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Abstract

A surrogate endpoint in a randomized clinical trial is an endpoint that occurs after randomization 

and before the true, clinically meaningful, endpoint that yields conclusions about the effect of 

treatment on true endpoint. A surrogate endpoint can accelerate the evaluation of new treatments 

but at the risk of misleading conclusions. Therefore, criteria are needed for deciding whether to 

use a surrogate endpoint in a new trial. For the meta-analytic setting of multiple previous trials, 

each with the same pair of surrogate and true endpoints, this article formulates five criteria for 

using a surrogate endpoint in a new trial to predict the effect of treatment on the true endpoint in 

the new trial The first two criteria, which are easily computed from a zero-intercept linear random 

effects model, involve statistical considerations: an acceptable sample size multiplier and an 

acceptable prediction separation score. The remaining three criteria involve clinical and biological 

considerations: similarity of biological mechanisms of treatments between the new trial and 

previous trials, similarity of secondary treatments following the surrogate endpoint between the 

new trial and previous trials, and a negligible risk of harmful side effects arising after the 

observation of the surrogate endpoint in the new trial. These five criteria constitute an 

appropriately high bar for using a surrogate endpoint to make a definitive treatment 

recommendation.
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1. Introduction

A true endpoint is a clinically meaningful endpoint that usually reflects “how a patient feels, 

functions, or survives.”1 A surrogate endpoint in a randomized trial is an endpoint that (i) 

occurs after randomization and before the true endpoint and (ii) yields conclusions about the 

effect of treatment on true endpoint. Examples of surrogate endpoints include molecular, 

cellular, or tissue changes when the true endpoint is cancer incidence, bone mineral density 

when the true endpoint is bone fracture, fetal heart rate when the true endpoint is fetal brain 

oxygenation, and progression-free survival when the true endpoint is overall survival. A 

surrogate endpoint can accelerate innovation and the dissemination of a new treatment to 
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patients, but only if it yields the correct conclusions about the effect of treatment on the true 

endpoint. A notable example of a surrogate endpoint yielding an incorrect conclusion was 

the approval of drugs incorrectly thought to reduce mortality based on a surrogate endpoint 

of ventricular arrhythmia.2 Therefore, it is important to carefully evaluate a surrogate 

endpoint before its use in clinical decision-making, often with a checklist of criteria.

Commonly used criteria for evaluating surrogate endpoints have various limitations. Perhaps 

the most commonly used criteria for evaluating a surrogate endpoint are the Prentice 

Criteria. In a landmark 1989 article, Prentice proposed three criteria for valid hypothesis 

testing extrapolation (rejecting the null hypothesis of no treatment effect on the surrogate 

endpoint implies rejecting the null hypothesis of no treatment effect on the true endpoint): (i) 

the effect of the surrogate endpoint on the true endpoint does not vary with randomization 

group, (ii) the surrogate endpoint affects the true endpoint, and (iii) the effect of treatment on 

the surrogate endpoint changes the average effect of treatment on true endpoint.3 The 

Prentice Criteria refer to the first two original criteria of Prentice with additional easily-

satisfied criteria that treatment affects both surrogate and true endpoints. The Prentice 

Criteria guarantee valid hypothesis testing extrapolation for binary surrogate and true 

endpoints but can yield incorrect hypothesis testing extrapolation when the surrogate 

endpoint is not binary.4, 5 A proposed modified version of the Prentice Criteria that is 

applicable to continuous surrogate and true endpoints consists of the first original criterion 

and a criterion that an increase in the surrogate endpoint implies an increase in the true 

endpoint. See the Supplementary Material for a graphical justification of the Prentice 

Criteria and the modified Prentice Criteria.

