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Abstract

Background—With the rapid adoption of electronic health records (EHRs), it is desirable to 

harvest information and knowledge from EHRs to support automated systems at the point of care 

and to enable secondary use of EHRs for clinical and translational research. One critical 

component used to facilitate the secondary use of EHR data is the information extraction (IE) task, 

which automatically extracts and encodes clinical information from text.

Objectives—In this literature review, we present a review of recent published research on 

clinical information extraction (IE) applications.

Methods—A literature search was conducted for articles published from January 2009 to 

September 2016 based on Ovid MEDLINE In-Process & Other Non-Indexed Citations, Ovid 

MEDLINE, Ovid EMBASE, Scopus, Web of Science, and ACM Digital Library.

Results—A total of 1,917 publications were identified for title and abstract screening. Of these 

publications, 263 articles were selected and discussed in this review in terms of publication venues 

and data sources, clinical IE tools, methods, and applications (including disease areas, drug-related 

studies, and clinical workflow optimizations).
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Conclusions—Clinical IE has been used for a wide range of applications, however, there is a 

considerable gap between clinical studies using EHR data and studies using clinical IE. This study 

enabled us to gain a more concrete understanding of the gap and to provide potential solutions to 

bridge this gap.
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1 Introduction

With the rapid adoption of electronic health records (EHRs), it is desirable to harvest 

information and knowledge from EHRs to support automated systems at the point of care 

and to enable secondary use of EHRs for clinical and translational research. Following the 

Health Information Technology for Economic and Clinical Health Act (HITECH Act) 

legislation in 2009, many health care institutions adopted EHRs, and the number of studies 

using EHRs has increased dramatically [1]. For example, Ellsworth et al [2] conducted a 

review to evaluate methodological and reporting trends in the usability of EHRs; Goldstein 

et al [3] evaluated the state of EHR-based risk prediction modeling through a systematic 

review of clinical prediction studies using EHR data.

However, much of the EHR data is in free-text form [4]. Compared to structured data, free 

text is a more natural and expressive method to document clinical events and facilitate 

communication among the care team in the health care environment. One critical component 

to facilitate the use of EHR data for clinical decision support, quality improvement, or 

clinical and translation research is the information extraction (IE) task, which automatically 

extracts and encodes clinical information from text. In the general domain, IE is commonly 

recognized as a specialized area in empirical natural language processing (NLP) and refers 

to the automatic extraction of concepts, entities, and events, as well as their relations and 

associated attributes from free text [5–7]. Most IE systems are expert-based systems that 

consist of patterns defining lexical, syntactic, and semantic constraints. An IE application 

generally involves one or more of the following subtasks: concept or named entity 
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recognition that identifies concept mentions or entity names from text (e.g., person names or 

locations) [8], coreference resolution that associates mentions or names referring to the same 

entity [9], and relation extraction that identifies relations between concepts, entities, and 

attributes (e.g., person-affiliation and organization-location) [10].

NLP focuses on “developing computational models for understanding natural language” 

[11]. An NLP system can include syntactic processing modules (e.g., tokenization, sentence 

detection, Part-of-Speech tagging) and/or semantic processing modules (e.g., named entity 

recognition, concept identification, relation extraction, anaphoric resolution). An IE 

application is an NLP system with semantic processing modules for extracting predefined 

types of information from text. In the clinical domain, researchers have used NLP systems to 

identify clinical syndromes and common biomedical concepts from radiology reports [12], 

discharge summaries [13], problem lists [14], nursing documentation [15], and medical 

education documents [16]. Different NLP systems have been developed and utilized to 

extract events and clinical concepts from text, including MedLEE [17], MetaMap [18], 

KnowledgeMap [19], cTAKES [20], HiTEX [21], and MedTagger [22]. Success stories in 

applying these tools have been reported widely [23–34].

A review done by Spyns [35] looked at NLP research in the clinical domain in 1996 and 

Meystre et al [11] conducted a review of studies published from 1995 to 2008. Other reviews 

focus on NLP in a specific clinical area. For example, Yim et al [36] provided the potential 

applications of NLP in cancer-case identification, staging, and outcomes quantification; 

Pons et al [37] took a close look at NLP methods and tools that support practical 

applications in radiology. This review focuses on research published after 2009 regarding 

clinical IE applications.

Another motivation for our review is to gain a concrete understanding of the under-

utilization of NLP in EHR-based clinical research. Figure 1 shows the number of 

publications retrieved from PubMed using the keywords “electronic health records” in 

comparison with “natural language processing” from the year 2002 through 2015. We can 

observe that 1) there were fewer NLP-related publications than EHR-related publications 

and 2) EHR-related publications increased exponentially from 2009 to 2015, while NLP-

related publications increased only moderately. One possible reason is federal incentives for 

EHR adoption (e.g., HITECH Act), which accelerated the progression of publications about 

EHR. Having said that, we consider that clinical IE has not been widely utilized in the 

clinical research community despite the growing availability of open-source IE tools. The 

under-utilization of IE in clinical studies is in part due to the fact that traditional statistical 

programmers or study coordinators may not have the NLP competency to extract this 

evidence from text. Through this literature review, we hope to gain some insights and 

develop strategies to improve the utilization of NLP in the clinical domain.

2 Methods

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) [38] guidelines to conduct our review.
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2.1 Data Sources and Search Strategies

We conducted a comprehensive search of several databases for articles from January 1, 

2009, to September 6, 2016. The databases included Ovid MEDLINE In-Process & Other 

Non-Indexed Citations, Ovid MEDLINE, Ovid EMBASE, Scopus, Web of Science, and 

ACM Digital Library. We included articles written in English and excluded those in the form 

of editorial, review, erratum, letter, note, or comment. The search strategy was designed and 

conducted by an experienced librarian. The selected keywords and the associations between 

these keywords were identical for searches in each database: (clinical OR clinic OR 

electronic health record OR electronic health records) AND (information extraction OR 

named entity extraction OR named entity recognition OR coreference resolution OR relation 

extraction OR text mining OR natural language processing) AND (NOT information 

retrieval). The search strings were carefully designed to be exhaustive and effective for each 

database and are provided in the Appendix.

2.2 Article Selection

The search strategy retrieved 1,917 articles after removing duplicates. Nine reviewers (Y.W., 

L.W., M.R.M., S.M., F.S., N.A., S.L., Y.Z., S.M.) independently screened the titles and 

abstracts of these articles (each reviewer was given around 210 articles). Articles were 

excluded based on two criteria: 1) if they were overall unrelated to IE or 2) if they did not 

use clinical narratives written in English. After this screening process, 415 studies were 

considered for subsequent categorization. According to the main focus of those studies, one 

reviewer (Y.W.) categorized each article into one of three categories: 1) application, 2) 

methodology, or 3) software tool. Eventually, 263 articles were identified as IE application 

studies, 125 articles focused on proposing new IE methodologies, and 27 articles were about 

releasing new software tools. In this review, we focus on the 263 articles about clinical IE 

applications. Thus, those 263 studies underwent full-text review, performed by the same nine 

reviewers. A flow chart of this article selection process is shown in Figure 2.

3 Results

In the first analysis, we analyzed the publication venues of the 263 included studies and their 

data sources. Since clinical IE is an interdisciplinary field of medicine and computer science, 

publication venues indicate the research communities that have NLP competency to leverage 

IE techniques. Since developing clinical NLP talent is difficult in large part due to the 

limited availability of clinical data needed, we provided analysis of data sources used in 

clinical IE research and the accessibility of these data sources. We hope to provide insight 

into addressing the data challenge in this domain. Next, we summarized the clinical IE tools 

and prevalent methods. We provided a list of clinical IE tools used in the 263 articles, an 

overview of their characteristics (what tools were used for what specific task), and their 

licenses (are they publically available or not). In addition, the methodologies prevalently 

adopted in clinical IE were demonstrated. Finally, we described the practical IE applications 

in the clinical domain, including disease areas that have been studied, drug-related studies, 

and utility of IE for optimizing clinical workflow. In the statistics presented below, each 

individual topic is reported. As a result, a single paper, for example, can be counted multiple 
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times if it contains a discussion of multiple IE tools. The details of the included publications 

and review summaries are provided in the supplementary material.

3.1 Publication Venues and Data Sources

3.1.1 Publication Venues—The 263 articles were published in 117 unique venues, 

comprising 94 journals and 23 conferences. We manually categorized the publication venues 

into three categories: 1) clinical medicine, 2) informatics, and 3) computer science. The 

categorization process is summarized in Figure 3, and Figure 4 shows the number of 

included studies in each category.

We observed that the number of journal articles in the categories of clinical medicine and 

informatics are much larger than the number of conference articles in these categories; those 

findings were shown to be inversed in the category of computer science. Though the number 

of publications from informatics journals is smaller compared to clinical medicine journals, 

it shows that there are more informatics conference publications than other conference 

publications. The reason might be that informatics conferences recruit more regular papers 

(e.g., The American Medical Informatics Association (AMIA) Annual Symposium) while 

abstracts are more common in clinical medicine conferences. Overall, clinical medicine 

journals are the most popular venues for IE application publications.

Papers in the clinical medicine category are published in a variety of clinical-specific 

journals, such as Arthritis & Rheumatism. Publications in informatics are mostly published 

in two venues: 1) Journal of the American Medical Informatics Association (n=26, n denotes 

the number of publications hereafter) and 2) AMIA Annual Symposium Proceedings/AMIA 
Symposium (n=24). In Figure 4, we observe a generally increasing trend of IE publications, 

except for the years 2014 and 2016 (due to the partial-year retrieval). This might be due to 

the World Congress on Medical and Health Informatics occurring bi-annually (MedInfo, odd 

year only, n=13). We note that the MedInfo proceedings are published as special issues in 

Studies in Health Technology and Informatics, which is categorized as clinical medicine 

journal. Figure 4 also shows an increasing attention and demand in the application of IE 

techniques in both the clinical research and informatics communities. Interestingly, although 

IE is a traditional research topic in computer science, only one computer science journal and 

a few computer science conferences (e.g., International Conference of the Italian 

Association for Artificial Intelligence, International Conference on System Sciences) are 

found. Overall, the top five publication venues having the largest number of publications are: 

1) Journal of the American Medical Informatics Association (n=26), 2) AMIA Annual 
Symposium Proceedings/AMIA Symposium (n=24), 3) Pharmacoepidemiology and Drug 
Safety (n=16), 4) Studies in Health Technology and Informatics (n=13), and 5) Journal of 
Biomedical Informatics (n=10). The results suggest that only a small portion of papers in 

JAMIA and AMIA focus on the use of NLP tools for clinical applications. This may be 

partially due to the tendency of the academic informatics community to prefer innovations in 

methodology rather than research reporting the use of informatics tools. It may also be due 

to the dependency and the lack of clear distinction of NLP with relevant fields, such as data 

mining and knowledge management on text data.
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3.1.2 Data Sources—The majority of the 263 studies were conducted in the United States 

(n=236), while others were conducted in Canada (n=9), United Kingdom (n=5), Australia 

(n=3), and other countries. Among the 236 US studies, 163 used only clinical documents 

and 56 used both clinical documents and structured EHR data, such as International 
Statistical Classification of Diseases, Ninth Revision (ICD-9) codes (n=25). We found that 

other resources were also used in conjunction with clinical data, such as biomedical 

literature (n=3) and health-related websites (n=2).

