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Abstract

Lack of cell surface glycosylphosphatidylinositol (GPI)-anchored protein(s) has been used as a 

reporter of Pig-a gene mutation in several model systems. As an extension of this work, our 

laboratory initiated development of an in vitro mutation assay based on the flow cytometric 

assessment of CD90.2 expression on the cell surface of the mouse lymphoma cell line L5178Y/Tk
+/−. Cells were exposed to mutagenic and non-mutagenic compounds for 24 hours followed by 

washout and incubation for an additional 7 days. Following this mutant manifestation time, cells 

were labeled with fluorescent antibodies against CD90.2 and CD45 antigens. These reagents 

indicated the presence of GPI-anchored proteins and general cell surface membrane receptor 

integrity, respectively. Instrument set-up was aided by parallel processing of a GPI anchor-

deficient subclone. Results show that the mutagens reproducibly caused increased frequencies of 

mutant phenotype cells, while the non-mutagens did not. Further modifications to the method, 

including application of a viability dye and an isotype control for instrument set-up, were 

investigated. As a means to verify that the GPI-anchored protein-negative phenotype reflects bona 
fide Pig-a gene mutation, sequencing was performed on 38 CD90.2-negative L5178Y/Tk+/− clones 

derived from cultures treated with ethyl methanesulfonate. All clones were found to have 

mutation(s) within the Pig-a gene. The continued investigation of L5178Y/Tk+/− cells, CD90.2 

labeling, and flow cytometric analysis as the basis of an in vitro mutation assay is clearly 

supported by this work. These data also provide evidence of the reliability of using GPI anchor-

deficiency as a valid reporter of Pig-a gene mutation.
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Introduction

Current assays for mutagen detection comprise a range of test systems including bacteria 

[Ames assay; Ames et al., 1975; Gatehouse et al., 1994], cultured cells from various species 

[thymidine kinase gene assays; Moore et al., 1985, 2005] and whole animal models utilizing 

both nontransgenic [Walker et al., 2007] as well as specialized transgenic rodents [Big 

Blue®, Muta™Mouse; Morrison and Ashby, 1994; Nohmi et al., 2000]. One more recent 

method that has gained considerable attention within the last decade is based on the 

phosphatidylinositol glycan complement class A (Pig-a) gene. Methods based on this gene 

most commonly use flow cytometry to enumerate peripheral blood cells with a deficiency in 

glycosylphosphatidylinositol (GPI)-anchored proteins on the cell surface. The GPI anchors 

are formed by the concerted efforts of over 30 genes including many members of the Pig 
gene family, but Pig-a is the only one located on the X chromosome [Kinoshita, 2014]. Since 

this means there is only one functional Pig-a copy per cell, a single inactivating mutation in 

the gene is sufficient to eliminate Pig-a-mediated enzyme function and disrupt GPI anchor 

formation. This has formed the basis for the in vivo Pig-a gene mutation assays currently in 

existence.

In vivo methods for assessment of Pig-a gene mutation are well established [Dertinger and 

Heflich, 2011; Dertinger et al., 2011; Kimoto et al., 2016] and have demonstrated utility in 

numerous applications including genotoxicity hazard identification and risk assessment 

[Wills et al., 2016]. These methods have the advantage of being compatible with multiple 

species and thus can be readily applied to existing toxicology studies such as the 28 day 

repeat-dose study design [Dertinger et al., 2010, 2012]. The in vivo methods have also been 

the subject of expert working groups including the Health and Environmental Sciences 

Institute Genetic Toxicity Technical Committee (HESI GTTC) [Schuler et al., 2011] and the 

International Workshop on Genotoxicity Testing (IWGT) [Gollapudi et al., 2015]. Currently 

a submission process has been initiated to support the development of an Organization of 

Economic Co-operation and Development (OECD) guideline for these in vivo assays.

