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Abstract

In the field of gene set enrichment analysis (GSEA), meta-analysis has been used to integrate 

information from multiple studies to present a reliable summarization of the expanding volume of 

individual biomedical research, as well as improve the power of detecting essential gene sets 

involved in complex human diseases. However, existing methods, Meta-Analysis for Pathway 

Enrichment (MAPE, [1]), may be subject to power loss because of (i) using gross summary 

statistics for combining end results from component studies and (ii) using enrichment scores 

whose distributions depend on the set sizes. In this paper, we adapt meta-analysis approaches 

recently developed for genome-wide association studies, which are based on fixed effect (FE) and 

random effects (RE) models, to integrate multiple GSEA studies. We further develop a mixed 

strategy via adaptive testing for choosing RE versus FE models to achieve greater statistical 

efficiency as well as flexibility. In addition, a size-adjusted enrichment score based on a one-sided 

Kolmogorov-Smirnov statistic is proposed to formally account for varying set sizes when testing 

multiple gene sets. Our methods tend to have much better performance than the MAPE methods, 

and can be applied to both discrete and continuous phenotypes. Specifically, the performance of 

the adaptive testing method seems to be the most stable in general situations.
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1. Introduction

In transcriptome studies, great attention has been drawn to identification of pathways, or 

more broadly, groups of biologically related genes involved in complex human diseases or 

other biological processes. A major type of such analysis is called Gene Set Enrichment 
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Analysis (GSEA), which determines whether a gene set is over-represented by genes 

associated with a trait of interest. Gene sets can be pre-defined according to a variety of 

criteria, including genes/proteins participating in common pathways, sharing similar 

annotated functions or related sequence motifs, interacting with and co-regulating each 

other, and serving as oncogenic, immunologic or other disease signature genes. In general, 

GSEA is designed to detect coordinated expression changes in a group of related genes, and 

such changes are, in whole or in part, cellular reactions to changes related to disease 

phenotypes or therapeutic treatments. Thus, gene sets identified from GSEA can provide key 

insights into biological processes underlying disease pathogenesis or treatment effects.

Various statistical methods have been developed for GSEA using a single mRNA dataset. An 

early method for GSEA is to associate gene expression with phenotype changes to identify 

differentially expressed (DE) genes based on a statistic measuring the degree of differential 

expression, and then determine whether a gene set contains significantly more DE genes 

than would be expected by chance using Fisher’s exact test [2]. Subramanian et al. [3] 

proposed an improved GSEA method, which has become one of the most well-known and 

currently widely used GSEA algorithms. It makes use of the ranks of genes according to the 

degree of differential expression, to compute the enrichment score of a gene set based on a 

weighted Kolmogorov-Smirnov (KS) test. Then it estimates the statistical significance of the 

gene set using an empirical null distribution of the enrichment score obtained from a 

permutation procedure. Later, many other methods for GSEA were further developed. For 

example, [4] modified the GSEA algorithm by [3] using a max–mean statistic and a re-

standardization procedure; and [5] proposed a random set approach. For a detailed review 

about the methodological development of GSEA, see [6, 7]. Due to mature statistical 

analytics, GSEA has been widely applied in biomedical fields, where GSEA plays critical 

roles in the innovation of disease prevention and intervention strategies, including revealing 

novel genes and key regulatory modules, detecting ensembles of diagnostic and prognostic 

markers, and discovering potential therapeutic targets [8–13].

In the past decades, enormous amounts of data have been generated from various biomedical 

experiments; and the volume continues to expand. Consortia have been recently formed and 

public databases have been constructed and regularly updated, making it increasingly 

feasible to access data from multiple research projects. Despite significant successes GSEA 

has achieved, it is striking that findings are often unstable and thus are inconsistent among 

independent studies targeting the same disease or biological problem. This is partly because 

of small sample sizes relative to an overwhelming number of genes, as is typical in 

individual genome-wide transcriptomic studies, making estimation and inference highly 

volatile. Thus, there is an increasingly urgent need to perform integrative GSEA, i.e., 

integrating multiple relevant GSEA studies, to turn individual data into collective 

knowledge.

Integrative GSEA (iGSEA), when performed properly, can effectively increase the sample 

size of the analysis, greatly facilitate information sharing, and improve the power of 

detecting truly interesting gene classes, as well as increasing the reproducibility and 

interpretability of research results. However, methods for iGSEA are rather scant. [1] 

systematically developed and evaluated three methods for Meta-Analysis of Pathway 
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Enrichment (MAPE), including MAPE-P, MAPEG and MAPE-I. All these methods use the 

maximum, minimum or Fisher’s statistic to combine p-values from multiple studies, and so 

inevitably lose power by using such gross summaries. Further, when testing multiple 

pathways, the MAPE methods do not account for different set sizes in their permutation-

based procedures. In addition, the lack of ability to formally handle between-study 

heterogeneity, which may exist in GSEA studies due to the varying quality of experiments 

and the noisy nature of genomic data, can affect the performance of the MAPE methods. 

More recently, a Bayesian method has been proposed for integrative GSEA by [14] to 

improve the detection of enriched gene sets, which simultaneously models gene set 

information and original gene expression data from all component studies. This method can 

only be applied to binary phenotypes. When the number of genes or gene sets or component 

studies gets large, it can become computationally formidable. In addition, detecting the 

convergence of Markov chains and selecting starting points may require great human efforts.