Table 1 shows the number of papers with diverse types of clinical documents being used. 

Here, we classify clinical documents into two main categories, clinical notes and diagnostic 

reports. Clinical notes refer to documentation of a patient’s visit with a health care provider, 

which may include the patient’s medical/social history and physical examination, clinical 

observations, summaries of diagnostic and therapeutic procedures, plan of treatment, and 

instructions to the patients which can be telephonic or electronic interactions with the 

patient. Diagnostic reports refer to the reports provided by diagnostic services, such as 

laboratory reports, radiology reports, and pathology reports. We counted the number of 

publications according to their mentions of note types in the papers and listed the most 

frequently used note types with brief descriptions for clinical notes and diagnostic reports in 

Table 1. Most of the studies were conducted by the following institutions: US Department of 

Veterans Affairs (VA) (n=34), Mayo Clinic (n=12), Vanderbilt University (n=8), Humedica 

(n=7), and Kaiser Permanente (n=7), either within individual institutions or through 

collaboration across multiple institutions.

We summarized the time range of clinical data utilized in those studies and found that the 

time period ranged from 1987 through 2015. We counted the number of studies using the 

data in each specific year and these results are shown in Figure 5. The average time span of 

the clinical data used in the selected papers was 6.77 years. A rapid growth of data can be 

observed since 1995, and the amount of data utilized in those studies reached a peak in 

2009. A large quantity of EHR data became available after 2009. However, Figure 5 implies 

that these data have not been adequately utilized by clinical IE studies.

Note that clinical documents in individual institutions are not accessible to external 

researchers without collaborative projects, and only a few EHR data sets are accessible to 

external researchers. Here, we introduce four important clinical text corpora. The first is the 

i2b2 NLP Challenges data (n=14), where fully de-identified notes from the Research Patient 

Data Repository at Partners HealthCare were created for a series of NLP challenges, 1,500 

notes of which have been released. In order to access these notes, one needs to register at the 

i2b2 website (https://www.i2b2.org/NLP/DataSets/) and submit a proposal which is then 

reviewed by the i2b2 organizers. The second is MIMIC II (n=2) [39], a data set consisting of 

EHR data for over 40,000 de-identified intensive care unit stays at the Beth Israel Deaconess 

Medical Center, including clinical notes, discharge summaries, radiology reports, laboratory 

results, and structured clinical data. Physiologic time series are accessible publicly (https://

physionet.org/physiobank/database/mimic2db/), and clinical data are accessible with a data 

use agreement (see http://physionet.org/mimic2/mimic2_access.shtml). The third corpus is 

MTsamples, which is a large collection of publicly available transcribed medical reports 

(http://www.mtsamples.com/). It contains sample transcription reports, provided by various 
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transcriptionists for many specialties and different work types, and thus the accuracy and 

quality of the notes is not guaranteed [40]. Finally, the THYME corpus [41] contains de-

identified clinical, pathology, and radiology records for a large number of patients, focusing 

on brain and colon cancer from a large healthcare practice (Mayo Clinic). It also provides 

NLP annotations, created by annotators and adjudicators at the University of Colorado at 

Boulder and Boston Harvard Children’s Medical Center, including temporal entity and 

relation, coreference, and UMLS named entity. It is available to researchers involved in NLP 

research under a data use agreement with Mayo Clinic (see https://github.com/stylerw/

thymedata and https://clear.colorado.edu/TemporalWiki/index.php/Main_Page).

3.2 Implementations

In the next section, we briefly report the frameworks, tools, and toolkits being utilized in the 

selected publication. The second part summarizes two main categories of methods being 

used for clinical IE: rule-based and machine learning. These two areas were analyzed 

separately so readers can explore them based on their interests. Finally, we introduce the 

efforts of clinical IE-related NLP shared tasks in the community.

3.2.1 Clinical Information Extraction Tools—The clinical IE tools used in the 263 

studies included are summarized in Table 2. The most frequently used tools for IE in the 

clinical domain are cTAKES [20] (n=26), MetaMap [18] (n=12), and MedLEE [17] (n=10). 

cTAKES, developed by Mayo Clinic and later transitioned to an Apache project, is the most 

commonly used tool. It is built upon multiple Apache open-source projects, the Apache 

Unstructured Information Management Architecture (UIMA) framework [42] and the 

Apache OpenNLP toolkit [43]. It contains several analysis engines for various linguistics 

and clinical tasks, such as sentence detection, tokenization, part-of-speech tagging, concept 

detection, and normalization. cTAKES has been adopted for identification of patient 

phenotype cohorts [28, 44–54], smoking status extraction [55–58], genome-wide association 

studies [30], extraction of adverse drug events [59], detection of medication discrepancies 

[60], temporal relation discovery [61], risk stratification [25], and risk factor identification 

[62] from EHRs. MetaMap was developed by the National Library of Medicine (NLM) with 

the goal of mapping biomedical text to the Unified Medical Language System (UMLS) 

Metathesaurus, or vice versa. It was originally developed to improve biomedical text 

retrieval of MEDLINE/PubMed citations. Later, MetaMap’s ability was improved to process 

clinical text [63], which is reflected by the large number of studies using MetaMap for 

clinical IE tasks. In the included studies, MetaMap has been used for phenotype extraction 

[31, 64–69], assessment of emergency department use [27, 70], drug-disease treatment 

relationships [71], fragment recognition in clinical documents [72], and extraction of 

patient-related attributes [73]. MedLEE is one of the earliest clinical NLP systems developed 

and is mostly used for pharmacovigilance [26, 74, 75] and pharmacoepidemiology [76, 77].

Other tools focus more on one specific task. For example, GATE [78, 79], NLTK [80], and 

OpenNLP [81] are typically used for various NLP preprocessing tasks, such as sentence 

boundary detection, tokenization, and part-of-speech (POS) tagging; MedEx [7] focuses on 

extracting drug names and doses; MALLET [82] and WEKA [83] are used for IE tasks that 

leverage machine learning algorithms, such as classification, clustering, and topic modeling; 
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and Protégé [84] is a tool that has been frequently used for ontology building. Note that the 

tools summarized in this review are from the 263 application articles and that many IE tools, 

such as TextHunter [85], Patrick et al’s cascaded IE tool [86], KneeTex [87], Textractor [88], 

and NOBLE [89], in the 27 tool articles and the 125 methodology articles (many of them are 

participant systems in shared tasks) are not included in this review and subject to a future 

study.

3.2.2 Methods for Clinical Information Extraction—Approaches to clinical IE can be 

roughly divided into two main categories: rule-based and machine learning. Rule-based IE 

systems primarily consist of rules and an interpreter to apply the rules. A rule is usually a 

pattern of properties that need to be fulfilled by a position in the document. A common form 

of the rule is a regular expression that uses a sequence of characters to define a search 

pattern. Among the included 263 articles, 171 (65%) used rule-based IE systems. For 

example, Savova et al [51] used regular expressions to identify peripheral arterial disease 

(PAD). A positive PAD was extracted if the pre-defined patterns were matched (e.g., “severe 

atherosclerosis” where “severe” was from a list of modifiers associated with positive PAD 

evidence and “atherosclerosis” was from a dictionary tailored to the specific task of PAD 

discovery). Another form of the rule is logic. Sohn and Savova [57] developed a set of logic 

rules to improve smoking status classification. In their approach, they first extracted 

smoking status for each sentence and then utilized precedence logic rules to determine a 

document-level smoking status. Current smoker has the highest precedence, followed by 

past smoker, smoker, non-smoker, and unknown (e.g., if current smoker was extracted from 

any sentence in a document, then the document was labeled as current smoker). The final 

patient-level smoking status was based on similar logic rules (e.g., if there is a current 

smoker document but no past smoker document belonging to a patient, then the patient was 

assigned as a current smoker). A clinical IE system is often composed of many rules that are 

written by a human-knowledge engineer. The rule could be developed through two means, 

manual knowledge engineering (78 studies) and leveraging knowledge bases (53 studies), or 

a hybrid system (40 studies). Manual knowledge engineering can be time consuming and 

requires collaboration with physicians. It is usually very accurate, since it is based on 

physicians’ knowledge and experience. Sohn, Savova, and colleagues [51] provide examples 

of successful applications. A knowledge base is a computerized database system that stores 

complex structured information, such as UMLS (medical concepts), phenome-wide 

association studies (PheWAS) [90] (disease-gene relations), and DrugBank [91] (drug-gene 

relations). For example, Martinez et al [69] mapped phrases into UMLS medical concepts by 

MetaMap; Hassanpour and Langlotz [53] used RadLex, a controlled lexicon for radiology 

terminology, to identify semantic classes for terms in radiology reports; and Elkin et al [92] 

coded signs, symptoms, diseases, and other findings of influenza from encounter notes into 

Systematized Nomenclature of Medicine – Clinical Terms (SNOMED CT) medical 

terminology.

Machine learning–based IE approaches have gained much more interest due to their 

efficiency and effectiveness [93–95], particularly their success in many shared tasks [96]. 

Among the 263 included studies, 61 articles have illustrations on using machine learning 

algorithms. Some articles included different machine learning approaches for evaluation 
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purposes. We took all of those approaches into consideration and counted their frequency of 

appearance and listed the six most frequently used methods in Table 3. Support Vector 

Machine (SVM) is the most frequently employed method by researchers. Barrett et al [97] 

integrated feature-based classification (SVM) and template-based extraction for IE from 

clinical text. Roberts et al [94] proposed an approach to use SVM with various features to 

extract anatomic sites of appendicitis-related findings. Sarker et al [98] proposed an 

automatic text classification approach for detecting adverse drug reaction using SVM. 

Himes et al [99] conducted a study to classify chronic obstructive pulmonary disease with 

SVM among asthma patients recorded in the electronic medical record. Logistic regression 

(LR) is mostly used for entity and relation detections. For example, Chen et al [100] applied 

LR to detect geriatric competency exposures from students’ clinical notes; and Rochefort et 

al [101] used multivariate LR to detect events with adverse relations from EHRs. 

Conditional random field (CRF) is another widely used method in many papers for the 

purpose of entity detection. For example, Deleger et al [23] used CRF to extract Pediatric 

Appendicitis Score (PAS) elements from clinical notes; and Li et al [60] used it to detect 

medication names and attributes from clinical notes for automated medication discrepancy 

detection. Based on our observation, many machine learning algorithms leveraged outputs 

from IE as features. For example, Yadav et al [102] used IE tools to extract medical word 

features and then utilized those features as input for a decision tree to classify emergency 

department computed tomography imaging reports. Some researchers compared different 

machine learning approaches in one paper for the purpose of performance comparison. For 

example, to better identify patients with depression in free-text clinical documents, Zhou et 

al [86] compared SVM, Generalized nearest neighbor (NNge), Repeated Incremental 

Pruning to Produce Error Propositional Rule (RIPPER), and DT for performance evaluation, 

and found that DT and NNge yielded the best F-measure with high confidence, while 

RIPPER outperformed other approaches with intermediate confidence.

3.2.3 Clinical IE-related NLP Shared Tasks—Multiple clinical NLP shared tasks have 

leveraged community efforts for methodology advancement. Though we have categorized 

most studies resulting from those shared tasks as methodology publications, we would like 

to briefly describe those shared tasks due to their significant impact on the clinical NLP 

research. Table 4 summarizes the most recognizable clinical IE-related NLP shared tasks in 

the community.