The main limitation of the criteria of Prentice is that the first criterion, which is often called 

the Prentice Criterion, is unlikely to hold to the degree necessary for valid hypothesis testing 

extrapolation. In terms of biological mechanism, the Prentice Criterion implies that 

treatment only affects true endpoint via a pathway through the surrogate endpoint. For 

example, in the evaluation of cholesterol level as a surrogate endpoint for heart disease, the 

Prentice Criterion implies that different drugs lower the incidence of heart disease only by 

lowering the cholesterol level and not by another pathway. Not surprisingly, the in-depth 

understanding of the biology needed to establish the Prentice Criterion is almost invariably 

lacking. When using a small trial with a surrogate endpoint (such as cell proliferation) to 

replace a large trial with a true endpoint (such as cancer incidence or mortality), a very small 

deviation from the Prentice can invalidate hypothesis testing extrapolation making 

conclusions from such a relatively small surrogate endpoint trial particularly tenuous.6, 7

A commonly used criterion for evaluating a surrogate endpoint based on single previous trial 

with surrogate and true endpoints is the proportion of treatment effect that is explained by 

the surrogate endpoint.8, 9 A drawback of this criterion is that confidence intervals are 

typically too wide to be informative.10, 11 In the statistical literature, there is growing interest 

in criteria based on principal stratification.12, 13 While principal stratification is appealing in 

theory, identifiability requires restrictive assumptions, such as monotonicity, which may not 

hold.14, 15 Another criterion is the individual-level correlation between surrogate and true 

endpoints within each arm of the trial. However, this criterion is not recommended because, 
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even with perfect individual-level correlation, the estimated treatment effects for the 

surrogate and true endpoints can have opposite signs.16

While early work on evaluating surrogate endpoints focused on data from a single previous 

trial with a surrogate and true endpoint, the more recent trend has been toward the evaluation 

of surrogate endpoints in a more informative meta-analytic setting involving a set of 

previous trials, each with the same pair of surrogate and true endpoints. The set of trials 

should involve the same disease and the treatments in all of the trials should involve the 

same mechanism of action. A simple meta-analytic criterion is a trial-level correlation 

coefficient relating the effect of treatment on the surrogate endpoint to the effect of treatment 

on the true endpoint. A recent review of 65 sets of oncology trials found that 34 had 

correlation coefficients less than 0.7, called low strength, 16 had correlation coefficients 

between 0.7 and 0.85, called medium strength, and 15 had correlation coefficients greater 

than 0.85, called high strength.17 A related meta-analytic criterion is R2
trial, a trial-level 

correlation arising from a random effects model applied to individual-level data.18 A 

downside to using R2
trial is the difficulty of computation under some random effects models.

18 While R2
trial (or the trial-level correlation coefficient) is informative, there are concerns 

about determining a threshold value that would indicate acceptability of the surrogate 

endpoint.19. A commonly used supplement to R2
trial is the surrogate threshold effect, which 

is the minimum effect of treatment on the surrogate endpoint necessary to predict a 

statistically significant effect of treatment on the true endpoint.18–20

This article formulates five criteria in the meta-analytic setting for using a surrogate 

endpoint in a new trial to predict the effect of treatment on the true endpoint in the new trial. 

The first two criteria are statistical considerations, namely easily computed and interpretable 

metrics derived from a simple but novel statistical model. The last three criteria are 

biological and clinical considerations that are important for extrapolating results from 

previous treatments to a new treatment.

2. Statistical model

This section discusses the statistical model underlying the two statistical criteria. For the ith 

trial in a set of previous trials, let yi denote the estimated effect of treatment on true 

endpoint. The form of yi depends on the type of data and how it is analyzed. One example of 

yi is a difference in survival probabilities between randomization groups. Another example 

of yi is the estimated proportionality constant relating the hazard functions in the two 

randomization groups. Let xi denote the estimated effect of treatment on the surrogate 

endpoint in the ith trial. Let wi denote the estimated variance of the estimated effect of 

treatment on the true endpoint in the ith trial. The zero-intercept random effects linear model 

is

(1)
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The model includes a random effects μ, with mean 0 and unknown between-trial variance 

σ2. to capture the variability over trials of the different treatments.

Unlike most models involving the meta-analysis of surrogate endpoints, the model does not 

include a sub-model of the form xi = θi + ψ, where θi is the underlying effect of treatment 

on the surrogate endpoint and ψ is a random error.21,22 If the sub-model involving θi were 

included, the goal of the analysis would shift to estimating the relationship between θi and 

the independent variable yi. When the goal is prediction, as it is here, the sub-model 

involving θi is not appropriate because prediction directly involves the observed dependent 

variable xi. For example, in a prediction context, if xi were randomly larger than its 

underlying value θi (as opposed to being equal to θi), the increased value of xi should 

translate into an increase value for yi. Carroll et al. make a related point that measurement 

error models are not suitable for prediction.23

The error variable εi is the sampling error when measuring the observed effect of treatment 

on the true endpoint in the ith trial. Unlike most models for the meta-analysis of surrogate 

endpoints, the variance of the error term, wi, is estimated from observed data on the true 

endpoint prior to model fitting. This approach has the advantage of directly separating the 

overall variance into a within-trial sampling variance, wi, and a between-trial variance, σ2. 