Motivated by the room for improvement of the existing methods, we focus on the 

development of new methods for iGSEA that are (i) statistically efficient; (2) 

computationally affordable and (3) applicable to both discrete and continuous phenotypes. 

Here, we adapt and extend meta-analysis approaches [15–17] newly developed for genome-

wide association studies (GWAS), which are based on fixed effect (FE) and random effects 

(RE) models, to integrate multiple GSEA studies. Specifically, we propose a hybrid strategy 

for choosing RE versus FE models, with an attempt to achieve great statistical efficiency as 

well as stability in performance in various practical situations. In addition, unlike the MAPE 

methods, our proposed iGSEA methods formally account for different set sizes when testing 

a database of gene sets.

In the next section of this paper, we describe our modeling and testing strategy in an 

individual study, where a generalized linear model (GLM) is used to fit the relationship 

between the expression of an individual gene and the phenotype, and then gene-level 

statistics are constructed to quantify the strength of the association. In Section 3, we propose 

several meta-analysis methods to compute an overall gene-level statistic that integrates the 

gene-level statistics from individual studies. In Section 4, we focus on gene set analysis, 

where we propose size-adjusted set-level statistics via a one-sided KS test, estimate their 

significance based on permutation, and adjust for multiple testing when more than one gene 

set is tested. Sections 5 and 6 present results from simulation studies and an example using 

gene expression data from five lung cancer studies. Section 7 concludes the paper with a 

brief discussion. The algorithm for the proposed iGSEA methods is outlined in the appendix.

2. Modeling and testing in an individual study

We are interested in combining K independent GSEA studies that share a common 

phenotype Y. Suppose there are G genes in a genome that appear at least once in the K 
studies. Let Jk be the sample size in study k, where k = 1, … K; let Yjk be the phenotype of 

sample j in study k, where j = 1, …, Jk; and let Xjgk be the expression level of gene g for 

sample j in study k, where g = 1, …, G. We use βgk to denote the effect of gene g’s 

expression on the phenotype Y in study k. We assume that different studies may have 
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different genes from the same genome (i.e., some genes’ information can be missing in one 

or more studies), which allows us to include more studies in our integrative analysis.

For each gene g included in study k, we use a GLM to model the relationship between Xjgk 

and Yjk:

(1)

where l(·) is the link function, and Yjk is assumed to follow an exponential family 

distribution.

To test the null hypothesis H0: βgk = 0, we can compute the score statistic Ugk and its 

corresponding variance Vgk based on the distribution of Y, whose probability distribution 

function can be written as

where ϕk is the dispersion parameter, and θjk is the natural parameter. Here, a(·), b(·), and 

c(·) are known functions, determined by the type of distribution of the phenotype Y. For 

example, if Y is binary, then the distribution is Bernoulli so that a (ϕ) = 1, b (θ) = log (1 + 

eθ) and c (Y, ϕ) = 0. We use b′ (·) and b″ (·) to denote the first and second derivatives of 

b(·). Since E(Yjk) = b′ (θjk), θjk is equal to b′ −1 ∘ l−1(αgk + βgkXjgk). We can therefore 

construct the likelihood function and then derive the score statistic and the corresponding 

estimated variance:

where ϕ̂gk and α̂
gk are the maximum likelihood estimates, and θ̂jgk = b′−1 ∘ l−1(α̂

gk + 

β̂gkXjgk). Note that under the null hypothesis of no association between Xgk and Yk, β̂gk ≡ 0; 

and  asymptotically follows a chi-square distribution with one degree of freedom 

( ).

3. Computing overall gene-level statistics

To combine multiple GSEA studies, we rely on meta-analysis to compute a statistic per 

gene, using the gene-level statistics (Ugk, Vgk) from individual studies, for measuring the 

overall strength of association between gene g’s expression and the phenotype. Below we 

consider three approaches: (1) testing based on a fixed-effect (FE) model; (2) testing based 
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on a random-effects (RE) model; and (3) adaptive testing (AT). The first two adapt the recent 

FE and RE testing methods for GWAS meta-analysis [15–17] into iGSEA, respectively. The 

third aims to combine the strength of the first two and achieve robustness against model mis-

specification.

3.1. FE testing

A fixed-effect model that assumes no heterogeneity among GSEA studies is specified as 

follows:

(2)

where μg stands for the common genetic effect of gene g among the different studies. Let 

Tgk indicate whether gene g is included in study k (1 if included; 0 otherwise). Motivated by 

[18] and [17], we use the following statistic to test the null hypothesis H0: μg = 0:

(3)

where  follows an asymptotic distribution of  under H0. Here, we do not need to 

calculate the P-value of  and decide whether H0 is rejected. This is because in the latter 

sections, a gene set will be tested based on the ordering of s as larger values of s 

indicate more evidence to reject H0 and so imply smaller P-values no matter what the actual 

reference distribution of  is.