Another important aspect of methodologies that employ Pig-a gene-based assessment of 

mutagenesis is the ability to examine this marker using in vitro systems. This provides the 

means for studying the same biological endpoint across systems of varied complexity. Thus 

certain investigations can benefit from the ability to bridge the Pig-a gene mutation endpoint 

across model systems, especially in vitro to in vivo. Some of the earliest investigations that 

examined PIG-A mutation in vitro focused on using this indicator of specific gene function 

to examine the basic biology of mutation. Chen et al., [2001] examined the phenomenon of 

mutator phenotype (Mut) in human colon cancer cell lines. Mut cell lines were readily 

differentiated from non-Mut cell lines by comparing GPI anchor phenotype and 

demonstrating the lack of surface expression of GPI-anchored proteins as well as specific 
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PIG-A gene mutation in Mut phenotype cells. As a means to study mutation rate in humans, 

Araten et al., [2013] selected PIG-A as a sentinel gene and examined immunofluorescent 

labeling of transformed human cord-blood myeloid cells analyzed by flow cytometry. This 

system provided a means to model mutation rate and make predictions regarding the 

contributions of this process to human carcinogenesis.

Since these initial studies, several other investigators have explored the utility of in vitro Pig-
a based methods, primarily for applications associated with safety assessment. Kruger et al. 
[2015, 2016] examined human TK6 cells as a model for differentiation of mutagenic agents 

from non-mutagens. They also used gene sequencing to identify mutations in both PIG-A 
and PIG-L genes as contributing to GPI anchor deficiency. The same group recently reported 

positive correlations between DNA adducts and GPI anchor deficiency in benzo[a]pyrene 

diol-epoxide-treated TK6 cells [Piberger et al., 2017]. The role of other Pig genes, including 

PIG-L, in GPI anchor deficiency of TK6 cells was also reported by Nicklas et al. [2015]. 

Investigators at Swansea University [Rees et al., 2017] initially studied TK6 cells, but 

ultimately developed an optimized flow cytometric method using human MCL-5 cells. 

Finally, Nakamura et al. [2012] used chicken DT40 cells to demonstrate the role of the Pig-o 
gene (present on the Z-chromosome in avian species) as a target for mutation detection in an 

analogous in vitro assay.

For the experiments reported here, we employed mouse lymphoma L5178Y/Tk+/− −3.7.2C 

cells to develop a flow cytometric method for the phenotypic identification of Pig-a mutant 

cells. The mouse species has been shown to be compatible with mutagenicity assays based 

on the Pig-a gene (Olsen et al., 2017). These particular cells were chosen due to their 

utilization in other genotoxicity assays such as the Mouse Lymphoma Assay and in vitro 

micronucleus studies. Also these cells do not suffer from the exceptionally high baseline 

mutant frequency observed in the TK6 cell line used for in vitro Pig-a studies by several 

other investigators. This relieves a user of the need to purify or otherwise isolate wildtype 

cells prior to using them for experiments.

The initial, method-development studies described here examine exposure to mutagenic/

non-mutagenic cytotoxic compounds, as well as specific assay modifications devised to 

optimize assessment of the mutant population. More work will be necessary to fully identify 

the optimal experimental design and data analysis strategies for this methodology. 

Importantly, we also investigate sequencing of mutant phenotype clones to directly establish 

the link between genomic alterations in the Pig-a gene and the GPI anchored-protein 

deficient phenotype.

Materials and Methods

Cell line and chemicals

The L5178Y/Tk+/− −3.7.2C mouse lymphoma cell line was obtained from ATCC (Manassas, 

VA) and grown in DMEM supplemented with fetal bovine serum, glutamine, and Pen/Strep. 

Cells were maintained at ≤ 1×106 cells/ml in a 5% CO2, 37°C humidified incubator using 

125 mL tissue culture flasks for routine passage and exposure to test articles. For some 

experiments, a GPI anchor-deficient L5178Y/Tk+/− clone was employed. This mutant cell 
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line was generated by treatment of L5178Y/Tk+/− cells with ethyl methanesulfonate (EMS) 

and subsequent isolation and cultivation of clones with an aerolysin-resistant phenotype.

All chemicals were obtained from Sigma-Aldrich (St. Louis, MO) unless stated otherwise. 