Under the model, the sample size of the new trial affects only wi, and not, σ2, a desirable 

attribute.

Another distinctive feature of the model is the lack of an intercept term. Statisticians 

typically include an intercept in a linear model to improve the fit of the model. However, the 

zero-intercept formulation has two desirable implications that outweigh a poorer model fit. 

First, a zero-intercept ensures that no change in a surrogate endpoint implies no change in a 

true endpoint, an intuitively reasonable condition for a correctly specified model. Second, a 

zero-intercept avoids logical problems and errors when labeling randomization groups as 

control or experimental.24,25 If one trial compares treatments A and B, and another trial 

compares treatments B and C, the choice of label for treatment B (control or experimental) is 

arbitrary. If the model included an intercept, then whether treatment B is declared a control 

group or declared an experimental group would affect estimation. A line through the origin 

avoids the labeling problem by making the difference in true endpoints proportional to the 

difference in surrogate endpoints, so that reversing the labels multiplies both differences by 

negative one, leaving β unchanged. Thus, a zero-intercept avoids miss-specification of the 

model by incorrect labels of control and experimental groups.

2.1 Approximate maximum likelihood estimates

Maximum likelihood estimates (MLEs) for this model require iterative numerical 

calculations. Fortunately, it is possible to obtain an excellent approximation to the maximum 

likelihood estimate in closed-form. The derivation starts with a maximum likelihood 

approach involving a parameter that is not in the original model. The kernel of the log-

likelihood is
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(2)

Treating αi as a parameter (instead of σ2) and taking the derivatives of the log-likelihood 

with respect αi and β gives

(3)

(4)

Setting equations (3) and (4) equal to zero yields the following simultaneous equations for 

the maximum likelihood estimates of αi and β,

(5)

(6)

Based on equations (5) and (6), an approximate maximum likelihood estimate for αi is

(7)

Based on equation (7), approximate maximum likelihood estimates for the parameters of 

interests, β, and σ2, are, respectively,

(8)

(9)

2.2 Predicted treatment effects and prediction bands

For a new trial of size nNEW with surrogate endpoint x, the estimated predicted treatment 

effect and its distribution have the following form
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(10)

Let wNEW denote the sampling variance of the effect of treatment on the true endpoint in the 

new trial. Because the true endpoint is not observed in the new trial, it is necessary to predict 

wNew from the set of wi while adjusting for differences in sample sizes between the new and 

previous trials. For the usual case of equal-sized arms in each trial, let ni denote the sample 

size of each arm of the ith previous trial, and let nNEW denote the sample size of each arm of 

the new trial. Also let k denote the number of previous trials. For each person in 

randomization group g in the ith trial, let wig denote the variance of the person’s observed 

true endpoint. Then wi= Σg wi(g) / ni. Assuming the average value of wi(g) over previous 

trials applies to the new trial, the sampling variance of the effect of treatment on the true 

endpoint in the new trial is

(11)

Because the estimated variance of yi is hi, the estimated variance of b is

(12)

Based on the quantities derived in the equations (11) and (12), the estimated variance of the 

predicted treatment effect in equation (10) is

(13)

The predicted treatment effect and the 95% prediction band are

(14)

(15)

Let xNEW denote the effect of treatment on the surrogate endpoint in a new trial.
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Substituting x =xNEW into equations (14) and (15) yields the predicted treatment effect and 

its 95% prediction interval for the new trial, which are the quantities of interest when 

applying the model to a new surrogate endpoint trial.

2.3 Examples

Figures 1 and 2 depict predicted treatment effects and 95% prediction bands. For additional 

insight, the graphs show the point estimates and the 95% confidence intervals for the 

observed effect of treatment on the true endpoint. The prediction bands in these figures 

correspond to a new trial with sample size equal to the median sample size of the previous 

trial. If the sample size of the new trial were known, one could graph prediction bands 

corresponding to that sample size.