Although meta-analysis is generally believed to be less statistically efficient than mega-

analysis (i.e., joint analysis of individual-level raw data from all component studies), [18] 

proved that under the FE model, meta-analysis based on score statistics can achieve the same 

efficiency as mega-analysis. Thus, unlike using the coarse summary statistics in the MAPE 

methods, this model-based method has almost no information loss when testing the common 

effect in (2).

3.2. RE testing

To accommodate between-study heterogeneity, one can specify βgk as a random effect. The 

results from different studies for gene g are therefore combined based on a random effects 

model specified by

(4)
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where μg stands for the mean genetic effect among studies, and εgk is the random effect 

representing the study-specific deviation of the effect from the mean effect μg. It is assumed 

that εgks are independent and follow a normal distribution with mean 0 and variance τg.

In GWAS, however, researchers prefer to using the FE approach to combine multiple 

genomic studies, even when between-study heterogeneity exists, due to a controversial 

phenomenon [19]. That is, the traditional RE approach that tests H0: μg = 0 usually provides 

less significant P-values than the corresponding FE approach so that RE does not give any 

new findings compared with FE in most cases. [16] investigated this conservative nature of 

the traditional RE approach and proposed an improved RE approach that tests the hypothesis 

H0: μg = 0 and τg = 0 in genomic settings. The new approach has been shown to achieve 

higher power than FE when there is heterogeneity. Here, we adapt this approach and test the 

null hypothesis H0: μg = 0 and τg = 0 rather than H0: μg = 0 under the RE model. The test 

statistic is specified as follows:

(5)

The first term is the statistic  to test μg = 0 under the FE model (i.e., τg = 0) and the 

second term is to test τg = 0 given μg = 0. Again, we do not need to calculate the P-value 

because we will rely on the ordering of  for testing a gene set.

3.3. Adaptive testing

The above FE and RE methods apply the same class of models to all genes. In practical 

situations, however, some genes, especially those “silent” with zero effect, tend to fit in the 

FE model while the others are likely to fit in the RE model. For instance, in lung cancer 

research, it is found that the effect size of gene “SLC35A5” seem to be quite stable, but that 

of gene “CYCS” differs greatly from study to study [20–22]. Thus, we propose a data-

adaptive testing procedure that is robust to model mis-specification.

We begin with the more general RE model (4) and for each gene g, we first test the between-

study heterogeneity . If  is rejected, then no more testing is needed because 

H0: μg = 0 and τg = 0is also rejected, meaning that this gene is associated with the phenotype 

in at least one of the studies. If  is not rejected, we switch to the FE model to test 

 using . Note that if , we directly go to .

Let p1g and p2g be the P-value in stage 1 and 2, respectively. We can calculate p2g based on 

the asymptotic distribution of  under , as mentioned in Section 3.1, or based on a 

standard permutation procedure. In Section 3.3.1, we explain how to compute p1g when 

testing . In Section 3.3.2, we compute an overall P-value of the two-stage test, denoted 
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by , for each gene to combine p1g and p2g. When testing a gene set, the ordering of the 

genes will be produced based on the overall P-value from this adaptive testing method.

3.3.1. Testing the existence of between-study heterogeneity—Under the RE 

model, a classical approach to test the between-study heterogeneity τ is Cochran’s Q test 

[23, 24], where the Q statistic is computed by summing the squared deviation of each 

study’s estimated effect size from the estimated overall effect size, with the contribution of 

each study weighted by its inverse variance. More recently, three measures including the H, 

R, and I2 statistics have been proposed to assess the between-study heterogeneity in meta-

analysis, each of which has its own characteristics as discussed in [25]. In this paper, we use 

the Q statistic to test the heterogeneity of gene g’s effect because its asymptotic distribution 

is relatively simple and the other three statistics are all computed based on the Q statistics. 

Under our context, the Q statistic of gene g can be defined by

(6)

where βĝk is the estimator of βgk fit by the GLM with variance  is the 

estimated precision of βĝk within study k, and β̂g is a weighted average of the study 

estimates, using the estimated precisions as weights:

We can set p1g to be the P-value of Qg based on its asymptotic null distribution; that is, when 

 holds, Qg asymptotically follows a chi-square distribution with degrees of 

freedom .

Alternatively, we can use a permutation-based method to test the heterogeneity τg in a meta-

analysis. [26] summarized seven methods, which include the variance component type 

estimator (VC), the method of moments estimator (MM), the maximum likelihood estimator 

(ML), the restricted maximum likelihood estimator (REML), the empirical Bayes estimator 

(EB), the model error variance type estimator (MV), a variation of the MV estimator 

(MVvc), for estimating τg under the RE model; and among them, MVvc and EB are found 

to be the most accurate in general, particularly when τg is moderate to large. Below we 

describe a permutation procedure based on the MVvc estimator of τg because of its good 

performance as well as its computational ease based on a non-iterative procedure.

Let  be the VC estimator of τ, where
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and . Let  be the plug-in estimator for the ratio 

of within-study vs. between-study heterogeneity, i.e., ; and v̂gk ≡ r̂gk + 1. Then 

according to [27], the MVvc estimator of τg can be calculated by

(7)

with

In case that , we replace it with a small value (e.g., 0.01) to compute r̂gk. We 

permute sample labels over different studies to obtain the empirical null distribution of 

 and then calculate the P-value of the observed statistic.