Antibodies (Ab) against CD90.2-PE (Clone 53-2.1), CD45-APC (Clone 30-F11), CD45-

FITC (Clone 30-F11) and Isotype Control (Rat IgG2a, Clone RTK2758) were from 

BioLegend (San Diego, CA), DRAQ7 was from Cell Signaling (Danvers, MA). The CD90.2 

target is a protein associated with GPI anchors on the cell surface, thus it serves as the 

indicator of wildtype vs mutant cells. The CD45 reagent is included as both a process 

control and an indicator of cell health. Thus only cells with sufficient levels of CD45 

staining are considered for determination of GPI anchor deficiency and cells lacking 

appropriate CD45 conceivably caused by overt damage - which could also affect CD90.2 

surface expression - can be avoided. The compounds selected for study were dissolved in 

dimethylsulfoxide (DMSO) and included the mutagens ethyl nitrosourea (ENU), EMS, 

methyl methanesulfonate (MMS), 1,3-propane sultone (1,3-PS), 4-nitroquinoline oxide (4-

NQO), cisplatin (CSP), vinblastine (VIN), etoposide (ETO), camptothecin (CAM) and the 

non-mutagens D-mannitol (MAN), dexamethasone (DEX), diethanolamine (DEA), 

phenformin HCl (PHE), cycloheximide (CYC) and carbonyl cyanide m-chlorophenyl 

hydrazone (CCCP).

Cell exposure and processing

Treatment of cells with a range of concentrations of the mutagenic or non-mutagenic agents 

was performed for 24 hours in T125 flasks. All exposures for the definitive studies were 

performed in triplicate flasks and all experiments were conducted as three independent 

repeats. After 24 hours of exposure, cells were collected from all treatment vessels and 

counts were performed using the volumetric counting function on a MACS Quant flow 

cytometer (Miltenyi Biotec, Bergisch Gladbach, Germany). These data enabled the 

determination of cytotoxicity based on the comparison of cell counts obtained from treated 

cultures relative to vehicle control counts. The cells were then washed free of treatment 

medium and resuspended with fresh growth medium. Initial experiments examined the 

kinetics of appearance of mutant cells for up to 10 days following exposure to EMS. Once 

an appropriate expression time was determined, cells were passed daily (except over the 

weekend) for a total of 8 days to allow sufficient time for expression of the mutation and 

turnover of the normal cell-surface complement of GPI-anchored proteins. For passage of 

the cells during an experiment, between 1.5 ×105 and 1.0 ×106 total cells were passed in 

order to maintain a sufficient number of mutant cells in culture. For each experiment Pig-a 
mutant cell frequency data were collected across triplicate treatments per test agent 

concentration. Furthermore, each chemical was studied in three independent experiments.

Immunofluorescent labeling of the cells for the majority of experiments involved the 

following steps based on instructions from a prototype In Vitro MutaFlow kit (Litron 

Laboratories, Rochester, NY). Briefly, 2 × 106 cells were spun down in 15 mL tubes and 

resuspended in Hank’s Balanced Salt Solution + 1% fetal bovine serum containing 

optimized concentrations of anti-CD90.2 PE and anti-CD45 APC. The samples were 
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incubated at 4°C in a refrigerator for 10 min then they were washed and resuspended in fresh 

buffer and kept cold/protected from light until flow cytometric analysis.

For instrument set-up, we originally employed a GPI anchor-deficient L5178Y/Tk+/− clone 

in conjunction with wild-type cells. Processing an aliquot of these cells alongside the 

positive/vehicle controls provided a known CD90.2-negative population to ensure proper 

adjustment of voltage, compensation and setting of gates/regions in the flow cytometer 

software as described in the prototype kit manual. Experiments which examined the 

potential effects of non-mutagenic compounds also included EMS as a positive control 

(250–500 µM) to demonstrate proper execution of the methodology. Mutant cell frequency 

was determined by interrogation of approximately 1 million cells for CD90.2 fluorescence. 

Cytotoxicity was based on cell numbers compared to the concurrent solvent control, i.e. 

relative survival.