Figure 1 applies to hypothetical data which was randomly generated. Figure 1(a)–1(d) 

corresponds to (β=0.9, σ2=25), (β=0.9, σ2=4), (β=2, σ2=25), (β=2, σ2=4), respectively, with 

10 trials, ni =100, and wi = 9.

Figure 2 applies actual data from colorectal cancer treatment trials. See Tables 1–3, where xi 

and yi are differences in fractions, ni is the average sample size in the two arms, and wi is a 

binomial variance for a difference in fractions. Computations for of xi, yi, and wi are based 

on published estimated counts.15 Because the published estimated counts have the same 

estimates and similar variances as counts directly obtained from individual level survival 

data, the values of xi, yi, and wi account for censoring.15 Figure 2(a) corresponds to 10 

randomized trials for early-stage colon cancer, where the surrogate endpoint indicates cancer 

recurrence before 3 years, and true endpoint indicates of overall mortality before 5 years.26 

Figure 2(b) corresponds to 10 randomized trials for advanced-stage colorectal cancer, where 

surrogate endpoint indicates cancer recurrence at 3–6 months, and true endpoint indicates 

overall mortality before 12 months.27 Figure 2(c) corresponds to 27 randomized trials for 

advanced-stage colorectal cancer, where surrogate endpoint indicates tumor response at 3–6 

months, and the true endpoint indicates overall mortality before 12 months.28

2.4 Simulations

A simulation involving 1000 iterations investigated the properties of estimates from the 

zero-intercept random effects linear model. Under the simulation each previous trial has a 

sample size per arm of ni =100, a slope of β =2, a within-trial sampling variance for the 

effect of treatment on the true endpoint of wi =9, and an effect of treatment on the surrogate 

endpoint of xi equal to integers from 1 to the number of trials. A key desideratum for the 

simulation was to have one value for between-trial variance, σ2, larger than wi and one value 

smaller than wi. Another desideratum was to investigate the performance of estimates for a 

small new trial as well as an average size new trial. A third desideratum was to investigate 

the effect of the number of trials on the performance of the estimates. The simulation 

involved 8 scenarios defined by the ratio of the size of the new trial to the average size the 

previous trials (1 or 0.2), the number of trials (10 or 30), and the between-trial variance σ2 (4 

or 25). The coverage of the prediction interval is the fraction of simulated prediction 

intervals that enclosed the predicted effect of treatment on true endpoint, β x+ μ, evaluated 

at x equal to the median value of the xi.
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Table 4 summarizes the simulation results. For the both the slope β and the between-trial 

variance σ2, the approximate and actual MLE’s (under the constraint that σ2≥ 0) were 

almost identical. For the slope β, the mean value over the simulations of the approximate 

MLE was virtually identical to its true value. For the between-trial variance σ2, the mean 

value over the simulations of the approximate MLE was less than the true value, and with 30 

versus 10 trials the estimate was closer to the true value. The bias in estimating σ2 had 

negligible impact on the validity of the prediction band, as the coverages of the 95% 

prediction intervals were acceptable, ranging from 0.93 to 1.00 over the scenarios. Software 

written in Mathematica for creating the figures and performing the simulation can be found 

at https://prevention.cancer.gov/about-dcp/staff-search/stuart-g-baker-scd/predicting-

treatment-effect.

3. Statistical criteria

The following two statistical criteria for the meta-analytic evaluation of surrogate endpoints 

are based on the zero-intercept linear random effects model.

3.1 Acceptable sample size multiplier

Often investigators use a surrogate endpoint to reduce the sample size relative to that for a 

true endpoint. The reduction in sample size in this scenario arises because (i) investigators 

use the surrogate endpoint trial to estimate the effect of treatment on the surrogate endpoint, 

and (ii) the effect size for the surrogate endpoint is larger than the effect size for the true 

endpoint. However, interpretation of the effect of treatment on the surrogate endpoint is 

difficult because it is rarely possible to translate the effect size on a surrogate endpoint to an 

effect size on a true endpoint. Also, as mentioned previously, hypothesis testing 

extrapolation for small surrogate endpoint trials relative to large true endpoint trials is 

sensitive to small deviations from the Prentice Criterion.6,7 For these reasons, a surrogate 

endpoint trial substantially smaller than the corresponding true endpoint trial does not yield 

rigorous conclusions about the effect of treatment on true endpoint.