3.3.2. Combining P-values—We first discuss how to combine P-values from individual 

stages for a two-stage test defined by a set of general decision rules (the subscript g is 

dropped whenever there is no ambiguity). Let α be the overall size of the two-stage test, and 

αi be the size of the ith-stage test, satisfying 0 < αi < α for i = 1, 2. Further, let α0 be a 

predetermined upper limit such that 0 < α < α0 ≤ 1. Typically, the test uses the following 

decision rules: (1) if p1 ≤ α1, reject ; if p1 > α0, fail to reject ; and in either case, the 

test stops. (2) If α1 < p1 ≤ α0, the test proceeds to the second stage:  is rejected if and 

only if F(p1, p2), a predetermined function, is less than or equal to f, and f is determined by 

the following equality

where I(·) is the indicator function. Then according to [28], the overall P-value of the two-

stage test can be given by
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Many existing methods for computing the overall P-value use the framework above, such as 

the Fisher’s weighted product test [29] and the weighted inverse normal method [30].

For our adaptive testing procedure, it is obvious that α0 is set to 1. We further set F(p1, p2) = 

p2, proposed by [31]. Thus, the overall P-value of our test is given by

If the tests in the two stages are independent, then the following relationship holds:

(8)

In our context, it might be plausible to argue that the result of the second stage is not related 

to that of the first stage as they involve testing the mean and variance of the effect sizes, 

respectively, which are two distinctive characteristics of data. As mentioned in [31], the 

above method to combine P-values is easy to implement and only depends on one parameter 

α1, which lies in (0, α) and can be determined by prior information about the existence of 

between-study heterogeneity or the common effect size. When prior information is not 

available, we could simply set α1 = α2 and then solve the equality (8), yielding 

; or alternatively, we could set α1 based on some exploratory data analysis for 

assessing the heterogeneity.

4. Gene set analysis with size-adjusted enrichment scores

If there is only one gene set (say set s) to test, a straightforward approach to enrichment 

analysis is to choose some reasonable set-level statistic as the enrichment score vs and 

compute its significance through a permutation procedure. In detail, we randomly shuffle the 

gene labels B times (so that a different set of genes randomly selected from the larger pool 

of G genes is included in set s each time) and compute the permuted enrichment scores, say 

, 1 ≤ b ≤ B. The P-value of the observed vs can be approximated by

When more than one gene set is tested, the Q-value is computed to account for multiplicity 

([1, 7, 32]), which is defined as the minimum false discovery rate (FDR) at which a set is 

claimed to be statistically significant. The Q-value of the observed vs is evaluated by
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(9)

where π̂
0 is a rough estimate of the proportion of non-enriched sets and S is the number of 

gene sets being tested. We calculate π̂
0 using the method described in [32], which is 

implemented in an R package called “qvalue” [33]. Note that for the MAPE methods, π̂
0 is 

always set to 1 ([1]), a conservative choice. Our preliminary simulation has found that using 

qvalue with MAPEs leads to worse results in FDR control. Gene sets with a Q-value < δ are 

claimed to be enriched. Throughout this paper, δ is set to the default value 0.05.

As to choosing an enrichment score, we consider a one-sided KS test, which is to determine 

whether the distribution of the overall gene-level statistic (say ug) for genes in set s is 

stochastically larger/smaller than the distribution of the same statistic for genes out of the 

set. To keep the direction of the one sided KS test the same over the different meta-analysis 

approaches, we set  for the FE method,  for the RE method, and 

for the AT method. Suppose set s contains Gs genes. We order the total G genes according to 

one of the three overall gene-level statistics. For example, let A and B denote the statistic 

 for genes in and out of set s, respectively. The order statistics are A(1),A(2), …,A(Gs) 

and B(1),B(2), …,B(G−s), where G−s ≡ G − Gs. Let FA and FB denote the underlying 

cumulative distribution functions (CDF) for A and B, respectively. Then the null and 

alternative hypotheses are H0: FA = FB for all x, and Ha: FA ≤ FB for all x, FA < FB for some 

x.

The one-sided two sample KS test statistic for set s is given by

where F̂
A(x) is the empirical CDF of A, defined by

and F̂
B(x) is defined similarly.

We mention that the KS-type statistics have been commonly used as enrichment scores in 

the literature. For example, the popular GSEA algorithm by [3] used a weighted version of 

the two-sided KS statistic; and the existing MAPE methods for integrative GSEA by [1] 

used the one-sided KS statistic as well, but for testing the opposite direction. However, an 

important fact about the KS-type statistics is often ignored: for gene sets of different sizes, 

their KS statistics follow different distributions. While enrichment analysis is commonly 
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applied to a database of gene sets, whose sizes vary in a wide range, none of the existing 

methods adjust the KS-type statistics to formally account for varying set sizes when 

computing the Q-value to control the FDR. [3] obtained normalized enrichment scores from 

separately rescaling the positive and negative scores by dividing by the mean of the 

permuted scores. However, there is no theoretical ground provided for their adjustment and 

so it is ad hoc.