Statistical Analyses

All statistical analyses were performed using JMP v12 (SAS, Cary, North Carolina). Since 

these studies represent our initial method development activities, we show much of the data 

as individual experiments rather than combining across independent replicates. This was 

done to better inform the reader about the reproducibility of the various responses across 

multiple experiments as opposed to combining data and providing summary statistics on 

groups. Thus, as a means to represent reproducibility of the assay across separate 

experiments, an initial trend test producing a linear best-fit line was performed for each 

independent experiment, using JMP’s ANOVA platform. This was followed by Dunnett’s 

pair-wise test comparing each treatment group to its respective control. To maintain the 

overall significance level at 0.05, the trend as well as the pairwise differences from the 

control group are declared statistically significant if P < 0.025. The results from both tests 

were considered together when making an assessment of activity, thus achieving significance 

in both tests was considered a positive response. A significant response in only one or none 

of the tests was considered equivocal or negative respectively.

Method Optimization

In later experiments, the anti-CD45 APC Ab was replaced with a FITC-conjugated version. 

This allowed for the inclusion of the cell viability dye DRAQ7 in the final resuspension 

buffer. Further process optimization included exploring the use of an Isotype Control 

antibody in place of the CD90.2-specific Ab when labeling a sample of vehicle-treated cells 

for use in instrument set-up. This eliminated the need to maintain a natively Pig-a mutant 

cell line as described above.

Mutation Sequencing

In order to address the links between the phenotype-based flow cytometric assays and bona 
fide mutation in the Pig-a gene, gene sequencing was performed. Mutagenized clones were 

generated from a population of L5178Y/Tk+/− cells that were treated with EMS for 24 hours 

before being washed free and cultured over 10 days to allow for sufficient expression of 

mutation. After this period of time, aliquots of the cells exposed to various EMS 

concentrations were labeled as described above and analyzed to determine mutant frequency. 
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Highly-purified mutant cells from the cultures were then obtained by immunomagnetic 

separation. Briefly, the cells were labeled with both CD45-FITC and CD90.2-PE Abs as 

described above. The cells were then incubated with anti-PE superparamagnetic microbeads 

(Miltenyi Biotec) which bind to the PE molecule conjugated to the CD90.2 Ab. The cell 

suspensions are then passed through a MACS MS column (Miltenyi Biotec) seated in an 

OctoMACS magnetic separator. This process retains any cells with surface expression of 

GPI-anchored CD90.2 protein on the column and allows GPI anchor-deficient cells to pass 

through. The column purification was repeated three more times with fresh columns for each 

sample. An aliquot of the samples were taken for verification of separation by flow 

cytometry and the remaining mutant-enriched eluates were subjected to limiting dilution and 

approximately 30 cells per plate were distributed across individual wells of nine 96 well 

plates. Once sufficient outgrowth was achieved over the course of an additional 10 days, 

clones were re-assessed for GPI anchor phenotype by immunolabeling/flow cytometry and 

confirmed GPI-negative cells were frozen as pellets (~1 million cells per vial) and sent to the 

National Center for Toxicological Research (NCTR) for further processing.

Genomic DNA was extracted from the supplied clones using a QiaAmp DNA micro kit 

(Qiagen, Germantown, MD) and three fragments of the mouse Pig-a gene covering five 

coding regions of the gene were amplified for each clone in separate reactions [Revollo et 
al., 2017]. The fragments belonging to each clone were then pooled together in a single 

sample. The resulting samples were processed using a modification of the Nextera DNA 

library preparation kit (Illumina, San Diego, CA) and oligonucleotides for dual-indexing as 

in Nextera XT v2 kit (Illumina). Briefly, 1 µL of each sample containing 0.5–1.0 ng water-

diluted amplicon DNA was fragmented with 1.5 µL of Nextera enzyme/buffer mix (1:5 

ratio) at 55°C for 10 minutes. A PCR mixture was added to each sample to a final volume of 

25 ul and final concentrations of oligos for dual-indexing of 0.25 uM, after which the 

samples were subjected to the following PCR conditions: 72°C×3min + 95°C×5 min 

+ (95°C × 30sec + 58°C × 30sec + 72°C × 30sec) × 8 cycles. The indexed libraries were 

then pooled into a single multiplexed library. The multiplexed library was purified with a 

Qiagen PCR purification kit, and sized with Agencourt AMPure XP beads (Beckman 

Coulter, Brea, CA). Sequencing was carried out in an Illumina NextSeq500 sequencer using 

a paired-end dual-indexing sequencing protocol. Sequencing reads were aligned against the 

mouse Pig-a reference sequence (http://www.ncbi.nlm.nih.gov/nuccore/NC_000086.7?

report=genbank&from=164419685&to=164433916) with BWA software [Li and Durbin, 

2009] and mutations were called with LoFreq software [Wilm et al., 2012] resulting in an 

individual variant call file for each sample.