In contrast, the predictive modeling approach uses the surrogate endpoint trial to predict the 

effect of treatment on the true endpoint. The effect size for the predicted treatment effect 

based on the surrogate endpoint trial is the same as the effect size for the observed treatment 

effect in the true endpoint trial. Because the predicted effect of treatment on the true 

endpoint has more variability than the observed effect of treatment on the true endpoint, the 

sample size for the surrogate endpoint trial is larger than the sample size for the true 

endpoint trial (with the same power and type I error).

The sample size multiplier is the ratio of the new trial sample size based on the predicted 

effect of treatment on the true endpoint to the new trial sample size based on the observed 

effect of treatment on the true endpoint. Keeping the power, type I error and effect size fixed, 

the ratio of two sample sizes equals the ratio of the variances for the estimated treatment 

effects. Therefore, under the zero-intercept linear random effects model,
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(16)

where xmedian and nmedian are median values in previous trials. The sample size multiplier is 

conceptually related to a previously proposed standard error multiplier that required leave-

one-out resampling.15

The acceptable threshold for a sample size multiplier depends on the availability of patients 

and enrollment costs. Suppose that a surrogate endpoint trial that is less than 50% larger than 

a true endpoint trial would be acceptable. Figures 1(b), 1(d), 2(a), 2(b), and 2(c) illustrate 

acceptable standard error multipliers in this context, as they are less than 1.5.

3.2 Acceptable prediction separation score

A flat line for the predicted effect of treatment on the true endpoint can correspond to a 

small sample size multiplier if there is little between-trial variability. However, a flat line is 

not useful for predicting the effect of treatment on the true endpoint. Thus, in evaluating a 

surrogate endpoint, it is also necessary to also consider the amount of predictive information 

in the model, which depends on the slope of the line, b, relative to the variance of the 

predicted treatment effect, varYNEW(x, nNEW). The prediction separation score captures this 

signal-to-noise consideration. The prediction separation score is the maximum change in the 

predicted treatment effect (over the observed range for the effect of treatment on the 

surrogate endpoint) divided by the width of the prediction band (at the median value of the 

treatment effect on the surrogate endpoint among the previous trials). Under the zero-

intercept linear random effects model,

(17)

An acceptable prediction separation score has a value greater than 1, which implies that the 

upper bound of the leftmost prediction interval is less than the lower bound of the rightmost 

prediction interval, so that the prediction intervals at the extremes of the horizontal axis (for 

effect of treatment on the surrogate endpoint) do not overlap. (The non-overlapping of the 

prediction intervals at the extremes of the horizontal axis assumes the width of the prediction 

band is the same at the median as the extremes; otherwise there may be a little overlap).

A comparison of the prediction separation score with the trial-level correlation coefficients is 

instructive. A prediction separation score greater than 1 (indicating acceptability) 

corresponded to a trial-level correlation coefficient of 0.78 or greater in Figures 1(c), 1(d), 

and 2(b). A prediction separation score less than 1 (indicating unacceptability) corresponded 

to a trial-level correlation coefficient of 0.66 or less in Figures 1(a), 1(b), and 2(c). A 

discrepancy between these two metrics is shown in Figure 2(a) where an unacceptable 
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prediction separation score of 0.84 corresponded to a high trial-level correlation coefficient 

of 0.79. The reason for the discrepancy is that the wide confidence intervals for the observed 

effect of treatment on the true endpoint, which contribute to the prediction separation score, 

are not reflected by the distribution of points used to compute the trial-level correlation 

coefficient.

4. Biological and clinical criteria

It is a mistake to think that statistical criteria alone are sufficient for evaluating a surrogate 

endpoint. The reason is that prediction of the treatment effect in a new trial requires 

consideration of the biological and clinical aspects of the new treatment versus the 

treatments in the new previous trials, and this consideration cannot be summarized in a 

statistical model. These clinical and biological aspects lead to the following three criteria.