Below we propose a size-adjusted KS statistic as our enrichment score:

(10)

According to [34] and [35], vs has an asymptotic distribution whose CDF is given by

(11)

which is independent of the size of the gene set. A comparison of the empirical CDF of 1000 

replicates and the asymptotic CDF is given in Section 1 of Supplementary Material. We find 

that they are very close, especially when Gs ≥ 30. Therefore, the size-adjusted KS statistics 

for gene sets of varying sizes approximately follow the same distribution, making the 

permutation-based computation of Q-value considerably improved.

5. Simulation

We designed two simulation studies, one for binary phenotypes and the other for continuous 

phenotypes, to assess the performance of the proposed iGSEA methods and compare them 

with the existing methods under default settings. Our methods are labeled by iGSEA-FE, 

iGSEA-RE and iGSEA-AT, respectively, according to the meta-analysis strategies used, as 

discussed in Section 3. In each study, we first compared the power in identifying enrichment 

via a one-gene-set simulation model as in [1]; and we further examined the sensitivity and 

specificity of the methods via a multiple-gene-set simulation model. Throughout this 

section, we fixed the significance level at 0.05 for every test conducted; and we set B = 500 

for the one-gene-set model and B = 200 for the multiple-gene-set model. For iGSEA-AT, we 

set the first-stage significant level α1 ∈ {0.02, 0.03, 0.04} in our simulation and find that its 

performance was not sensitive to the change of α1. Thus we report the results based on α1 = 

0.02. We also note that due to the mixed strategy of using the FE and RE models, as 

discussed in Section 3.3, it is unrealistic to expect that iGSEA-AT outperforms iGSEA-FE 

and iGSEA-RE uniformly; instead, we anticipate that its performance can mimic the better 

of the two closely in most cases.

5.1. Binary phenotypes

Power comparison—Suppose there are G = 500 genes in a genome and the first 100 

genes belong to the gene set of interest. For DE genes, we simulated both down-regulated 
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(DR) and up-regulated (UR) genes. We generated a random variable dg to indicate whether 

gene g is an UR, DR, or equally expressed (EE) gene, which is represented by dg = 1, −1, 

and 0, respectively. There are  DE genes out of the first 100 genes that 

belong to the gene set and  DE genes out of the rest 400 genes. We 

fixed ω0 = 0.2 in the simulation, and so the gene set is enriched if ω > 0.2. We assume there 

are (ω − 10%) UR and 10% DR genes in the gene set, and 10% UR and 10% DR genes out 

of the gene set. We set ω ∈ {0.2, 0.3, 0.4, 0.5} to represent zero, weak, medium and strong 

enrichment signals, respectively.

For the purpose of meta-analysis, we simulated four independent studies in each generated 

dataset. The chance of each gene to be included in study k is determined by a universal 

sampling rate λ, where we set λ ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1}. Each study has J = 40 

samples, including 20 normal samples with Yj = 0 and 20 tumor samples with Yj = 1. For a 

DE gene, we generated a random binary variable rg to indicate whether the effects of this DE 

gene across different studies are random or fixed. If rg = 1, this DE gene is called a RE gene, 

otherwise rg = 0. The proportion of the RE genes out of the DE genes is represented by γ, 

where we set γ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}.

Since Y is binary, we used a logistic regression model: for sample j in study k, logit(E(Ykj = 

1|Xgkj = x)) = αgk + βgkx. According to the Bayes theorem, we can generate the expression 

levels Xgkj from N(βgk, 1) given the value of Ykj ([36]), where βgk = dgμ if Ykj = 1 and rg = 

0 (i.e., DE genes from the FE model); βgk ~ N(dgμ, τ2) if Ykj = 1, rg = 1 (i.e., DE genes from 

the RE model); and βgk = 0 otherwise (i.e., EE genes or Ykj = 0).

We mainly consider those situations where a wise choice about which method to use can 

make a difference in identifying an enriched gene set, so we set the mean effect size of the 

DE genes μ ∈ {0.3, 0.45, 0.6} to make the signal-to-noise ratio not too high (otherwise, all 

the methods perform well). We further set τ ∈ {0.52, 1}. A total number of 500 (1000 for ω 
= 0.2) independent replicate datasets were simulated for each combination of the design 

parameters (ω, λ, γ, μ, τ).

We first examined the test size for all the methods compared. For the cases with ω = 0.2 

where the null hypothesis of no enrichment holds for the gene set, we computed type I errors 

(i.e., test sizes) and then compared them with the nominal significance level 0.05. We report 

the results of simulated test sizes in Section 2.1 of Supplementary Material. We find that 

under the null, our iGSEA methods and MAPE-G seem to be a bit conservative and so tend 

to reject the null less than expected; MAPE-P seems to be aggressive and so tend to reject 

the null more than expected, especially for large γ; and MAPE-I is often somewhere 

between MAPE-G and MAPE-P. Thus, for a fair comparison in power, we need to match the 

type 1 errors of all the methods. To do so, for each non-null setting (i.e., ω ≠ 0.2), we used 

1000 replicates under ω = 0.2 to simulate the critical value from the empirical reference 

distribution of the enrichment score; and we computed the power based on the simulated 

critical value so that the type I error of each method was controlled at 0.05.
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We examined the power for all the combinations of (ω, λ, γ, μ, τ); and in Section 2.2 of 

Supplementary Material, we report the results for all the non-null settings except for those in 

which all the three proposed iGSEA methods worked well and have nearly 100% power. In 

our simulation, we observe that among the three existing methods, their power typically 

follows the order MAPE-P>MAPE-I>MAPE-G. Thus, to reduce the number of lines in the 

figures, we only plot the maximum power of the three MAPE methods in each setting, 

labeled by maxMAPE, instead of each individual power. As we expect, the increase of the 

enrichment signal ω or the mean effect size μ would boost the power of all the involved 

tests. The increase of the sampling rate λ also has a positive impact on the power. Among all 

the methods, either iGSEA-AT or iGSEA-RE appears to be the top performer in most of the 

settings; and maxMAPE has lower power than the above two methods except for only a few 

settings where ω = 0.3.