Results and Discussion

Method Development

The initial staining procedure utilized a combination of CD45-APC and CD90.2-PE and 

instrument settings were optimized to enable sufficient resolution of the CD90.2-deficient 

population from wildtype. The quadrant in Figure 1 was positioned to achieve a minimum 

resolution of 99% of the mutant cell population. This sample was created by processing a 

1:1 mix of wildtype L5178Y/Tk+/− cells and the GPI anchor-deficient clone.
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Mutant population biology and kinetics

As a means to investigate the kinetics of expression of a mutant cell population, we 

examined the frequency of CD90.2-negative cells over time from 2 to 10 days post-

exposure. Figure 2 shows the lack of any response at 2 days along with a clustering of the 

maximal response occurring between 6 and 10 days. For practical purposes a total 

expression time of 8 days (1 day exposure + 7 additional days in culture) was selected for 

the remaining experiments.

The potential for Pig-a gene mutation to result in resistance to apoptosis has been raised by 

several groups in the literature associated with the disease paroxysmal nocturnal 

hemoglobinurea (PNH) [Brodsky et al., 1997; Marsh and Elebute 2003]. However, there are 

other PNH investigators that suggest there is no alteration in sensitivity to apoptosis 

mediated by GPI anchor deficiency [Ware et al., 1998; Bastisch et al., 2000]. Given these 

observations, the potential role of a pre-existing mutant cell population experiencing some 

preferential growth advantage due to challenging the cells with toxic agents was explored. 

Figure 3 shows the cytotoxicity responses of both wild-type L5178Y/Tk+/− cells and the GPI 

anchor-deficient mutant clone to various compounds that act via genotoxic or non-genotoxic 

mechanisms. In all cases, the dose-response profiles of the two cell populations behaved 

similarly. This supports the conclusion that there was no growth or survival advantage for 

the mutant cells that would result in higher mutant frequencies relative to the wild-type cell 

population. This is also consistent with the in vivo literature that characterizes Pig-a 
mutation in bone marrow stem cells as “neutral” in that it does not provide any selection for 

or against the mutant cell population in the whole animal [Dertinger et al., 2014].

Response to chemical agents

Once the basic experimental conditions were established by the initial experiments, an 

investigation of the responses of L5178Y/Tk+/− cells to various genotoxic and non-genotoxic 

compounds was performed. The panels in Figure 4 depict the effects of genotoxic agents on 

both mutant frequency and cytotoxicity as determined by relative survival. For all of these 

studies we sought to achieve exposures that resulted in at least 50% relative cell survival as 

the top passing concentration in order to ensure adequate exposure of the cells to the study 

compounds. This level of cytotoxicity is provisional and needs additional testing to confirm 

the utility of this criterion. The overwhelming majority of the data were normally distributed 

as indicated by Shapiro-Wilk test of the residuals. Combined trend and pair-wise testing was 

performed on each separate replicate experiment. Table 1 represents the statistical analyses 

performed on each individual experiment. As described in the Materials and Methods 

section, both a linear trend test and pairwise testing was performed and the combined 

significance of these tests served to make the positive, negative or equivocal call. Thus both 

tests had to reach statistical significance in order for the experiment to be considered positive 

and if one test was significant it was considered equivocal. Table 1 shows that the mutagenic 

agents elicited statistically significant elevations in CD90.2-deficient cells. One out of three 

CSP experiments was considered a negative result.

Figure 5 depicts the responses to non-genotoxic compounds. Despite the clear cytotoxicity 

experienced by these exposures, there were no corresponding changes in mutant cell 
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frequency compared to vehicle controls for the majority of experiments performed. One 

experiment conducted with PHE yielded an equivocal result due to a positive trend test 

(Table 1). A separate study with DEX also resulted in an equivocal call due to pair-wise 

testing showing the second, fourth and fifth treatment groups to be statistically different 

from control. Given the lack of a clear dose response and the negative results from the two 

other experiments which examined DEX, it does not appear that this compound elicited a 

robust and reproducible elevation in CD90.2-deficient cells.