4.1 Similarity of biological mechanism of treatments

The biological mechanism for the way in which treatment affects the true endpoint should be 

similar for the new trial and the previous trials in the meta-analysis.29 At one extreme, if the 

biological mechanisms were identical between the new treatment and previous treatments, 

there would be no need to the study the new treatment. At the other extreme, if the new 

treatment were so innovative that its biological mechanism was unknown, one should not 

use a surrogate endpoint because the experience with previous treatments would not provide 

useful informative for evaluating the new treatment. Between these extremes is a middle 

ground in which previous treatments and new treatment involve related but not identical 

biological mechanisms. There is generally less concern about biological mechanism if the 

surrogate endpoint were an intermediate clinical endpoint, such as progression-free survival, 

than if the surrogate endpoint were a biomarker, such as the level of a protein in the blood.

4.2 Similarity of secondary treatments following the surrogate endpoint

Any treatment given in response to the surrogate endpoint should be similar for the 

treatment in the new trial and the treatments in the previous trials. Otherwise, there could be 

bias in the predicted treatment effect. For example, if tumor response or prostate-specific 

antigen level is the surrogate endpoint and prostate cancer mortality is the true endpoint, 

then the type of therapy following either of these surrogate endpoints could change over 

time, so surrogate endpoints in previous trials are not good predictors for the true endpoint in 

a new trial. Moreover, it is not just the change in treatment in response to the surrogate 

endpoint that can lead to bias, but a change in efficacy over time that (hopefully) 

accompanies the change in treatment. In the case of prostate cancer and several other 

cancers, an indicator of change in efficacy over time would be good evidence that systemic 

treatments for recurrent disease have improved, as documented in randomized trials.

4.3 Negligible risk of harmful side effects after the observation of the surrogate endpoint

A trial with a surrogate endpoint will not detect a harmful side effect that occurs after the 

observation of the surrogate endpoint and before the observation of the true endpoint. 

Failure to detect such a side effect when using a surrogate endpoint could lead to misleading 

conclusions. For example, a drug that shrunk tumors and delayed progression of cancer led 
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to worse overall survival due to cardiotoxicity.29 Another real-life situation occurred in 

colorectal cancer prevention trials when COX-2 inhibitors were shown to decrease the 

number of polyps, but an increase in cardiovascular events was noted before any delayed 

decrease in colorectal cancer incidence could be observed.30 As with the criterion involving 

similarity of biological mechanisms, this criterion also argues against using a surrogate 

endpoint to evaluate a truly innovative new treatment.

5. Discussion

There is a tendency in the statistical literature on surrogate endpoints to fit increasingly 

complicated models for the statistical evaluation of surrogate endpoints. However, it is 

important to realize that clinical and biological criteria are at least as important as the 

statistical criteria because the use of surrogate endpoints fundamentally involves an 

extrapolation to a new trial. There is a danger that complex statistical metrics could lead 

investigators to overly focus on statistical issues and downplay the biological and clinical 

considerations, which would be a mistake. The proposed statistical criteria are easy to 

compute and interpret, which may facilitate a greater appreciation of the biological and 

clinical considerations. The biological and clinical criteria may be difficult to evaluate, but 

not knowing whether some of these criteria hold is also important and should be explicitly 

stated.

The five proposed criteria constitute a high bar for the use of a surrogate endpoint to 

evaluate a new treatment, particularly when the new treatment represents a major departure 

from previous treatments. This high bar is appropriate for the definitive evaluation of a new 

treatment for direct recommendation to patients. For a preliminary evaluation, where the 

result leads to another trial and not an immediate treatment recommendation, the bar need 

not be so high and some of the criteria might be relaxed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Model fits with to data from 4 hypothetical sets of trials. The dashed blue diagonal lines are 