Figure 1(a) displays the mean power over the different settings stratified by the proportion of 

the RE genes γ. It seems that γ plays an important role in the relative performance of the 

three proposed iGSEA methods. When γ = 0 (i.e., all genes follow the FE model), it is not 

surprising to observe that iGSEA-FE has the highest mean power; and iGSEA-AT has mean 

power quite close to iGSEA-FE. When γ is small, iGSEA-AT outperforms both iGSEA-FE 

and iGSEA-RE. As γ is moving to 1, iGSEA-RE tends to outperform the other methods; 

however, the performance of iGSEA-AT is very close to that of iGSEA-RE. Overall, in 

terms of the mean power, iGSEA-AT is better than iGSEA-RE when there is no or a small 

proportion of RE genes; and it is much better than iGSEA-FE when there exist RE genes. In 

addition, iGSEA-AT is better than maxMAPE for all γ. Thus, in realistic situations where γ 
is unknown, we recommend iGSEA-AT as a safe choice for its stable performance.

Sensitivity vs. specificity—We proceed to compare the sensitivity and specificity of the 

methods via ROC curves by generating multiple gene sets. We assume that each generated 

dataset contains four independent studies, each having 20 normal samples and 20 tumor 

samples as before; and there are 1000 genes in the genome of interest, of which the first 100 

are UR genes, the last 100 are DR genes, and the rest are EE genes. We generated 100 gene 

sets of varying sizes, of which the first 30% are enriched by UR genes, the next 30% are 

enriched by DR genes and the last 40% are non-enriched. For each of these gene sets, its 

size was independently generated from N(100, 302) and then left-truncated at 25; and UR, 

DR and EE genes were randomly chosen from the corresponding populations. We set ω = 

0.3, μ = 0.45, τ = 0.52, and λ = 0.7. The detail about constructing the different types of gene 

sets and generating expression levels for the different types of genes can be found in Section 

2.3 of Supplementary Material.

We present an example of ROC curves in each setting of γ using one randomly generated 

dataset in Section 2.4 of Supplementary Material. The curves show that all the three iGSEA 

methods have better performance than the MAPE methods. Among them, iGSEA-FE seems 

to be the best for small γ but the poorest for large γ while iGSEA-RE shows an opposite 

pattern; and iGSEA-AT is the best for medium γ, and otherwise, it is somewhere between 

the other two. We further examine the average AUC (area under the ROC curve) of each 

method by simulating 200 datasets under each setting considered. As clearly shown in 

Figure 1(b), the three iGSEA methods have much higher AUC than the MAPE methods. 
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Further, as γ increases, the AUC of iGSEA-FE tends to decrease and the AUC of iGSEA-RE 

tends to increase while that of iGSEA-AT is steadier. Overall, iGSEA-AT has the best 

performance in terms of AUC as it is close to iGSEA-FE for small γ, close to iGSEA-RE for 

large γ and it is the best in the middle. This pattern is similar to what we observed from 

power results in Figure 1(a), which leads to the same conclusion that iGSEA-AT should be 

chosen in situations when γ is not known.

We report the mean AUC values for each proposed iGSEA method before and after our size 

adjustment in Table 1. It is clear that the use of the size-adjusted KS statistic in (10) 

consistently improves the mean AUC of all the three iGSEA methods. In addition, the 

performance of all the six methods in FDR control is reported in Section 2.5 of 

Supplementary Material, where we find that the iGSEA methods outperform the MAPE 

methods, regardless of the γ value.

5.2. Continuous phenotypes

In practice, many continuous response data can be approximated closely by normal 

distributions, especially after appropriate transformation. As a typical example of continuous 

phenotypes, we assume that the response Y follows a normal distribution, where the GLM 

(1) becomes a linear regression model: E(Ykj|Xjgk = x) = αgk + βgkx.

Power comparison—We used the same settings for the total number of genes in the 

genome (G), the size of the generated gene set (Gs), the number of GSEA studies (K), the 

numbers of the UR, DR, EE genes, and the proportion of RE genes (γ ∈ {0, 0.2, 0.4, 0.6, 
0.8, 1}) as in the binary case. We set λ = 0.7, ω0 = 0.2, and ω ∈ {0.2, 0.3}. We assume that 

Xjgk and Yjk follow a bivariate normal distribution BV N(μx, μy, σx, σy, ρgk) for j = 1, ⋯, 20, 

where μx = μy = 0, and σx = σy = 1, and ρgk = βgk. So we simulated Yjk from N(0, 1) and 

then simulated the expression levels based on the conditional distribution 

. For a RE gene, we set βgk ~ N(μg, 0.252), where μg ~ 
N(0.3dg, 0.12); otherwise, we set βgk = μg, where μg ~ N(0.3dg, 0.12) for a DE gene and μg = 

0for an EE gene. Note that βgk ∈ (−1, 1), we truncated its value at -0.9 and 0.9 if βgk > 0.9 

and βgk < −0.9.