Method Improvements

Cytotoxicity-based criteria for selection of the top concentration in dose-response studies is 

clearly important for the satisfactory performance of a mutagenicity assay. The inclusion of 

the viability dye DRAQ7 permits the elimination of cells with compromised membranes 

from analysis, thus focusing the determination of mutant frequency on healthy, live cells 

only. As described by Rees et al. [2017], this reduces the occurrence of potential artifacts, 

due to overt cytotoxicity, from influencing detection of mutagenicity. In order to include the 

DRAQ7 dye in the labeling protocol, we had to modify the other antibody-fluorochrome 

conjugates used for labeling the cells. Thus for the new method we still use the CD90.2-PE 

Ab, but replaced the CD45-APC with a CD45-FITC Ab. Figure 6 shows the entire gating 

scheme for the optimized protocol. Panel B specifically shows the resolution of DRAQ7-

positive cells in a population of cells exposed to ENU. These cells labeled as dead and dying 

are readily identified based on their fluorescent signature. This allows for more accurate 

identification of “healthy single cells” in the light scatter plot shown in Fig. 6 (Panel A) 

since the green-labeled population can be eliminated from the region and any subsequent 

plots that examine this population will only report on healthy cells.

The use of an Isotype Control for instrument set-up evolved from our earlier practice of 

maintaining and preparing a mutant L5178Y/Tk+/− cell clone for each experiment. These 

natively GPI anchor-deficient cells could be used for determining the position of gates and 

setting other important instrument parameters when processed through the standard labeling 

protocol. The disadvantage of using these cells is that any investigator that wishes to employ 

the method would have to generate or obtain a confirmed mutant clone and continuously 

propagate it alongside wildtype cells for each experiment.

We examined the use of an Isotype Control antibody as a means to define a negative 

population of cells that provided similar characteristics to the natively GPI-deficient cell 

clone we previously used for instrument set-up. To do so we incubated cells with the isotype 

control Ab in place of the CD90.2 PE Ab, but kept all the other reagents/steps the same. This 

sample was then used prior to analysis of any experimental samples to adjust voltages and 

gating associated with the resolution of the CD90.2-negative cell population.

Using the newly modified reagent mix, we examined the fluorescence profiles in the 

bivariate plots of various dye combinations. The panels in Figure 7 show the before and after 

profiles for compensation of the FITC signal from the PE channel due to spectral overlap. 

Additional compensation was not necessary for the APC channel given the separation in the 

emissions between the fluorochromes. This new reagent combination enables easier, more 
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rapid instrument setup based on the use of the isotype control and reduction in the amount of 

fluorescence compensation required.

Pig-a Gene Sequencing

Identification of bona fide Pig-a gene mutation was accomplished by sequencing the DNA 

from 38 clones developed from CD90.2-deficient cells that were derived from cultures of 

EMS-treated L5178Y/Tk+/− cells using several rounds of immunomagnetic enrichment. The 

sequencing approach involved preparation of dual-indexed mini libraries for each individual 

clone, and subsequent processing of the combined multiplexed library on an Illumina 

NextSeq sequencer [Revollo et al., 2017]. Figure 8 shows the primer arrangement for 

generation of the fragments covering the exons of the Pig-a gene containing the open 

reading frame, along with the depth of the sequencing of individual bases.

Table 2 shows each of the individual clones submitted for sequencing and their respective 

mutation in the Pig-a gene. All fragments of the gene were determined to be present for the 

analyses. The nature of the mutations, i.e. point mutations, is consistent with the typical 

mutation spectra reported for EMS [Klungland et al., 1995]. Examinations of the sequence 

alterations revealed that the mutations resulted in either amino acid changes, stop codons or 

occurred at splice sites. It should be noted that other genes that participate in the 

biosynthesis of GPI anchors were not investigated, but in each case the phenotypically 

identified mutant clones contained a disruptive mutation localized to the Pig-a gene. These 

data support the link between specific mutation at the Pig-a gene and expression of the GPI 

anchor-deficient phenotype assessed by flow cytometry.

