density on spike rate are not found in biological
GP neurons. The only reversing effect seen in a TTX block
experiment was the increase in spike amplitude in one neuron
during 100 pA current injection after TTX application (Fig.
10C). On closer inspection, this was likely attributable to ab-
sence of spontaneous spiking preceding the 100 pA current
injection, which can lead to increased sodium channel avail-
ability at the onset of the CIP because of the removal of slow
inactivation in the preceding period.

Whereas TTX blocks two conductances present in the model,
a low concentration of 100 �M 4-aminopyridine (4-AP) results in
selective and approximately half-maximal block of Kv3 channels
in GP neurons (Baranauskas et al., 1999). Thus, as a second test of
our model predictions, we used 100 �M 4-AP block in some GP
neurons (n � 8). The model DB predicted that reduced Kv3
conductance should result in a pronounced but variable spike
width increase, a small but highly variable spike amplitude in-
crease, and a highly variable spike rate increase during �100 pA
current injection (Fig. 4B). The experimental findings confirmed
these major predictions (Fig. 10D,E), although the median ef-
fects and the amount of variability were not identical. In partic-
ular, the spike width increase was generally larger in the experi-
mental data than in the model, even when Kv3 was reduced 25-
fold (Fig. 10C). In fact, the effects after application of 100 �M

4-AP were generally better matched by a much larger than two-
fold reduction in Kv3 in the model, suggesting that Kv3 is some-
what underrepresented in the default model (see Discussion).
Some unexpected findings emerged as well. Two of the eight
recordings showed doublet spike firing during �100 pA CIP in-

Figure 9. Model DB of varying conductance densities can provide matches to all 146 GP neurons. Best-matching models to each of the 146 recorded GP neurons were shown in the same way as
in Figure 8 A, except that the measures were sorted differently according to overall match to all recorded neurons. Also, the neurons are sorted from most easily matched to most difficult match on
the x-axis. The superimposed white-line plot indicates the cumulative distance value of the best matches to each neuron. STD, Standard deviation.
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jection after application of 4-AP (Fig. 10E). This led to a post hoc
search in the model DB, which also revealed a transition to dou-
blet firing during 100 pA current injection for some models after
reduction of Kv3 (Fig. 10E). This similarity between model and
experiments as to the induction of doublet firing by partial Kv3

block for some conductance backgrounds gives additional confi-
dence in the mapping of the dynamical behaviors between the
two domains and illustrates the back and forth between experi-
ment and simulation to gain new insights in the range of GP
neuron behaviors.

Figure 10. Comparison between variable effects of NaF/NaP or Kv3 density reductions in the model and matching partial block experiments using TTX or 4-AP in brain slices. A, Examples of firing
rate changes in whole-cell recordings after application of 10 and 15 nM TTX (left) and in the model when the two sodium conductances (NaF and NaP) were reduced twofold or fourfold with the same
remaining conductance background (right). B, D, Examples of spike shape changes after TTX or 4-AP application (left panels) or reduction of NaF/NaP or KV3 conductances in the model (right panels).
For the 4-AP and Kv3 manipulation, increases in spike amplitude (amp.) were seen in some recordings and in some models with specific combinations of other conductances present. Note that the
spike width increased in all cases, but to a different degree. TTX application matched Na � conductance manipulation in the model as smaller spike amplitudes resulted only in some recordings and
for some model conductance backgrounds. C, Statistics of measure changes obtained after applying TTX in slice recordings (left column; n � 7 neurons; 7–10 nM TTX). The effects of multiple
measures for all seven neurons recorded with one or two concentrations of TTX are given in supplemental Figure 4 (available at www.jneurosci.org as supplemental material). The range of observed
effects of TTX on key measures generally matched the effect of a joint lowering of NaF and NaP conductance in model backgrounds (n � 10,206 models). In these box plots, red lines denote the
population median, and the blue box denotes upper and lower quartiles. TTX, Experiment TTX. E, Two of eight recorded neurons exhibited doublets during 100 pA current injection after application
of 4-AP, as did 4 of 11 model backgrounds randomly picked out of 1155 conductance backgrounds when their Kv3 conductance was lowered from 50 S/m 2. This feature was searched for manually
because a measure of doublets was not present in our DB. In the example shown, the second spike in each doublet was more attenuated in amplitude in the experiment than the model. An additional
reduction from 250 to 125 S/m 2 of the NaF conductance in the model also led to pronounced amplitude attenuation of second spikes in doublets (data not shown). Parameter backgrounds of the
example models are listed in supplemental Table 7 (available at www.jneurosci.org as supplemental material).
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Discussion
We used a brute-force DB search approach (Prinz et al., 2003) to
examine the dependence of the physiological properties of a mor-
phologically realistic GP neuron model on the density of nine
different membrane conductances that are known to be ex-
pressed in GP neurons. By building a Matlab DB of 100,602 mod-
els with different parameter combinations, we could use graphi-
cal methods and search algorithms to determine the interactions
between membrane conductances and measured electrophysio-
logical properties. The construction of a physiology DB of 146 GP
neuron recordings containing measures of the same properties
allowed us to make a detailed comparison between the variability
found in real neurons and the variability found in a model by
changing conductance densities. Finally, we were able to confirm
the variability of physiological effects of conductance density
changes by partial block experiments of NaF/NaP and Kv3
currents.