3.3 Applications of Clinical Information Extraction

In this section, we summarize the application of clinical IE in terms of disease study areas, 

drug-related study areas, and clinical workflow optimization.

3.3.1 Disease Study Areas—IE for phenotyping accounted for a large portion of the 

studies. Among 263 papers, 135 focused on IE of 88 unique diseases or conditions from 

clinical notes, pathology reports, or radiology reports. For further analysis, we used ICD-9 to 

categorize diseases, as shown in Table 5. Our findings showed that the neoplasms category 

was the most studied disease area (e.g., hepatocellular cancer [120] and colorectal cancer 

[121]), followed by diseases of the circulatory system (e.g., heart failure [122] and 

peripheral arterial disease [51]), diseases of the digestive system (e.g., pancreatic cyst [123] 
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and celiac disease [124]), diseases of the nervous system (e.g., headache [125], endocrine, 

nutritional, and metabolic diseases), and immunity disorders (e.g., diabetes mellitus [126]).

The included IE studies involved 14 disease categories among a total of 19 ICD-9 categories. 

Five disease areas were not covered in these studies (i.e., diseases of the sense organs; 

complications of pregnancy, childbirth, and the puerperium; congenital anomalies; certain 

conditions originating in the perinatal period; and external causes of injury and supplemental 

classification). Recent studies showed a research trend to look further into refined diseases 

with specific features (e.g., drug-resistant pediatric epilepsy [127], severe early-onset 

childhood obesity [49], non-severe hypoglycemic events [128], and neuropsychiatric 

disorder [129]). This research trend reflects the fact that IE techniques could play an 

important role when exact ICD-9 codes are not available for data extraction. IE has been 

used to identify patients having rare diseases with no specific ICD-9 diagnosis codes, such 

as acquired hemophilia [130]. The most frequently studied individual diseases (focused by 

more than 5 papers) were cancer, venous thromboembolism, PAD, and diabetes mellitus.

Various aspects of malignancy have been extensively focused, including identifying specific 

cancer type [131] or molecular testing data in a specific cancer type [132], cancer recurrence 

[44], diagnosis, primary site, laterality, histological type/grade, metastasis site/status [133], 

cancer metastases [134], and cancer stage [135]. Mehrabi et al [131] developed a rule-based 

natural language processing (NLP) system to identify patients with a family history of 

pancreatic cancer. This study showed consistent precision across the institutions ranging 

from 0.889 in the Indiana University (IU) dataset to 0.878 in the Mayo Clinic dataset. 

Customizing the algorithm to Mayo Clinic data, the precision increased to 0.881. Carrell et 

al [44] developed an NLP system using cTAKES to process clinical notes for women with 

early-stage breast cancer to identify whether recurrences were diagnosed and if so, the 

timing of these diagnoses. The NLP system correctly identified 0.92 of recurrences with 

0.96 specificity. Farrugia et al. proposed an NLP solution for which preliminary results of 

correctly identifying primary tumor stream, metastases, and recurrence are up to 0.973 

[134]. Nguyen et al [133] used Medtex to automatically extract cancer data and achieved an 

overall recall of 0.78, precision of 0.83, and F-measure of 0.80 over seven categories, 

namely, basis of diagnosis, primary site, laterality, histological, histological grade, 

metastasis site, and metastatic status. Warner et al [135] developed an NLP algorithm to 

extract cancer staging information from narrative clinical notes. The study looked at the four 

stages of lung cancer patients and showed that the algorithm was able to calculate the exact 

stage of 0.72 of patients.

To extract venous thromboembolism, Tian et al [136] used unigrams, bigrams, and list of 

negation modifiers to develop rules for identifying if a sentence from clinical reports refers 

to positive case of deep vein thrombosis (DVT) or Pulmonary embolism, and NLP achieved 

0.94 sensitivity, 0.96 specificity and 0.73 PPV for DVT. McPeek Hinz et al [137] tried to 

capture both acute and historical cases of thromboembolic disease using a general purpose 

NLP algorithm, and obtained a positive predictive value of 0.847 and sensitivity of 0.953 for 

an F-measure of 0.897.
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For PAD, Savova et al [51] used cTAKES to identify four groups of PAD patients, positive, 

negative, probable and unknown based on radiology reports, and the positive predictive 

value was in the high 90’s. Duke et al [138] implemented an NLP system to improve 

identification of PAD patients from EHR. The results showed that using unstructured data is 

able to identify more PAD patients compared to structured data. The NLP system was able 

to identify 98% of PAD patients in their dataset but when only structured data was used only 

22% of PAD patients were captured. The NLP system developed by Afzal et al [139] 

ascertained PAD status from clinical notes with sensitivity (0.96), positive predictive value 

(0.92), negative predictive value (0.99), and specificity (0.98).

Currently extraction of diabetes from clinical text can achieve a performance score of over 

0.95. For example, Wei et al [140] combined NLP, a machine learning algorithm (e.g., 

SVM), and ontology (SNOMED-CT) for the automatic identification of patients with Type 2 

Diabetes Mellitus, achieving an F-measure of above 0.950.

3.3.2 Drug-related Studies—Out of 263 papers in our collection, 17 used IE for drug-

related studies. Table 5 shows our categorization of drug-related studies and the number of 

papers in each category. In this section, we review papers in each category and highlight 

their novelties.

3.3.2.1 Drug-named Entity Recognition: One of the main components in drug-related 

studies is identifying drug names in clinical notes. Most of these studies used a rule-based 

keyword search approach. MedEx, developed by Xu et al [141], has been applied in several 

studies, such as the application in [142]. MedEx is a rule-based system that extracts 

medication name, strength, route, and frequency. The system was evaluated on 50 discharge 

summaries, and an F-measure of 0.93 was reported. Sohn et al [143] studied semantic and 

context patterns for describing medication information in clinical notes. They analyzed two 

different corpora: 159 clinical notes from Mayo Clinic and 253 discharge summaries from 

the i2b2 shared task. They illustrated that 12 semantic patterns cover 95% of medication 

mentions. Zheng et al [144] developed an NLP system to extract mentions of aspirin use and 

dosage information from clinical notes. The system had several components, including 

sentence splitting, tokenization, part-of-speech tagging, etc. To identify the mentions, the 

system used a keyword search plus a word-sense disambiguation component. The authors 

trained the systems on 2,949 notes and evaluated it on 5,339 notes. The system achieved 

0.955 sensitivity and 0.989 specificity.

3.3.2.2 Dosage Information Extraction: A few drug-related studies focused on extracting 

dosage information from clinical notes. Xu et al [145] extended MedEx to extract dosage 

information from clinical notes and then calculated daily doses of medications. They tested 

the system for tacrolimus medication on four data sets and reported precision in the range of 

0.90 to 1.0 and a recall rate of 0.81 to 1.0. In another study, Xu et al [24] evaluated MedEx 

in an automating data-extraction process for pharmacogenetic studies. The study used a 

cohort of patients with a stable warfarin dose. They evaluated the system on 500 physician-

annotated sentences and achieved 0.997 recall and 0.908 precision. The extracted 

information was used to study the association between the dose of warfarin and genetic 

variants.
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3.3.2.3 Adverse Drug Reaction Detection: We identified three research studies on 

extracting adverse drug reactions (ADRs) from clinical notes. Wang et al [75] conducted the 

first study to use unstructured data in EHR for identifying an ADR. In this study, the authors 

used MedLEE to identify medication entities and events. They considered co-occurrences of 

entities and events as indications of ADR. The system evaluated for seven drug classes and 

their known ADRs; the authors reported 0.75 recall and 0.31 precision. Sohn et al [59] 

developed two systems, a rule-based system to discover individual adverse effects and 

causative drug relationships, and a hybrid system of machine learning (C4.5-based decision 

tree) and a rule-based system to tag sentences containing adverse effects. They evaluated the 

system in the domain of psychiatry and psychology and reported 0.80 F-measure for the 

rule-based system and 0.75 for the hybrid system. Haerian et al [26] studied ADRs from 

another perspective, confounders. They designed and implemented an NLP system to 

identify cases in which the event is due to a patient’s disease rather than a drug. They 

evaluated the system for two ADRs, rhabdomyolysis and agranulocytosis, and reported 

0.938 sensitivity and 0.918 specificity.

Conclusions from these studies show that ADR identification is a complex task and needs 

more sophisticated systems. Nevertheless, the mentioned systems could assist experts in the 

process of manual review of ADR identification.

3.3.2.4 Drug Exposure Extraction: Liu et al [146] and Feng et al [147] developed NLP 

systems to determine patient drug exposure histories. The former system, which is a hybrid 

system of NLP and machine learning, first identifies drug names and then drug events. 

While detecting drug events, the system labels drug mentions with an “on” or “stop” label. 

Finally, the system models drug exposure for a patient based on temporal information for 

each drug. The authors evaluated the system for warfarin exposure and reported 0.87 

precision and 0.79 recall. The latter system used NLP to identify drug exposure histories for 

patients exposed to multiple statin dosages.

3.3.3 Clinical Workflow Optimization—Many studies leveraged clinical IE to improve 

and optimize clinical workflow. Table 5 lists four categories of clinical workflow and the 

number of papers in each category. In this section, we review papers in each category and 

highlight their novelties.

3.3.3.1 Adverse Event Detection: Adverse events (AEs) are injuries caused by medical 

management rather than the underlying condition of the patient. Automated IE tools have 

been developed to detect AEs. Rochefort et al [101] utilized rules to detect AEs of 1) 

hospital-acquired pneumonias, 2) central venous catheter–associated bloodstream infections, 

and 3) in-hospital falls. Receiver operating characteristic (ROC) was used to find the optimal 

threshold for detection of AEs based on values of blood cell counts, abnormal ventilator 

settings, or elevated body temperature. In another of their studies [148], Rochefort and 

colleagues used similar techniques to detect three highly prevalent AEs in elderly patients: 

1) DVT, 2) pulmonary embolism (PE), and 3) pneumonia. Zhang et al [149] extracted 

information on adverse reactions to statins from a combination of structured EHR entries. 

Hazlehurst et al [150] used an NLP software, MediClass, to detect vaccine AEs based on 

concepts, terms, and rules. Baer et al [151] developed Vaccine Adverse Event Text Mining 
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(VaeTM) to extract features about AEs, including diagnosis and cause of death, from clinical 

notes. They found that the clinical conclusion from VaeTM agreed with the full text in 93% 

of cases, even though 74% of words were reduced.

3.3.3.2 Quality Control: Inappropriate emergency department (ED) usage increases the 

workload of emergency care services due to the fact that patients with non-urgent problems 

make up a substantial proportion of ED visits. Using IE to automatically identify 

inappropriate ED caseloads could accurately predict inappropriate use. In two studies [27, 

70], researchers used GATE- and MetaMap-extracted biopsychosocial concepts from the 

primary care records of patients and studied their relationship to inappropriate use of ED 

visits. The study [27] extracted over 38 thousand distinct UMLS codes from 13,836 patients’ 

primary records; and the codes of mental health and pain were associated with inappropriate 

ED room use with statistical significance (p < 0.001). It showed the feasibility of using IE to 

reduce inappropriate ED usage. Tamang et al [152] utilized rules to detect unplanned care in 

EHRs, such as emergency care, unplanned inpatient care, and a trip to an outpatient urgent 

care center, in order to reduce these unplanned care episodes.