Conclusions

The data presented here represent our initial proof-of-concept studies into the utility of a 

Pig-a gene-based mutation assay in vitro. An immunofluorescent labeling protocol was 

created using L5178Y/Tk+/− cells and optimized to provide information not only on mutant 

cell frequency, but also cytotoxicity—an important aspect in mutagenicity assays. 

Additionally, the set-up for this assay was simplified via the use of an isotype control for 

setting voltage and compensation. Mutation sequencing work was accomplished that 

demonstrated loss-of-function mutations in the Pig-a gene of cells identified via the 

phenotype-based flow cytometric methodology. These data support the role of GPI anchor 

deficiency as a viable and robust reporter of Pig-a gene mutation. Future work will involve 

the investigation of a larger number of chemicals with a broader range of genotoxic and 

nongenotoxic mechanisms using the optimized labeling protocol. Examination of additional 

parameters associated with similar genotoxicity tests such as appropriate cytotoxicity limits, 

methods for data analysis including formal determination of statistical significance or point 

of departure. More extensive genome-based studies of the effects of mutagenic compounds 

with mutation spectra different from EMS and examination of the potential role of other Pig 
genes in GPI anchor-deficient L5178Y/Tk+/− cells are also planned. Overall, the continued 

development of in vitro Pig-a gene mutation methods will serve to strengthen the utility of 

all assays based on this gene and expand the repertoire of methodologies that are available to 

address mammalian cell mutagenicity.
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Figure 1. 
Bivariate plot of an Instrument Calibration Sample (ICS) comprised of a 1:1 mix of wildtype 

and natively mutant L5178Y/Tk+/− cells. Note the positioning of the vertical demarcation 

line of the quadrant that ensures approximately 99% of the mutant cells are captured within 

the upper left region.
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Figure 2. 
Mutant cell manifestation time in L5178Y/Tk+/− cells exposed to ethyl methanesulfonate 

(EMS). Cells were exposed for 24 hours and then washed free of treatment medium. No 

effects were observed 2 days after exposure and stable expression was seen between 6 and 

10 days post-exposure.
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Figure 3. 
Cytotoxicity curves for wild-type or mutant L5178Y/Tk+/− cells exposed to the 

nongenotoxic agent carbonyl cyanide m-chlorophenyl hydrazone (CCCP) or the 

genotoxicants vinblastine, etoposide or camptothecin. Solvent control for these experiments 

was DMSO. Similar shaped curves suggest comparable sensitivities to toxicant challenge 

between the two cell lines. Relative cell counts were determined via flow cytometry-based 

volumetric cell counting.
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Figure 4. 
Graphs summarize the frequency of CD90.2-negative cells and cytotoxicity results of three 

independent replicate experiments examining exposure of L5178Y/Tk+/− cells to various 

genotoxic agents. Cells were exposed for 24 hours at which time cytotoxicity assessment 

and removal of test article occurred, then an additional 7 days in culture provided time for 

expression of a stable mutant frequency.
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Figure 5. 
Graphs summarize the frequency of CD90.2-negative cells and cytotoxicity results of three 

independent replicate experiments examining exposure of L5178Y/Tk+/− cells to various 

nongenotoxic agents. Cells were exposed for 24 hours at which time cytotoxicity assessment 

and removal of test article occurred, then an additional 7 days in culture provided time for 

expression of a stable mutant frequency.
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Figure 6. 
Complete gating scheme for the optimized protocol showing the identification of DRAQ7-

positive events (dead cells) as an indicator of dead and dying cells (Plot B). Note the ability 

to distinguish the DRAQ7-positive cells (green) in the region used to capture “Healthy single 

cells” shown in Plot A.
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Figure 7. 
Bivariate plots showing the uncompensated profile (A) of the FITC vs PE channels and the 

profile after compensation that serves to remove the FITC component from the PE channel 

(B).
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Figure 8. 
The upper part of the diagram shows a representation of the Pig-a gene and its six exons, 

along with the positioning of the primers to generate three fragments that cover the coding 

region of the gene. The lower portion of the diagram shows the depth of coverage of the 

sequencing for the three fragments of a representative sample.
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