Model DB indicates that conductance density variations can
account for most physiological variability within the GP
Our finding that distributions of characteristic properties
(e.g., spike rate, spike width, spike frequency adaptation, sag)
were similar in the model and physiology DBs indicates that
conductance density and morphological variability can ac-
count, to a large degree, for the experimentally observed
spread of electrophysiological behaviors in GP neurons. This
assessment is supported by experimental studies that find a
severalfold conductance density variability in different types
of neurons (Turrigiano et al., 1995; Desai et al., 1999; MacLean
et al., 2005; Marder and Bucher, 2007). Nevertheless, conduc-
tance parameters such as activation curves and time constants
are also variable because of modulation. For example, NaP
half-activation can be modulated by dopamine (Gorelova and
Yang, 2000), and glial cell line-derived neurotrophic factor
decreases the activation time constant of CaHVA channels in
dopamine neurons (Wang et al., 2003). Varying these param-
eters will introduce additional effects on neural dynamics,
which could be similar to or distinct from the variability found
with conductance density modulation.

The model DB allowed us to match individual GP record-
ings with models showing a high degree of similarity in prop-
erties. However, the matches were nonunique in that multiple
models with quite different conductance density combina-
tions could result in equally close matches to a given record-
ing. Multiple channel combinations that result in a similar
target behavior have also been found in Purkinje cell models
(Achard and De Schutter, 2006). Such nonuniqueness is ex-
pected from theoretical and modeling studies of homeostatic
plasticity, which have shown that homeostatic mechanisms do
not lead to a single fixed combination of channel densities, but
rather to a range of different channel combinations that can all
achieve the appropriate target behavior (Liu et al., 1998; Ab-
bott, 2003; MacLean et al., 2005). The model DB approach is
well suited to explore the consequence of nonuniqueness in
biological neurons for effects of neuromodulation and synap-
tic integration in networks. Specifically, the dynamic variabil-
ity in individual GP neurons will be important to consider in
network simulations that explore the causes of network burst-
ing observed in PD (Bergman et al., 1994; Wichmann et al.,
1999).

The GP model DB generates novel insights into the control of
physiological properties by multiple voltage-gated
conductances
The model DB approach enabled us to perform an analysis of the
interdependence between multiple conductances in controlling
seemingly distinct physiological properties of GP neurons such as
spike width, spontaneous spike rate, and fI curves. Previous work
in single-compartment models of invertebrate burst pattern gen-
eration (Prinz et al., 2003) has shown that many electrophysio-
logical properties are affected by multiple conductances. Simi-
larly, we found that most GP properties are affected by multiple,
if not all, conductances present (Fig. 4C). In turn, a change in the
density of any given conductance had a pleiotropic effect on mul-
tiple physiological properties. Given the set of conductances
found in GP, the context dependence of the effect of changing any
given conductance on physiological properties was surprisingly
large, because severalfold differences and even reversals of effects
were found for different conductance backgrounds. Although
such context dependence would seem to make the results of neu-
romodulation and plasticity random, it also generates a rich rep-
ertoire of outcomes, the most useful of which could be stabilized
through selection, a mechanism that has been hypothesized to be
the cornerstone of biological learning rules (Edelman and Gally,
2001; Seth and Edelman, 2007). A selection of conductance back-
grounds through homeostatic plasticity resulting in particular
behaviors also makes it unlikely that biological neurons exhibit
all possible combinations of conductance densities that are
present in our complete grid of parameter combinations in the
model DB. Constraints on channel density combinations in bio-
logical neurons have been found and were present on homeo-
static plasticity mechanisms (MacLean et al., 2005; Schulz et al.,
2007) as well as neuromodulators (Khorkova and Golowasch,
2007). Thus, the dynamical behaviors of some of our random
conductance combinations are likely nonbiological and should
be interpreted with this perspective.