Researchers from UCLA conducted quality assessment of radiologic interpretations using, 

as a reference, other clinical information, such as pathology reports [153]. They developed a 

rule-based system to automatically extract patient medical data and characterize 

concordance between clinical sources, and showed the application of IE tools to facilitate 

health care quality improvement.

The increased use of imaging has resulted in repeated imaging examinations [154]. Ip et al 

[155] utilized GATE [78] to extract imaging recommendations from radiology reports and 

quantify repeat imaging rates in patients. Since ADR is an important quality metric for 

colonoscopy performance, a few studies showed the application of IE tools in automatically 

extracting components to calculate ADR. Mehrotra and Harkema [156] developed an IE tool 

to measure published colonoscopy quality indicators from major gastroenterology societies, 

including documentation of cecal landmarks and bowel preparation quality. Raju et al [157, 

158] developed an NLP program to identify adenomas and sessile serrated adenomas from 

pathology reports for reporting ADR. Gawron et al [159] developed a flexible, portable IE 

tool—QUINCE—to accurately extract pathology results associated with colonoscopies, 

which is useful for reporting ADRs across institutions and health care systems.

3.3.3.3 Patient Management: Popejoy et al [15] described a care coordination ontology that 

was built to identify and extract care coordination activities from nursing notes and show 

how these activities can be quantified. Activities include communication and/or management 

of elderly patient needs. The study by Gundlapalli et al [160] aimed to detect homeless 

status using free-text Veterans Affairs (VA) EHRs. In this study, a total of 356 concepts 

about risk factors among the homeless population were categorized into eight categories, 

including direct evidence, “doubling up,” mentions of mental health diagnoses, etc.

Arranging and documenting follow-up appointments prior to patient dismissal is important 

in patient care. Information contained in the dismissal record is beneficial for performance 

measurement to support quality improvement activities and quality-related research. Ruud et 
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al [161] used the SAS text mining tool (SAS Text Miner) [162] to extract date, time, 

physician, and location information of follow-up appointment arrangements from 6,481 free-

text dismissal records at Mayo Clinic. The SAS Text Miner tool automatically extracts 

words and phrases and labels them as “terms.” This is used to facilitate the IE process of 

dismissal records. The total annotation time can be reduced from 43 hours to 14 hours. Were 

et al [163] evaluated the Regenstrief EXtracion (REX) tool to extract follow-up provider 

information from free-text discharge summaries at two hospitals. Comparing three physician 

reviewers showed that the tool was beneficial at extracting follow-up provider information.

3.3.3.4 Measurement Values Extraction: Rubin et al [164] used GATE framework to 

identify device mentions in portable chest radiography reports and to extract the information, 

indicating whether the device was removed or remained present. The aim was to study 

complications, such as infections that could be related to the presence and length of time that 

devices were present. Hao et al [165] developed a tool called Valx to extract and normalize 

numeric laboratory test expressions from clinical texts and evaluated them using clinical trial 

eligibility criteria text. Garvin et al [166, 167] used regular expressions in UIMA to extract 

left ventricular ejection fraction value, which is a key clinical component of heart failure 

quality measure, from echocardiogram reports, and achieved accurate results. Meystre et al 

[168] developed a system called CHIEF, which was also based on the UMIA framework, to 

extract congestive heart failure (CHF) treatment performance measures, such as left 

ventricular function mentions and values, CHF medications, and documented reasons for a 

patient not receiving these medications, from clinical notes in a Veterans Health 

Administration project, and achieved high recall (>0.990) and good precision (0.960–0.978).

4 Discussion

Observing that clinical IE has been underutilized for clinical and translational research, we 

have systematically reviewed the literature published between 2009 and 2016 in this study. 

Our review indicates that clinical IE has been used for a wide range of applications, but there 

is a considerable gap between clinical studies using EHR data and studies using clinical IE. 

This study enabled us to gain a more concrete understanding of underlying reasons for this 

gap.

First, NLP experts trained in the general domain have limited exposure to EHR data as well 

as limited experience in collaborating with clinicians. Few clinical data sets are available in 

the public domain due to the Health Insurance Portability and Accountability Act (HIPAA) 

privacy rule and institutional concerns [169]. Our review showed that the majority of clinical 

IE publications are from a handful of health care institutions, usually with a strong 

informatics team (including NLP experts). The development of clinical IE solutions often 

requires NLP experts to work closely with clinicians who can provide the necessary domain 

knowledge. However, even with the availability of some EHR data sets to the general 

community accessible with a data-use agreement (e.g., i2b2 and MIMIC II), they are still 

underutilized.

Second, as an applied domain, clinical NLP has been dominated by rule-based approaches, 

which is considerably different from the general NLP community. We demonstrated that 
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more than 60% of the studies in this review used only rule-based IE systems. However, in 

the academic NLP research domain (as opposed to the applied or commercial NLP domain), 

rule-based IE is widely considered obsolete, and statistical machine learning models 

dominate the research. For example, Chiticariu et al [170] examined 177 research papers in 

four best NLP conference proceedings (NLP, EMNLP, ACL, and NAACL) from 2003 

through 2012 and found that only 6 papers relied solely on rules. The skew of clinical IE 

toward rule-based approaches is very similar to the situation of commercial IE products in 

the general NLP application domain (as opposed to the specialized clinical NLP domain). 

Chiticariu and colleagues [170] also conducted an industry survey on 54 different IE 

products in the general domain and found that only one-third of the vendors relied entirely 

on machine learning. The systems developed by large vendors, such as IBM, SAP, and 

Microsoft, are completely rule-based. Like these commercial products in the general 

domain, clinical IE systems greatly value rule-based approaches due to their interpretability 

to clinicians. In addition, rule-based IE can incorporate domain knowledge from knowledge 

bases or experts, which is essential for clinical applications. We found that seven machine 

learning algorithms were applied on four NLP subtasks in 15 studies, and 16 machine 

learning algorithms were adopted on classification and regression tasks in 64 studies. Most 

machine learning methods were used for data prediction (e.g., chronic obstructive 

pulmonary disease prediction [99]), estimation (e.g., lesion malignancy estimation [171]), 

and association mining (e.g., association between deep vein thrombosis and pulmonary 

embolism [172]), while only a small group of them were applied directly to NLP tasks (e.g., 

tumor information extraction [67] and smoking status extraction [55]). Deep learning [173], 

the prevalent representation-learning method, has not been utilized in the 263 included 

studies. Nevertheless, there are over 2,800 deep-learning publications in the Scopus database 

in the year 2015 alone. This is again partially due to the limited availability of clinical data 

sets to researchers. Other reasons include the challenge of interpretability of machine 

learning methods [174] and the difficulty of correcting specific errors reported by end users 

(compared to rule-based approaches, which can trivially modify rules correct specific 

errors). Efforts, such as organizing shared tasks to release clinical text data, are needed to 

encourage more NLP researchers to contribute to clinical NLP research.

Additionally, the portability and generalizability of clinical IE systems are still limited, 

partially due to the lack of access to EHRs across institutions to train the systems, and 

partially due to the lack of standardization. Rule-based IE systems require handcrafted IE 

rules, while machine learning–based IE systems require a set of manually annotated 

examples. The resultant IE systems may lack portability, primarily due to the sublanguage 

difference across heterogeneous sources. One potential solution to this lack of portability is 

to adopt advanced IE techniques, such as bootstrapping or distant supervision, to build 

portable and generalizable IE systems [175–179]. These techniques take advantage of a large 

amount of raw corpus, information redundancy across multiple sources, and existing 

knowledge bases to automatically or semi-automatically acquire IE knowledge. For 

example, we can generate raw annotated examples by utilizing an information redundancy 

across multiple sources and known relationships recorded in knowledge bases. Additionally, 

most IE tasks are defined without standard information models (a model defining a 

representation of concepts and the relationships, constraints, rules, and operations to specify 
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data semantics) or value sets (typically used to represent the possible values of a coded data 

element in an information model), which also limit their portability and generalizability.

We believe the above issues could be alleviated through the training of NLP experts with 

cross-disciplinary experience, the adoption of standard information models and value sets to 

improve the interoperability of NLP systems and downstream applications, and collaboration 

among multiple institutions to advance privacy-preserving data analysis models. Training 

NLP experts with cross-disciplinary experience is critical to the biomedical informatics 

community, amplified by the area’s interdisciplinary nature. Most NLP courses in 

informatics training focus on state-of-the-art NLP techniques, while our review demonstrates 

the widespread use of rule-based NLP systems for real-world practice and clinical research. 

It may imply an opportunity in informatics training to distinguish academic informatics from 

applied informatics. Even machine learning-based NLP systems achieve the state-of-the-art 

performance, however, it is difficult for clinicians and clinical researchers to participate in 

the system development process.

Standardizing semantics involves two components: 1) information models and 2) value sets. 

Information models generally specify data semantics and define the representation of entities 

or concepts, relationships, constraints, rules, and operations, while value sets specify 

permissible values. The adoption of standards will improve the interoperability of NLP 

systems and, therefore, facilitate the use of NLP for EHR-based studies. A potential solution 

is to leverage an international consensus information model, such as the Clinical Information 

Modeling Initiative (CIMI), and use the compositional grammar for SNOMED-CT concepts 

in Health Level Seven International (HL7) as standard representations. There are a few 

existing efforts focusing on sharing clinical data of a group of patients. For example, the 

clinical e-science framework (CLEF) [180], a UK MRC–sponsored project, aims to establish 

policies and infrastructure for clinical data sharing of cancer patients to enable the next 

generation of integrated clinical and bioscience research. However, no prior effort exists for 

privacy-preserving computing (PPC) on NLP artifacts with distributional information [181, 

182]. PPC strategies could combine different forms provided by different data resources 

within the topic of privacy restrictions. A primary issue of leveraging this technique is 

building a PPC infrastructure. Advanced PPC infrastructure, such as integrating Data for 

Analysis, Anonymization, and SHaring (iDASH) [183], may be a viable option. Through 

existing collaborating efforts or building and leveraging this privacy-preserving computing 

infrastructure, it will become more prevalent to use EHR data for structuring of clinical 

narratives and supporting the extraction of clinical information for downstream applications.

This review has examined the last 8 years of clinical information extraction applications 

literature. There are a few limitations in this review. First, this study may have missed 

relevant articles published after September 7, 2016. Second, the review is limited to articles 

written in the English language. Articles written in other languages would also provide 

valuable information. Third, the search strings and databases selected in this review might 

not be sufficient and might have introduced bias into the review. Fourth, the articles utilizing 

clinical narratives from non-EHR systems, such as clinical trials [184], are not considered in 

this review. Finally, the 27 articles about releasing new IE tools and 125 methodology 

articles are not included in this literature review and will be the focus of future work.

Wang et al. Page 16

J Biomed Inform. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Funding

This work was made possible by NIGMS R01GM102282, NCATS U01TR002062, NLM R01LM11934, and 
NIBIB R01EB19403.