By examining the type I errors of the methods under the settings with the enrichment signal 

ω = 0.2, we find that the three iGSEA methods are relatively conservative, which is similar 

to what we find in the case of binary phenotypes. Thus, we used simulated critical values for 

each method to control the type I error at 0.05 and compared the power in Figure 2(a). 

Again, all the three proposed methods work better than the three MAPE methods for all γ. 

Unlike the binary case, iGSEA-FE seems to outperform iGSEA-RE except for γ = 1; and 

iGSEA-AT seems to outperform iGSEA-FE for medium or large γ. Overall, iGSEA-AT 

seems to be the best in terms of power.

Sensitivity vs. specificity—The way we generated the different types of genes and gene 

sets is the same as in the multiple-gene-set model for the binary case; and we generated μg, 

βgk, Yjk and Xjgk as in the single-gene-set model for the normal case. The average AUC over 

200 datasets for each γ value is shown in Figure 2(b). It is clear that the three iGSEA 
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methods outperform the MAPE methods. For small γ, iGSEA-AT is slightly better than 

iGSEA-RE; and it is better than iGSEA-FE for large γ.

6. Data example

Here, we illustrate the proposed methods using real expression data and real gene sets. To 

identify pivotal gene sets involved in lung cancer, we conducted integrative GSEA of five 

studies using pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG), which is a 

comprehensive public database containing a large collection of human curated pathways 

[37]. The data contain four microarray mRNA datasets, including three from [21] and the 

other from [20], and one RNA-seq dataset [22]. Each of the five expression datasets contains 

both case and control samples. The detail of the datasets, including the source, the type of 

experiment and the sample size, is given in Section 3 of Supplementary Material. All 

expression data were log2-transformed and then standardized.

6.1. Performance Evaluation

To draw ROC curves, we constructed 60 benchmark pathways, including 30 positive 

controls (PC) and 30 negative controls (NC). A PC pathway includes 25 “essential” genes 

and 25 “non-essential” genes while a NC pathway includes 50 “nonessential” genes. To 

randomly generate PCs and NCs, we used the list of “essential” genes given in [14], which 

contains genes that are believed to be highly related to lung cancer according to the 

literature, while the list of “non-essential” genes contains those excluded from the list of 

“essential” genes and any KEGG pathway.

Through an exploratory analysis of the data, we find that although the estimated between-

study heterogeneity is close to zero for 50% of the genes, it varied largely among potentially 

DE genes and 16% of the genes have estimated values greater than 0.5, as seen in Figure 

3(a). This obviously indicates neither the FE nor RE model holds for all the genes 

considered. Due to the conservative nature of iGSEA-AT, we set α1 = 0.04, making it a bit 

easier to reject  than the default value 0.0253. Figure 3(b) shows the ROC curves 

of the three iGSEA methods and MAPEI, since MAPEI is slightly better than MAPEG and 

MAPEP in this example; and Table 2 presents the AUC value for each of the six methods. 

The three iGSEA methods clearly have better performance than the three MAPE methods. 

As seen from the AUC table, the performance of iGSEA-AT and iGSEA-RE is quite 

comparable, and both have greater AUC than iGSEA-FE. Recall that in our simulation for 

the binary case, iGSEA-AT and iGSEA-RE often performed better than iGSEA-FE when γ 
is large. Thus, the above AUC results might hint that the between-study heterogeneity cannot 

be ignored for a large portion of the DE genes in this example. Figure 3(c) further shows the 

estimated Q-values of the benchmark pathways computed from the six methods. The three 

iGSEA methods separate the PC pathways (red “×”s) from the NC pathways (blue “+”s) 

very well, while the three MAPE methods yield a much poorer distinction.

6.2. Results

We tested KEGG pathways and report the estimated Q-values of those identified by any of 

the methods in Section 3 of Supplementary Material. In total, iGSEA-FE, iGSEA-RE and 
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iGSEA-AT reported 6, 10 and 12 enriched pathways, respectively. By contrast, MAPE-P, 

MAPE-G and MAPE-I only reported 2, 0 and 1, respectively, even with π̂0 = 0.5 in (9). 

Figure 3(d) shows the Venn diagram for the methods. There are four pathways can be 

detected by all the three iGSEA methods but none of the MAPE methods. For example, 

“glyoxylate and dicarboxylate metabolism” is a pathway that has been found to be 

significantly correlated with loss of tumor differentiation [38]. Also, there are four pathways 

that were detected only by iGSEA-AT. Among them, “primary immunodeficiency” is a 

complex series of diseases, and may be associated with adenocarcinoma [39]. This pathway 

has been reported by [40] to be associated with early-stage lung adenocarcinoma. Also, for 

the pathway “glycosaminoglycan degradation”, it is known that the structural characteristics 

of glycosaminoglycans and enzymes involved in their degradation are involved in cancer 

progression [41]. Thus, these findings are consistent with recent studies in lung cancer while 

none of the other methods identified them.