Specific predictions resulting from the GP model DB about
possible roles of neuromodulators in changing intrinsic GP
properties
Many insights into possible mechanisms of PD were made possi-
ble by a model of differential effects of dopamine on the spike rate
in the direct and indirect pathway of the basal ganglia (Albin et
al., 1989; Delong, 1990), but the exact mechanisms of rate
changes in GP remain elusive. Our model DB suggests that the
persistent sodium (NaP) and M-type (KCNQ) channels have a
predominant but opposite effect on spike rate. Both of these
channels are known to be affected by neuromodulation through
protein kinase A and PKC pathways (Brown and Yu, 2000; Shen
et al., 2005; Scheuer and Catterall, 2006). Because many neuro-
modulators affect these pathways, the change in the neuromodu-
latory milieu in PD and/or the treatment with levodopa could
lead to a change in KCNQ and/or NaP conductances. Interest-
ingly, our analysis also showed an effect of NaP conductance on
the strength of rebound after hyperpolarization. Because re-
bound behavior can support bursting, this effect may be interest-
ing with respect to the emergence of synchronized GP bursting in
PD (Raz et al., 2000). A second conductance we found to affect
rebound behavior was HCN, which has previously been impli-
cated in the synchronization behavior of GP in PD (Chan et al.,
2004). This finding is notable in light of recent reports that HCN
channels in GP neurons are modulated by serotonin (Chen et al.,
2008; Hashimoto and Kita, 2008). Serotonin is of significant clin-
ical interest in drug-induced dyskinesias (Brotchie, 2005).
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Validation of GP neuron model construction from model
DB approach
The match between specific models in our DB and different re-
cordings suggests that the kinetics of GP conductances we derived
from the literature provided a good starting point to simulate GP
neuron behavior. We found the model DB approach very useful
in identifying remaining mismatches between model behavior
and recordings that could not be compensated for by channel
density variations. The most obvious mismatch was given by a
lower spike threshold in the model, which could be caused by a
difference in sodium channel properties. Sodium channel activa-
tion is notoriously hard to determine experimentally and to
model accurately (Naundorf et al., 2006), and clearly our model
will benefit from future revisions of NaF kinetics. In fact, the
model DB approach is well suited to address this problem by
building a DB that parameterizes NaF and Kdr (Kv2 and Kv3)
kinetics to find improved spike-threshold matches with record-
ings. The use of morphologically complete neurons is important
in this regard as well, because the spatial distribution of sodium
channels in axonal and dendritic structures in addition to the
soma has a large impact on AP shape and threshold (McCormick
et al., 2007; Shu et al., 2007).

High-dimensional conductance-based neuron models have
sometimes been criticized for providing arbitrary solutions to
matching experimental data. The model DB approach addresses
this criticism by revealing the space of possible matches to a given
experimental set of data. Although the potential search space is
very large, this effort is helped by the observation that physiolog-
ical properties generally vary smoothly over large areas of a pa-
rameter space made of multiple Hodgkin–Huxley conductances
(Foster et al., 1993; Olypher and Calabrese, 2007). Our results
make the specific prediction that partial block of specific conduc-
tances in slice recordings will lead to variable effects in different
neurons, even if they show similar baseline activity. Such partial
block experiments cannot only be used to validate model predic-
tions, but also have important implications for the effect of neu-
romodulation and drugs used in the treatment of disease. We
used two types of partial block experiments with the application
of 7–15 nM TTX or 100 �M 4-AP in brain slice recordings to
selectively reduce NaF/NaP or Kv3 conductance in GP by 50 –
80%. We could indeed verify that biological GP neurons show
variable responses to drug application in the direction predicted
by the model. The match of a combined NaF/NaP reduction
between model and experiment was generally quite good,
whereas reduction of Kv3 currents in the model had smaller ef-
fects than in the experiments. This could be attributable to the
relatively low density of Kv3 conductance in the original hand-
tuned model (10 S/m 2 compared with 500 S/m 2 of NaF), so that
only the largest values of Kv3 in the DB (50 S/m 2) could show
significant impact after reduction. In addition, it is possible that
the fast inactivation of NaF in the biological neurons was some-
what slower than in the simulated NaF kinetics, so that broader
spike-waveforms were possible after the elimination of Kv3 cur-
rent. Such remaining small differences between experimental
outcomes and modeling predictions are expected because of the
many simplifications and parameter choices inherent to the pro-
cess of creating detailed compartmental models and lead to a
fruitful process of model improvement that parallels our im-
proved understanding of the underlying neural dynamics. It is
important to note that an ongoing feedback cycle between mod-
eling and experimentation provides the basis for this process.
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