References

1. Blumenthal D. Launching hitech. New England Journal of Medicine. 2010; 362:382–5. [PubMed: 
20042745] 

2. Ellsworth MA, Dziadzko M, O’Horo JC, Farrell AM, Zhang J, Herasevich V. An appraisal of 
published usability evaluations of electronic health records via systematic review. J Am Med Inform 
Assoc. 2017; 24:218–26. [PubMed: 27107451] 

3. Goldstein BA, Navar AM, Pencina MJ, Ioannidis J. Opportunities and challenges in developing risk 
prediction models with electronic health records data: a systematic review. J Am Med Inform Assoc. 
2017; 24:198–208. [PubMed: 27189013] 

4. Jensen K, Soguero-Ruiz C, Mikalsen KO, Lindsetmo R-O, Kouskoumvekaki I, Girolami M, et al. 
Analysis of free text in electronic health records for identification of cancer patient trajectories. 
Scientific Reports. 2017:7. [PubMed: 28127057] 

5. Sarawagi S. Information extraction. Foundations and Trends® in Databases. 2008; 1:261–377.

6. Small SG, Medsker L. Review of information extraction technologies and applications. Neural 
computing and applications. 2014; 25:533–48.

7. Cowie J, Lehnert W. Information extraction. Communications of the ACM. 1996; 39:80–91.

8. Nadeau D, Sekine S. A survey of named entity recognition and classification. Lingvisticae 
Investigationes. 2007; 30:3–26.

9. Lee, H., Peirsman, Y., Chang, A., Chambers, N., Surdeanu, M., Jurafsky, D. Stanford’s multi-pass 
sieve coreference resolution system at the CoNLL-2011 shared task. Proceedings of the Fifteenth 
Conference on Computational Natural Language Learning: Shared Task: Association for 
Computational Linguistics; 2011; p. 28-34.

10. Bach, N., Badaskar, S. Literature review for Language and Statistics II. 2007. A review of relation 
extraction. 

11. Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF. Extracting information from textual 
documents in the electronic health record: a review of recent research. Yearb Med Inform. 2008; 
35:44.

12. Flynn RWV, Macdonald TM, Schembri N, Murray GD, Doney ASF. Automated data capture from 
free-text radiology reports to enhance accuracy of hospital inpatient stroke codes. 
Pharmacoepidemiology and Drug Safety. 2010; 19:843–7. [PubMed: 20602346] 

13. Yang H, Spasic I, Keane JA, Nenadic G. A text mining approach to the prediction of disease status 
from clinical discharge summaries. J Am Med Inform Assoc. 2009; 16:596–600. [PubMed: 
19390098] 

14. Kung R, Ma A, Dever JB, Vadivelu J, Cherk E, Koola JD, et al. A natural language processing 
alogrithm for identification of patients with cirrhosis from electronic medical records. 
Gastroenterology. 2015; (1):S1071–S2.

15. Popejoy LL, Khalilia MA, Popescu M, Galambos C, Lyons V, Rantz M, et al. Quantifying care 
coordination using natural language processing and domain-specific ontology. J Am Med Inform 
Assoc. 2015; 22:e93–103. [PubMed: 25324557] 

16. Di Marco, C., Bray, P., Covvey, HD., Cowan, DD., Di Ciccio, V., Hovy, E., et al. Authoring and 
generation of individualized patient education materials. AMIA Annual Symposium Proceedings: 
American Medical Informatics Association; 2006; p. 195

Wang et al. Page 17

J Biomed Inform. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



17. Friedman C, Alderson PO, Austin JH, Cimino JJ, Johnson SB. A general natural-language text 
processor for clinical radiology. J Am Med Inform Assoc. 1994; 1:161–74. [PubMed: 7719797] 

18. Aronson AR, Lang F-M. An overview of MetaMap: historical perspective and recent advances. J 
Am Med Inform Assoc. 2010; 17:229–36. [PubMed: 20442139] 

19. Denny, JC., Irani, PR., Wehbe, FH., Smithers, JD., Spickard, A, III. The KnowledgeMap project: 
development of a concept-based medical school curriculum database. AMIA; Citeseer: 2003. 

20. Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, et al. Mayo clinical Text 
Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and 
applications. J Am Med Inform Assoc. 2010; 17:507–13. [PubMed: 20819853] 

21. Goryachev, S., Sordo, M., Zeng, QT. A suite of natural language processing tools developed for the 
I2B2 project. AMIA Annual Symposium Proceedings: American Medical Informatics Association; 
2006; p. 931

22. Liu H, Bielinski SJ, Sohn S, Murphy S, Wagholikar KB, Jonnalagadda SR, et al. An information 
extraction framework for cohort identification using electronic health records. AMIA Summits 
Transl Sci Proc. 2013; 2013:149–53. [PubMed: 24303255] 

23. Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K, et al. PheWAS: 
demonstrating the feasibility of a phenome-wide scan to discover gene–disease associations. 
Bioinformatics. 2010; 26:1205–10. [PubMed: 20335276] 

24. Xu H, Jiang M, Oetjens M, Bowton EA, Ramirez AH, Jeff JM, et al. Facilitating pharmacogenetic 
studies using electronic health records and natural-language processing: a case study of warfarin. J 
Am Med Inform Assoc. 2011; 18:387–91. [PubMed: 21672908] 

25. Deleger L, Brodzinski H, Zhai H, Li Q, Lingren T, Kirkendall ES, et al. Developing and evaluating 
an automated appendicitis risk stratification algorithm for pediatric patients in the emergency 
department. J Am Med Inform Assoc. 2013; 20:e212–20. [PubMed: 24130231] 

26. Haerian K, Varn D, Vaidya S, Ena L, Chase HS, Friedman C. Detection of pharmacovigilance-
related adverse events using electronic health records and automated methods. Clin Pharmacol 
Ther. 2012; 92:228–34. [PubMed: 22713699] 

27. St-Maurice J, Kuo MH. Analyzing primary care data to characterize inappropriate emergency room 
use. Stud Health Technol Inform. 2012; 180:990–4. [PubMed: 22874342] 

28. Kumar V, Liao K, Cheng SC, Yu S, Kartoun U, Brettman A, et al. Natural language processing 
improves phenotypic accuracy in an electronic medical record cohort of type 2 diabetes and 
cardiovascular disease. Journal of the American College of Cardiology. 2014; (1):A1359.

29. Patel R, Lloyd T, Jackson R, Ball M, Shetty H, Broadbent M, et al. Mood instability is a common 
feature of mental health disorders and is associated with poor clinical outcomes. BMJ Open. 2015; 
5:e007504.

30. Kullo IJ, Fan J, Pathak J, Savova GK, Ali Z, Chute CG. Leveraging informatics for genetic studies: 
use of the electronic medical record to enable a genome-wide association study of peripheral 
arterial disease. J Am Med Inform Assoc. 2010; 17:568–74. [PubMed: 20819866] 

31. Davis K, Staes C, Duncan J, Igo S, Facelli JC. Identification of pneumonia and influenza deaths 
using the Death Certificate Pipeline. BMC Med Inf Decis Mak. 2012; 12:37.

32. Wi C-I, Sohn S, Rolfes MC, Seabright A, Ryu E, Voge G, et al. Application of a Natural Language 
Processing Algorithm to Asthma Ascertainment: An Automated Chart Review. American Journal 
of Respiratory And Critical Care Medicine. 2017

33. Afzal N, Sohn S, Abram S, Scott CG, Chaudhry R, Liu H, et al. Mining peripheral arterial disease 
cases from narrative clinical notes using natural language processing. Journal of Vascular Surgery. 
2017; 65:1753–61. [PubMed: 28189359] 

34. Sohn S, Ye Z, Liu H, Chute CG, Kullo IJ. Identifying abdominal aortic aneurysm cases and 
controls using natural language processing of radiology reports. AMIA Summits Transl Sci Proc. 
2013; 2013:249. [PubMed: 24303276] 

35. Spyns P. Natural language processing. Methods Inf Med. 1996; 35:285–301. [PubMed: 9019092] 

36. Yim, W-w, Yetisgen, M., Harris, WP., Kwan, SW. Natural language processing in oncology: a 
review. JAMA Oncol. 2016; 2:797–804. [PubMed: 27124593] 

37. Pons E, Braun LM, Hunink MM, Kors JA. Natural language processing in radiology: a systematic 
review. Radiology. 2016; 279:329–43. [PubMed: 27089187] 

Wang et al. Page 18

J Biomed Inform. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



38. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic 
reviews and meta-analyses: the PRISMA statement. PLoS med. 2009; 6:e1000097. [PubMed: 
19621072] 

39. Saeed M, Villarroel M, Reisner AT, Clifford G, Lehman L-W, Moody G, et al. Multiparameter 
Intelligent Monitoring in Intensive Care II (MIMIC-II): a public-access intensive care unit 
database. Critical care medicine. 2011; 39:952. [PubMed: 21283005] 

40. Gøeg, KR., Elberg, PB. Global applicability of a local physical examination template. 
Scandinavian Conference on Health Informatics 2012; October 2–3; Linköping. Sverige: 
Linköping University Electronic Press; 2012. p. 1-7.

41. Styler WF IV, Bethard S, Finan S, Palmer M, Pradhan S, de Groen PC, et al. Temporal annotation 
in the clinical domain. Transactions of the Association for Computational Linguistics. 2014; 
2:143–54. [PubMed: 29082229] 

42. Ferrucci D, Lally A. UIMA: an architectural approach to unstructured information processing in 
the corporate research environment. Nat Lang Eng. 2004; 10:327–48.

43. Baldridge, J. The opennlp project. 2005. URL: http://opennlpapacheorg/indexhtml

44. Carrell DS, Halgrim S, Tran D-T, Buist DSM, Chubak J, Chapman WW, et al. Using natural 
language processing to improve efficiency of manual chart abstraction in research: the case of 
breast cancer recurrence. Am J Epidemiol. 2014; 179:749–58. [PubMed: 24488511] 

45. Wei W-Q, Tao C, Jiang G, Chute CG. A high throughput semantic concept frequency based 
approach for patient identification: a case study using type 2 diabetes mellitus clinical notes. 
AMIA Annu Symp Proc. 2010; 2010:857–61. [PubMed: 21347100] 

46. Lin C, Karlson EW, Dligach D, Ramirez MP, Miller TA, Mo H, et al. Automatic identification of 
methotrexate-induced liver toxicity in patients with rheumatoid arthritis from the electronic 
medical record. J Am Med Inform Assoc. 2015; 22:e151–61. [PubMed: 25344930] 

47. Hamid H, Fodeh S, Lizama GA, Czlapinski R, Pugh MJ, LaFrance W, et al. Validating a natural 
language processing tool to exclude psychogenic non-epileptic seizures in electronic medical 
record based epilepsy research. Epilepsy Currents. 2014; 14:279. [PubMed: 25346639] 

48. Xia Z, Secor E, Chibnik LB, Bove RM, Cheng S, Chitnis T, et al. Modeling disease severity in 
multiple sclerosis using electronic health records. PLoS ONE. 2013; 8:e78927. [PubMed: 
24244385] 

49. Lingren T, Thaker V, Brady C, Namjou B, Kennebeck S, Bickel J, et al. Developing an Algorithm 
to Detect Early Childhood Obesity in Two Tertiary Pediatric Medical Centers. Appl Clin Inform. 
2016; 7:693–706. [PubMed: 27452794] 

50. Mehrabi S, Schmidt CM, Waters JA, Beesley C, Krishnan A, Kesterson J, et al. An efficient 
pancreatic cyst identification methodology using natural language processing. Stud Health Technol 
Inform. 2013; 192:822–6. [PubMed: 23920672] 

51. Savova GK, Fan J, Ye Z, Murphy SP, Zheng J, Chute CG, et al. Discovering peripheral arterial 
disease cases from radiology notes using natural language processing. AMIA Annu Symp Proc. 
2010; 2010:722–6. [PubMed: 21347073] 

52. Cui L, Bozorgi A, Lhatoo SD, Zhang G-Q, Sahoo SS. EpiDEA: extracting structured epilepsy and 
seizure information from patient discharge summaries for cohort identification. AMIA Annu Symp 
Proc. 2012; 2012:1191–200. [PubMed: 23304396] 

53. Hassanpour S, Langlotz CP. Information extraction from multi-institutional radiology reports. Artif 
Intell Med. 2016; 66:29–39. [PubMed: 26481140] 

54. Pathak J, Hall-Flavin DK, Biernacka JM, Jenkins GD, Bruce KT, Murphy SP, et al. Using 
electronic health records driven phenotyping for major depressive disorder. Biol Psychiatry. 2014; 
(1):343S.