7. Discussion

We have shown that the proposed iGSEA methods typically outperformed the MAPE 

methods through simulation and a data example. In particular, iGSEA-AT has good overall 

performance; and unlike iGSEA-FE and iGSEA-RE, it seems not to be sensitive to model 

specification in meta-analysis, due to a data-adaptive strategy of choosing FE vs. RE models. 

Thus, we recommend iGSEA-AT for combining multiple GSEA studies in practical 

situations where there is typically no one-size-fits-all model.

We mention that in our numerical studies, for iGSEA-AT, we used Cochran’s Q test to 

estimate the first-stage P-value p1g and the asymptotic test of  to estimate the second-

stage P-value p2g. In our preliminary simulation, we find that using permutation-based 

methods led to similar results. This is because whether the permutation or asymptotic 

methods are used may not affect the ordering of  much. However, the permutation 

procedures were much slower when the number of genes is large.

Computational efficiency is critical in practice given the increasingly large numbers of 

genes, gene sets, samples, and available datasets. The three iGSEA methods are fairly fast to 

conduct and numerically stable. To illustrate the relative efficiency in computing, we report 

the time to run each method with B = 500 for a randomly generated dataset of four studies 

with λ = 1 under the one-gene-set model for the binary case in Section 5.1: it takes iGSEA-

FE and iGSEA-RE less than 1 second to finish, iGSEA-AT about 4 seconds, and the three 

MAPE methods 83–86 seconds, using a machine with Windows 8.1 64-bit Operating 

System, Intel(R) Core(TM) i7-4700MQ CPU @2.40GHz and 8 GB of memory.

In some applications, it would be desirable to adjust for individual-level confounding 

covariates/factors such as age, race, environmental exposures, etc. Using the GLM setup 

described in Section 2, the proposed iGSEA methods can easily provide covariate-adjusted 

estimates as well as covariate-adjusted score statistics and associated variances within each 

study, and then they can be combined in the same way as we discussed in Section 3. [18] 

mentioned that using meta-analysis methods based on score statistics, the numbers and types 

of covariates even need not be the same among the component studies.
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Although it covers a wide range of models and distributions, the GLM is not the best way to 

model censored survival outcomes. Instead, a standard approach is to use Cox proportional 

hazards models [42]. We note that the extension of our iGSEA methods to survival outcomes 

is straightforward. Here, we define Yjk as the observed time (either censoring or event time) 

for sample j in study k. Using the partial likelihood function under the Cox model, Ugks and 

Vgks can be constructed accordingly, and all the subsequent steps in our iGSEA methods 

remain unchanged.

The proposed methods are applicable to situations when expression data are from both 

microarray and NGS experiments, as shown in our data example. To enhance comparability 

among studies and ensure estimation of the same parameter, we should carefully review 

inclusion criteria and adjustments of covariates, and conduct appropriate data preprocessing 

including annotation and alignment across all different platforms and versions, background 

correction and normalization of expression data, removal of batch effects whenever possible. 

For highly complex datasets where the above could fail, blindly applying the proposed 

methods would be inappropriate; and we suggest to develop robust iGSEA methods based 

on aggregation of ranked lists from component studies. We further note that although 

presented in the context of gene expression studies, the proposed iGSEA methods seem to 

be equally applicable to meta-analysis of other omics data, e.g., epigenomics/methylation 

studies in large consortia.

Finally, software for the proposed methods is available as an R package named “iGSEA” 

and is freely distributed on CRAN after testing.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix: Algorithm

I. Computing gene-level statistics

1. For each study k, compute the estimated effect β̂gk, the estimated precision wgk, 

the score statistic Ugk, and the corresponding variance estimate Vgk for the genes 

involved in study k, where g = 1, …, G and k = 1, …, K.

II. Meta-analysis

1. For each gene g, compute the overall gene-level statistic ug, where  for 

the FE method,  for the RE method, and  for the AT method.

III. Gene set analysis

1. For each gene set s, order the genes in and out of the set according to the values 

of ug (from small to large), and then compute the enrichment score using the 

size-adjusted one-sided KS statistic vs.
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2. Randomly assign genes to set s B times and compute the permuted statistics, 

 , 1 ≤ b ≤ B, 1 ≤ s ≤ S.

3. Estimate the P-value of set s by

4. Estimate the Q-value of gene set s by (9).

5. Report those gene sets with Q-value< δ as enriched.
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Figure 1. 
Simulation results for binary phenotypes: (a) the mean power (b) the mean AUC stratified by 

the proportion of RE genes γ.
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Figure 2. 
Simulation results for continuous phenotypes: (a) the power; (b) the mean AUC stratified by 

the proportion of RE genes γ.
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Figure 3. 

Data example: (a) the histogram of estimated between-study heterogeneity ; (b) ROC 

curves of the three iGSEA methods and MAPEI using 60 constructed benchmark pathways; 

(c) Estimated Q-values of benchmark pathways from the six methods, where red “×”s and 

blue “+”s represent positive and negative controls, respectively; (d) Venn diagram of 

enriched KEGG pathways identified by at least one of the methods.
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