95% prediction bands. The solid black vertical lines at the points are 95% confidence 

intervals for the observed effect of treatment on true endpoint. A prediction separation score 

larger than 1 says that leftmost and rightmost prediction intervals (represented by the dashed 

red vertical lines) do not overlap (indicated by no intersection with the horizontal dashed 

green line).
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Figure 2. 
Model fits to data from 3 colorectal cancer treatment trials. The dashed blue diagonal lines 

are 95% prediction bands. The solid black vertical lines at the points are 95% confidence 

intervals for the observed effect of treatment on true endpoint. A prediction separation score 

larger than 1 says that leftmost and rightmost prediction intervals (represented by the dashed 

red vertical lines) do not overlap (indicated by no intersection with the horizontal dashed 

green line).
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Table 1

Trials for the treatment of early colorectal cancer. The surrogate endpoint indicates cancer recurrence (or not) 

before 3 years, and true endpoint indicates overall mortality (or not) before 5 years.26 The estimated treatment 

effects are differences in fractions that account for censoring.15

Trial Estimated effect of 
treatment on the surrogate 
endpoint

Estimated effect of treatment 
on the true endpoint

Average sample size 
per arm

Estimated sampling variance of 
the effect of treatment on the true 
endpoint

i xi yi ni wi

1 0.0133209 0.00810028 2136 0.000327462

2 0.0154465 0.0227297 878 0.000946246

3 0.031803 0.0625501 896 0.00084016

4 0.0370214 0.0370513 1390 0.000564888

5 0.0507431 0.0359503 724 0.00128489

6 0.0560784 0.0560784 408 0.00234467

7 0.0741955 0.0932471 1042 0.000764536

8 0.0756713 0.102222 456 0.00198833

9 0.109814 0.0733984 926 0.000967199

10 0.121802 0.0890725 248 0.00385288
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Table 2

Trials for the treatment of advanced colorectal cancer. The surrogate endpoint indicates cancer progression (or 

not) between 3 and 6 months. The true endpoint indicates overall mortality (or not) by 12 years.27 The 

estimated treatment effects are differences in fractions that account for censoring.15

Trial Estimated effect of 
treatment on the surrogate 
endpoint

Estimated effect of treatment 
on the true endpoint

Average sample size 
per arm

Estimated sampling variance of 
the effect of treatment on the 
true endpoint

i xi yi ni wi

1 0.0101776 −0.00300867 434 0.00223822

2 0.0175788 0.0474206 272 0.0040373

3 0.0600888 0.137713 184 0.00516377

4 0.0609015 0.0000155292 490 0.00228519

5 0.0925625 0.0398926 488 0.00202247

6 0.1018 0.079676 310 0.00320678

7 0.169392 0.15072 422 0.00229129

8 0.178005 0.144626 136 0.00701305

9 0.199408 0.170422 206 0.00510997

10 0.339943 0.200604 148 0.00219454
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Table 3

Trials for the treatment of advanced colorectal cancer. The surrogate endpoint indicates tumor response (or 

not) between 3 and 6 months. The true endpoint indicates with overall mortality (or not) by 12 years.28 The 

estimated treatment effects are differences in fractions that account for censoring.15

Trial Estimated effect of treatment 
on the surrogate endpoint

Estimated effect of treatment 
on the true endpoint

Average sample size per 
arm

Estimated sampling variance 
of the effect of treatment on the 
true endpoint

i xi yi ni wi

1 0.00264784 −0.00423654 158 0.00697091

2 0.00424809 0.0698386 162 0.00684591

3 0.00630874 0.0196868 356 0.00275263

4 0.0236874 0.0393162 180 0.00544156

5 0.0262514 −0.250522 26 0.034631

6 0.0393375 0.044984 46 0.020156

7 0.0491228 0.0555556 184 0.00503523

8 0.0607485 0.130383 306 0.0032042

9 0.0658915 −0.0989863 164 0.00604527

10 0.0792541 0.0839161 60 0.0170716

11 0.104938 0.116667 324 0.00304328

12 0.107668 0.0213607 180 0.0055205

13 0.109419 0.0510577 382 0.00308951

14 0.129886 0.0696033 148 0.00663814

15 0.131535 0.0311355 156 0.00625076

16 0.140312 0.13857 248 0.00295039

17 0.150871 0.139344 124 0.0076863

18 0.172547 −0.0864888 62 0.0162696

19 0.200272 −0.00567514 174 0.00577375

20 0.230317 0.233328 64 0.0132916

21 0.238828 0.10696 74 0.0133953

22 0.238828 0.10696 74 0.0133953

23 0.247371 0.22021 64 0.0144687

24 0.255682 0.171875 130 0.00723255

25 0.257433 0.0154741 80 0.0124803

26 0.261034 0.113493 16 0.0565146

27 0.313043 0.042029 52 0.0185411
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