55. Liu M, Shah A, Jiang M, Peterson NB, Dai Q, Aldrich MC, et al. A study of transportability of an 
existing smoking status detection module across institutions. AMIA Annu Symp Proc. 2012; 
2012:577–86. [PubMed: 23304330] 

56. Khor R, Yip W, Bressel M, Rose W, Duchesne G, Foroudi F. Automated smoking status extraction 
from free text: Adapting a system for use in the Australian context. Journal of Medical Imaging 
and Radiation Oncology. 2013; 57:148.

Wang et al. Page 19

J Biomed Inform. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://opennlpapacheorg/indexhtml


57. Sohn S, Savova GK. Mayo clinic smoking status classification system: extensions and 
improvements. AMIA Annu Symp Proc. 2009; 2009:619–23. [PubMed: 20351929] 

58. Khor R, Yip W-K, Bressel M, Rose W, Duchesne G, Foroudi F. Practical implementation of an 
existing smoking detection pipeline and reduced support vector machine training corpus 
requirements. J Am Med Inform Assoc. 2014; 21:27–30. [PubMed: 23921192] 

59. Sohn S, Kocher J-PA, Chute CG, Savova GK. Drug side effect extraction from clinical narratives of 
psychiatry and psychology patients. J Am Med Inform Assoc. 2011; 18(Suppl 1):i144–9. 
[PubMed: 21946242] 

60. Li Q, Spooner SA, Kaiser M, Lingren N, Robbins J, Lingren T, et al. An end-to-end hybrid 
algorithm for automated medication discrepancy detection. BMC Med Inf Decis Mak. 2015; 
15:37.

61. Lin C, Dligach D, Miller TA, Bethard S, Savova GK. Multilayered temporal modeling for the 
clinical domain. J Am Med Inform Assoc. 2016; 23:387–95. [PubMed: 26521301] 

62. Khalifa A, Meystre S. Adapting existing natural language processing resources for cardiovascular 
risk factors identification in clinical notes. J Biomed Inform. 2015; 58(Suppl):S128–32. [PubMed: 
26318122] 

63. Aronson AR, Mork JG, Névéol A, Shooshan SE, Demner-Fushman D. Methodology for creating 
UMLS content views appropriate for biomedical natural language processing. AMIA. 2008

64. Yetisgen-Yildiz M, Bejan CA, Vanderwende L, Xia F, Evans HL, Wurfel MM. Automated tools for 
phenotype extraction from medical records. AMIA Summits Transl Sci Proc. 2013; 2013:283. 
[PubMed: 24303281] 

65. Bejan CA, Xia F, Vanderwende L, Wurfel MM, Yetisgen-Yildiz M. Pneumonia identification using 
statistical feature selection. J Am Med Inform Assoc. 2012; 19:817–23. [PubMed: 22539080] 

66. Gundlapalli AV, Redd A, Carter M, Divita G, Shen S, Palmer M, et al. Validating a strategy for 
psychosocial phenotyping using a large corpus of clinical text. J Am Med Inform Assoc. 2013; 
20:e355–64. [PubMed: 24169276] 

67. Yim W-W, Denman T, Kwan SW, Yetisgen M. Tumor information extraction in radiology reports 
for hepatocellular carcinoma patients. AMIA Summits Transl Sci Proc. 2016; 2016:455–64. 
[PubMed: 27570686] 

68. Sevenster M, Buurman J, Liu P, Peters JF, Chang PJ. Natural Language Processing Techniques for 
Extracting and Categorizing Finding Measurements in Narrative Radiology Reports. Appl Clin 
Inform. 2015; 6:600–110. [PubMed: 26448801] 

69. Martinez D, Ananda-Rajah MR, Suominen H, Slavin MA, Thursky KA, Cavedon L. Automatic 
detection of patients with invasive fungal disease from free-text computed tomography (CT) scans. 
J Biomed Inform. 2015; 53:251–60. [PubMed: 25460203] 

70. St-Maurice J, Kuo MH, Gooch P. A proof of concept for assessing emergency room use with 
primary care data and natural language processing. Methods Inf Med. 2013; 52:33–42. [PubMed: 
23223678] 

71. Khare R, Li J, Lu Z. LabeledIn: cataloging labeled indications for human drugs. J Biomed Inform. 
2014; 52:448–56. [PubMed: 25220766] 

72. Thorne, C., Cardillo, E., Eccher, C., Montali, M., Calvanese, D. Process fragment recognition in 
clinical documents. 13th International Conference of the Italian Association for Artificial 
Intelligence, AI*IA 2013. Turin2013; p. 227-38.

73. Zhu H, Ni Y, Cai P, Qiu Z, Cao F. Automatic extracting of patient-related attributes: disease, age, 
gender and race. Stud Health Technol Inform. 2012; 180:589–93. [PubMed: 22874259] 

74. Wang X, Hripcsak G, Friedman C. Characterizing environmental and phenotypic associations 
using information theory and electronic health records. BMC Bioinformatics. 2009; 10(Suppl 
9):S13.

75. Wang X, Hripcsak G, Markatou M, Friedman C. Active computerized pharmacovigilance using 
natural language processing, statistics, and electronic health records: a feasibility study. J Am Med 
Inform Assoc. 2009; 16:328–37. [PubMed: 19261932] 

76. Salmasian H, Freedberg DE, Abrams JA, Friedman C. An automated tool for detecting medication 
overuse based on the electronic health records. Pharmacoepidemiol Drug Saf. 2013; 22:183–9. 
[PubMed: 23233423] 

Wang et al. Page 20

J Biomed Inform. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



77. Kamauu AWC, Petratos G, Amey A, Bechtel P, Dine D. Extracting meaningful, searchable and 
discrete data from unstructured medical text. Pharmacoepidemiology and Drug Safety. 2010; 
19:S75.

78. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V. GATE: an architecture for development 
of robust HLT applications. Proceedings of the 40th annual meeting on association for 
computational linguistics: Association for Computational Linguistics; 2002; p. 168-75.

79. Cunningham H, Tablan V, Roberts A, Bontcheva K. Getting more out of biomedical documents 
with GATE’s full lifecycle open source text analytics. PLoS Comput Biol. 2013; 9:e1002854. 
[PubMed: 23408875] 

80. Bird, S. NLTK: the natural language toolkit. Proceedings of the COLING/ACL on Interactive 
presentation sessions: Association for Computational Linguistics; 2006; p. 69-72.

81. Morton, T., Kottmann, J., Baldridge, J., Bierner, G. Opennlp: A java-based nlp toolkit. 2005. 

82. McCallum, AK. Mallet: A machine learning for language toolkit. 2002. 

83. Holmes, G., Donkin, A., Witten, IH. Weka: A machine learning workbench. Intelligent Information 
Systems, 1994 Proceedings of the 1994 Second Australian and New Zealand Conference on: 
IEEE; 1994; p. 357-61.

84. Musen MA. The Protégé project: A look back and a look forward. AI matters. 2015; 1:4–12. 
[PubMed: 27239556] 

85. Ball, M., Patel, R., Hayes, RD., Dobson, RJ., Stewart, R. TextHunter–A User Friendly Tool for 
Extracting Generic Concepts from Free Text in Clinical Research. AMIA Annual Symposium 
Proceedings: American Medical Informatics Association; 2014; p. 729

86. Patrick JD, Nguyen DH, Wang Y, Li M. A knowledge discovery and reuse pipeline for information 
extraction in clinical notes. J Am Med Inform Assoc. 2011; 18:574–9. [PubMed: 21737844] 

87. Spasić I, Zhao B, Jones CB, Button K. KneeTex: an ontology–driven system for information 
extraction from MRI reports. J Biomed Semantics. 2015; 6:34. [PubMed: 26347806] 

88. Meystre SM, Thibault J, Shen S, Hurdle JF, South BR. Textractor: a hybrid system for medications 
and reason for their prescription extraction from clinical text documents. J Am Med Inform Assoc. 
2010; 17:559–62. [PubMed: 20819864] 

89. Tseytlin E, Mitchell K, Legowski E, Corrigan J, Chavan G, Jacobson RS. NOBLE–Flexible 
concept recognition for large-scale biomedical natural language processing. BMC Bioinformatics. 
2016; 17:32. [PubMed: 26763894] 

90. Hebbring SJ. The challenges, advantages and future of phenome-wide association studies. 
Immunology. 2014; 141:157–65. [PubMed: 24147732] 

91. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, et al. DrugBank 4.0: shedding new light 
on drug metabolism. Nucleic Acids Res. 2014; 42:D1091–D7. [PubMed: 24203711] 

92. Elkin PL, Froehling DA, Wahner-Roedler DL, Brown SH, Bailey KR. Comparison of natural 
language processing biosurveillance methods for identifying influenza from encounter notes. Ann 
Intern Med. 2012; 156:11–8. [PubMed: 22213490] 

93. Horng S, Sontag DA, Shapiro NI, Nathanson LA. Machine learning algorithms can identify 
patients who will benefit from targeted sepsis decision support. Ann Emerg Med. 2012; (1):S121.

94. Roberts K, Rink B, Harabagiu SM, Scheuermann RH, Toomay S, Browning T, et al. A machine 
learning approach for identifying anatomical locations of actionable findings in radiology reports. 
AMIA Annu Symp Proc. 2012; 2012:779–88. [PubMed: 23304352] 

95. Zheng C, Rashid N, Cheetham TC, Wu YL, Levy GD. Using natural language processing and 
machine learning to identify gout flares from electronic clinical notes. Arthritis and Rheumatism. 
2013; 65:S856–S7.

96. Kluegl P, Toepfer M, Beck P-D, Fette G, Puppe F. UIMA Ruta: Rapid development of rule-based 
information extraction applications. Nat Lang Eng. 2016; 22:1–40.

97. Barrett N, Weber-Jahnke JH, Thai V. Engineering natural language processing solutions for 
structured information from clinical text: extracting sentinel events from palliative care consult 
letters. Stud Health Technol Inform. 2013; 192:594–8. [PubMed: 23920625] 

98. Sarker A, Gonzalez G. Portable automatic text classification for adverse drug reaction detection via 
multi-corpus training. J Biomed Inform. 2015; 53:196–207. [PubMed: 25451103] 

Wang et al. Page 21

J Biomed Inform. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



99. Himes BE, Dai Y, Kohane IS, Weiss ST, Ramoni MF. Prediction of chronic obstructive pulmonary 
disease (COPD) in asthma patients using electronic medical records. J Am Med Inform Assoc. 
2009; 16:371–9. [PubMed: 19261943] 

100. Chen Y, Wrenn J, Xu H, Spickard A 3rd, Habermann R, Powers J, et al. Automated Assessment 
of Medical Students’ Clinical Exposures according to AAMC Geriatric Competencies. AMIA 
Annu Symp Proc. 2014; 2014:375–84. [PubMed: 25954341] 

101. Rochefort CM, Buckeridge DL, Forster AJ. Accuracy of using automated methods for detecting 
adverse events from electronic health record data: a research protocol. Implement Sci. 2015; 
10:5. [PubMed: 25567422] 

102. Yadav K, Sarioglu E, Smith M, Choi H-A. Automated outcome classification of emergency 
department computed tomography imaging reports. Acad Emerg Med. 2013; 20:848–54. 
[PubMed: 24033628] 

103. Uzuner Ö, Luo Y, Szolovits P. Evaluating the state-of-the-art in automatic de-identification. J Am 
Med Inform Assoc. 2007; 14:550–63. [PubMed: 17600094] 

104. Uzuner Ö, Goldstein I, Luo Y, Kohane I. Identifying patient smoking status from medical 
discharge records. J Am Med Inform Assoc. 2008; 15:14–24. [PubMed: 17947624] 

105. Uzuner O. Recognizing obesity and comorbidities in sparse data. J Am Med Inform Assoc. 2009; 
16:561–70. [PubMed: 19390096] 

106. Uzuner O, Solti I, Cadag E. Extracting medication information from clinical text. J Am Med 
Inform Assoc. 2010; 17:514–8. [PubMed: 20819854] 

107. Uzuner O, South BR, Shen S, DuVall SL. 2010 i2b2/VA challenge on concepts, assertions, and 
relations in clinical text. J Am Med Inform Assoc. 2011; 18:552–6. [PubMed: 21685143] 

108. Uzuner O, Bodnari A, Shen S, Forbush T, Pestian J, South BR. Evaluating the state of the art in 
coreference resolution for electronic medical records. J Am Med Inform Assoc. 2012; 19:786–
91. [PubMed: 22366294] 

109. Sun W, Rumshisky A, Uzuner O. Evaluating temporal relations in clinical text: 2012 i2b2 
Challenge. J Am Med Inform Assoc. 2013; 20:806–13. [PubMed: 23564629] 

110. Stubbs A, Kotfila C, Xu H, Uzuner O. Identifying risk factors for heart disease over time: 
Overview of 2014 i2b2/UTHealth shared task Track 2. J Biomed Inform. 2015; 58(Suppl):S67–
77. [PubMed: 26210362] 

111. Stubbs A, Kotfila C, Uzuner Ö. Automated systems for the de-identification of longitudinal 
clinical narratives: Overview of 2014 i2b2/UTHealth shared task Track 1. J Biomed Inform. 
2015; 58:S11–S9. [PubMed: 26225918] 

112. Pradhan, S., Elhadad, N., South, BR., Martinez, D., Christensen, LM., Vogel, A., et al. CLEF 
(Working Notes). 2013. Task 1: ShARe/CLEF eHealth Evaluation Lab 2013. 

113. Kelly, L., Goeuriot, L., Suominen, H., Schreck, T., Leroy, G., Mowery, DL., et al. Overview of the 
share/clef ehealth evaluation lab 2014. International Conference of the Cross-Language 
Evaluation Forum for European Languages; Springer; 2014. p. 172-91.

114. Goeuriot, L., Kelly, L., Suominen, H., Hanlen, L., Névéol, A., Grouin, C., et al. Overview of the 
CLEF eHealth evaluation lab 2015. International Conference of the Cross-Language Evaluation 
Forum for European Languages; Springer; 2015. p. 429-43.

115. Kelly, L., Goeuriot, L., Suominen, H., Névéol, A., Palotti, J., Zuccon, G. Overview of the CLEF 
eHealth evaluation lab 2016. International Conference of the Cross-Language Evaluation Forum 
for European Languages; Springer; 2016. p. 255-66.

116. Segura-Bedmar, I., Martínez, P., Zazo, MH. Semeval-2013 task 9: Extraction of drug-drug 
interactions from biomedical texts (ddiextraction 2013). Second Joint Conference on Lexical and 
Computational Semantics (* SEM), Volume 2: Proceedings of the Seventh International 
Workshop on Semantic Evaluation (SemEval 2013); 2013; p. 341-50.

117. Pradhan, S., Elhadad, N., Chapman, WW., Manandhar, S., Savova, G. SemEval@ COLING. 
2014. SemEval-2014 Task 7: Analysis of Clinical Text; p. 54-62.

118. Elhadad N, Pradhan S, Gorman SL, Manandhar S, Chapman WW, Savova GK. SemEval-2015 
Task 14: Analysis of Clinical Text. SemEval@ NAACL-HLT. 2015:303–10.

119. Bethard S, Savova G, Chen W-T, Derczynski L, Pustejovsky J, Verhagen M. Semeval-2016 task 
12: Clinical tempeval. Proceedings of SemEval. 2016:1052–62.

Wang et al. Page 22

J Biomed Inform. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



120. Sada Y, Hou J, Richardson P, El-Serag H, Davila J. Validation of Case Finding Algorithms for 
Hepatocellular Cancer From Administrative Data and Electronic Health Records Using Natural 
Language Processing. Med Care. 2016; 54:e9–14. [PubMed: 23929403] 

121. Xu H, Fu Z, Shah A, Chen Y, Peterson NB, Chen Q, et al. Extracting and integrating data from 
entire electronic health records for detecting colorectal cancer cases. AMIA Annu Symp Proc. 
2011; 2011:1564–72. [PubMed: 22195222] 

122. Kim Y, Garvin J, Heavirland J, Meystre SM. Improving heart failure information extraction by 
domain adaptation. Stud Health Technol Inform. 2013; 192:185–9. [PubMed: 23920541] 

123. Roch AM, Mehrabi S, Krishnan A, Schmidt HE, Kesterson J, Beesley C, et al. Automated 
pancreatic cyst screening using natural language processing: A new tool in the early detection of 
pancreatic cancer. Hpb. 2015; 17:447–53. [PubMed: 25537257] 

124. Ludvigsson JF, Pathak J, Murphy S, Durski M, Kirsch PS, Chute CG, et al. Use of computerized 
algorithm to identify individuals in need of testing for celiac disease. J Am Med Inform Assoc. 
2013; 20:e306–10. [PubMed: 23956016] 

125. Sances G, Larizza C, Gabetta M, Bucalo M, Guaschino E, Milani G, et al. Application of 
bioinformatics in headache: The I2B2-pavia project. Journal of Headache and Pain. 2010; 
11:S134–S5.

126. Graystone, A., Bhatia, R., Davies, R., McClinton, S. Validation of the DM reporter text mining 
application for evaluating the management of high risk populations with diabetes. Diabetes 
Conference: 70th Scientific Sessions of the American Diabetes Association Orlando, FL United 
States Conference Start; 2010; 

127. Cohen KB, Glass B, Greiner HM, Holland-Bouley K, Standridge S, Arya R, et al. Methodological 
Issues in Predicting Pediatric Epilepsy Surgery Candidates Through Natural Language 
Processing and Machine Learning. Biomed. 2016; 8:11–8.

128. Nunes AP, Yang J, Tunceli K, Kurtyka K, Radican L, Engel SS, et al. Interim results on the 
relationship between mild-moderate and severe hypoglycaemia and cardiovascular disease in a 
cohort of sulfonylurea users. Diabetologia. 2015; (1):S62.

129. Lyalina S, Percha B, LePendu P, Iyer SV, Altman RB, Shah NH. Identifying phenotypic 
signatures of neuropsychiatric disorders from electronic medical records. J Am Med Inform 
Assoc. 2013; 20:e297–305. [PubMed: 23956017] 

130. Wang M, Cyhaniuk A, Cooper DL, Iyer NN. Identification of persons with acquired hemophilia 
in a large electronic health record database. Blood. 2015; 126(23):3271.

131. Mehrabi S, Krishnan A, Roch AM, Schmidt H, Li D, Kesterson J, et al. Identification of Patients 
with Family History of Pancreatic Cancer--Investigation of an NLP System Portability. Stud 
Health Technol Inform. 2015; 216:604–8. [PubMed: 26262122] 

132. Hirst C, Hill J, Khosla S, Schweikert K, Senerchia C, Kitzmann K, et al. The application of 
natural language processing (NLP) technology to enrich electronic medical records (EMRS) for 
outcomes research in oncology. Value in Health. 2014; 17(3):A6.

133. Nguyen AN, Moore J, O’Dwyer J, Philpot S. Assessing the Utility of Automatic Cancer Registry 
Notifications Data Extraction from Free-Text Pathology Reports. AMIA Annu Symp Proc. 2015; 
2015:953–62. [PubMed: 26958232] 

134. Farrugia H, Marr G, Giles G. Implementing a natural language processing solution to capture 
cancer stage and recurrence. Journal of Medical Imaging and Radiation Oncology. 2012; 56:5. 
[PubMed: 22339741] 

135. Warner JL, Levy MA, Neuss MN, Warner JL, Levy MA, Neuss MN. ReCAP: Feasibility and 
Accuracy of Extracting Cancer Stage Information From Narrative Electronic Health Record Data. 
J Oncol Pract. 2016; 12:157–8. e69–7. [PubMed: 26306621] 

136. Tian Z, Sun S, Eguale T, Rochefort C. Automated extraction of VTE events from narrative 
radiology reports in electronic health records: A validation study. Pharmacoepidemiology and 
Drug Safety. 2015; 24:166. [PubMed: 24737526] 

137. McPeek Hinz ER, Bastarache L, Denny JC. A natural language processing algorithm to define a 
venous thromboembolism phenotype. AMIA Annu Symp Proc. 2013; 2013:975–83. [PubMed: 
24551388] 

Wang et al. Page 23

J Biomed Inform. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



138. Duke J, Chase M, Poznanski-Ring N, Martin J, Fuhr R, Chatterjee A, et al. Natural language 
processing to improve identification of peripheral arterial disease in electronic health data. 
Journal of the American College of Cardiology. 2016; (1):2280.

139. Afzal, N., Sohn, S., Abram, S., Liu, H., Kullo, IJ., Arruda-Olson, AM. Identifying peripheral 
arterial disease cases using natural language processing of clinical notes. 3rd IEEE EMBS 
International Conference on Biomedical and Health Informatics, BHI; 2016; Institute of 
Electrical and Electronics Engineers Inc; 2016. p. 126-31.

140. Rao, A., Ehrenfeld, JM., Peterfreund, R., Zalis, M., Harris, M. Automated analysis of free text 
electronic medical records to identify patients with specific medical diagnoses. Anesthesia and 
Analgesia Conference; 2011; p. 112

141. Xu H, Stenner SP, Doan S, Johnson KB, Waitman LR, Denny JC. MedEx: a medication 
information extraction system for clinical narratives. J Am Med Inform Assoc. 2010; 17:19–24. 
[PubMed: 20064797] 

142. Xu H, Aldrich MC, Chen Q, Liu H, Peterson NB, Dai Q, et al. Validating drug repurposing 
signals using electronic health records: a case study of metformin associated with reduced cancer 
mortality. J Am Med Inform Assoc. 2015; 22:179–91. [PubMed: 25053577] 

143. Sohn S, Clark C, Halgrim SR, Murphy SP, Jonnalagadda SR, Wagholikar KB, et al. Analysis of 
cross-institutional medication description patterns in clinical narratives. Biomed. 2013; 6:7–16.

144. Zheng C, Rashid N, Koblick R, An J. Medication Extraction from Electronic Clinical Notes in an 
Integrated Health System: A Study on Aspirin Use in Patients with Nonvalvular Atrial 
Fibrillation. Clin Ther. 2015; 37:2048–58. e2. [PubMed: 26233471] 

145. Xu H, Doan S, Birdwell KA, Cowan JD, Vincz AJ, Haas DW, et al. An automated approach to 
calculating the daily dose of tacrolimus in electronic health records. AMIA Summits Transl Sci 
Proc. 2010; 2010:71–5. [PubMed: 21347153] 

146. Liu M, Jiang M, Kawai VK, Stein CM, Roden DM, Denny JC, et al. Modeling drug exposure data 
in electronic medical records: an application to warfarin. AMIA Annu Symp Proc. 2011; 
2011:815–23. [PubMed: 22195139] 

147. Feng Q, Waitara MS, Jiang L, Xu H, Jiang M, McCarty CA, et al. Dose-response curves extracted 
from electronic medical records identify sort-1 as a novel genetic predictor of statin potency 
(ED50). Clinical Pharmacology and Therapeutics. 2012; 91:S48–S9.

148. Rochefort C, Verma A, Eguale T, Buckeridge D. Surveillance of adverse events in elderly 
patients: A study on the accuracy of applying natural language processing techniques to 
electronic health record data. European Geriatric Medicine. 2015; 6:S15.

149. Zhang, H., Plutzky, J., Skentzos, S., Morrison, F., Mar, P., Shubina, M., et al. Epidemiology of 
adverse reaction to statins in routine care settings. Endocrine Reviews Conference: 94th Annual 
Meeting and Expo of the Endocrine Society, ENDO; 2012; p. 33

150. Hazlehurst B, Naleway A, Mullooly J. Detecting possible vaccine adverse events in clinical notes 
of the electronic medical record. Vaccine. 2009; 27:2077–83. [PubMed: 19428833] 

151. Baer B, Nguyen M, Woo EJ, Winiecki S, Scott J, Martin D, et al. Can Natural Language 
Processing Improve the Efficiency of Vaccine Adverse Event Report Review? Methods Inf Med. 
2016; 55:144–50. [PubMed: 26394725] 

152. Tamang S, Patel MI, Blayney DW, Kuznetsov J, Finlayson SG, Vetteth Y, et al. Detecting 
unplanned care from clinician notes in electronic health records. J Oncol Pract. 2015; 11:e313–9. 
[PubMed: 25980019] 

153. Hsu W, Han SX, Arnold CW, Bui AA, Enzmann DR. A data-driven approach for quality 
assessment of radiologic interpretations. J Am Med Inform Assoc. 2016; 23:e152–6. [PubMed: 
26606938] 

154. Smith-Bindman R, Miglioretti DL, Larson EB. Rising use of diagnostic medical imaging in a 
large integrated health system. Health Affairs. 2008; 27:1491–502. [PubMed: 18997204] 

155. Ip IK, Mortele KJ, Prevedello LM, Khorasani R. Repeat abdominal imaging examinations in a 
tertiary care hospital. American Journal of Medicine. 2012; 125:155–61. [PubMed: 22269618] 

156. Mehrotra A, Harkema H. Development and validation of a natural language processing computer 
program to measure the quality of colonoscopy. J Gen Intern Med. 2011; 26:S339–S40.

Wang et al. Page 24

J Biomed Inform. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



157. Raju GS, Ross WA, Lum P, Lynch PM, Slack RS, Miller E, et al. Natural language processing 
(NLP) as an alternative to manual reporting of colonoscopy quality metrics. Gastrointest Endosc. 
2014; (1):AB116–AB7.

158. Raju GS, Lum PJ, Slack RS, Thirumurthi S, Lynch PM, Miller E, et al. Natural language 
processing as an alternative to manual reporting of colonoscopy quality metrics. Gastrointest 
Endosc. 2015; 82:512–9. [PubMed: 25910665] 

159. Gawron AJ, Pacheco JA, Scuba B, Chapman W, Kaltenbach T, Thompson WK. Quality 
improvement natural language processing colonoscopy evaluation tool (QUINCE): A flexible, 
portable tool to extract pathology results for colonoscopy quality reporting. Gastroenterology. 
2016; (1):S637.

160. Gundlapalli AV, Carter ME, Divita G, Shen S, Palmer M, South B, et al. Extracting Concepts 
Related to Homelessness from the Free Text of VA Electronic Medical Records. AMIA Annu 
Symp Proc. 2014; 2014:589–98. [PubMed: 25954364] 

161. Ruud KL, Johnson MG, Liesinger JT, Grafft CA, Naessens JM. Automated detection of follow-up 
appointments using text mining of discharge records. Int J Qual Health Care. 2010; 22:229–35. 
[PubMed: 20348557] 

162. Abell M. SAS Text Miner: CreateSpace Independent Publishing Platform. 2014

163. Were MC, Gorbachev S, Cadwallader J, Kesterson J, Li X, Overhage JM, et al. Natural language 
processing to extract follow-up provider information from hospital discharge summaries. AMIA 
Annu Symp Proc. 2010; 2010:872–6. [PubMed: 21347103] 

164. Rubin D, Wang D, Chambers DA, Chambers JG, South BR, Goldstein MK. Natural language 
processing for lines and devices in portable chest x-rays. AMIA Annu Symp Proc. 2010; 
2010:692–6. [PubMed: 21347067] 

165. Hao T, Liu H, Weng C. Valx: A System for Extracting and Structuring Numeric Lab Test 
Comparison Statements from Text. Methods Inf Med. 2016; 55:266–75. [PubMed: 26940748] 

166. Garvin JH, Elkin PL, Shen S, Brown S, Trusko B, Wang E, et al. Automated quality measurement 
in Department of the Veterans Affairs discharge instructions for patients with congestive heart 
failure. J Healthc Qual. 2013; 35:16–24.

167. Garvin JH, DuVall SL, South BR, Bray BE, Bolton D, Heavirland J, et al. Automated extraction 
of ejection fraction for quality measurement using regular expressions in Unstructured 
Information Management Architecture (UIMA) for heart failure. J Am Med Inform Assoc. 2012; 
19:859–66. [PubMed: 22437073] 

168. Meystre SM, Kim Y, Gobbel GT, Matheny ME, Redd A, Bray BE, et al. Congestive heart failure 
information extraction framework for automated treatment performance measures assessment. J 
Am Med Inform Assoc. 2016; 24:e40–e6.

169. Friedman C, Rindflesch TC, Corn M. Natural language processing: state of the art and prospects 
for significant progress, a workshop sponsored by the National Library of Medicine. J Biomed 
Inform. 2013; 46:765–73. [PubMed: 23810857] 

170. Chiticariu L, Li Y, Reiss FR. Rule-based information extraction is dead! long live rule-based 
information extraction systems! EMNLP. 2013:827–32.

171. Bozkurt S, Gimenez F, Burnside ES, Gulkesen KH, Rubin DL. Using automatically extracted 
information from mammography reports for decision-support. J Biomed Inform. 2016; 62:224–
31. [PubMed: 27388877] 

172. Rochefort CM, Verma AD, Eguale T, Lee TC, Buckeridge DL. A novel method of adverse event 
detection can accurately identify venous thromboembolisms (VTEs) from narrative electronic 
health record data. J Am Med Inform Assoc. 2015; 22:155–65. [PubMed: 25332356] 

173. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521:436–44. [PubMed: 26017442] 

174. Vellido A, Martín-Guerrero JD, Lisboa PJ. Making machine learning models interpretable. 
ESANN. 2012:163–72.

175. Riloff, E., Wiebe, J., Wilson, T. Learning subjective nouns using extraction pattern bootstrapping. 
Proceedings of the seventh conference on Natural language learning at HLT-NAACL 2003-
Volume 4: Association for Computational Linguistics; 2003; p. 25-32.

176. Riloff E, Jones R. Learning dictionaries for information extraction by multi-level bootstrapping. 
AAAI/IAAI. 1999:474–9.

Wang et al. Page 25

J Biomed Inform. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



177. Mintz, M., Bills, S., Snow, R., Jurafsky, D. Distant supervision for relation extraction without 
labeled data. Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 
4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 2-
Volume 2: Association for Computational Linguistics; 2009; p. 1003-11.

178. Takamatsu, S., Sato, I., Nakagawa, H. Reducing wrong labels in distant supervision for relation 
extraction. Proceedings of the 50th Annual Meeting of the Association for Computational 
Linguistics: Long Papers-Volume 1: Association for Computational Linguistics; 2012; p. 721-9.

179. Weld DS, Hoffmann R, Wu F. Using wikipedia to bootstrap open information extraction. ACM 
SIGMOD Record. 2009; 37:62–8.

180. Kalra D, Singleton P, Milan J, Mackay J, Detmer D, Rector A, et al. Security and confidentiality 
approach for the Clinical E-Science Framework (CLEF). Methods Inf Med. 2004; 44:193–7.

181. Malik, MB., Ghazi, MA., Ali, R. Privacy preserving data mining techniques: current scenario and 
future prospects. Computer and Communication Technology (ICCCT), 2012 Third International 
Conference on: IEEE; 2012; p. 26-32.

182. Gardner J, Xiong L. An integrated framework for de-identifying unstructured medical data. Data 
Knowl Eng. 2009; 68:1441–51.

183. Ohno-Machado L, Bafna V, Boxwala AA, Chapman BE, Chapman WW, Chaudhuri K, et al. 
iDASH: integrating data for analysis, anonymization, and sharing. J Am Med Inform Assoc. 
2012; 19:196–201. [PubMed: 22081224] 

184. Weng C, Wu X, Luo Z, Boland MR, Theodoratos D, Johnson SB. EliXR: an approach to 
eligibility criteria extraction and representation. J Am Med Inform Assoc. 2011; 18:i116–i24. 
[PubMed: 21807647] 

Appendix A: Search Strategy

A.1 Ovid

Database(s): Embase 1988 to 2016 Week 36, Ovid MEDLINE(R) In-Process & Other Non-

Indexed Citations and Ovid MEDLINE(R) 1946 to Present

Search Strategy:

No. Searches Results

1 (clinic or clinical or “electronic health record” or “electronic health records”).mp. 10,297,015

2 (“coreference resolution” or “co-reference resolution” or “information extraction” or “named 
entity extraction” or “named entity recognition” or “natural language processing” or “relation 
extraction” or “text mining”).mp.

10,981

3 “information retrieval”.mp. 29,773

4 (1 and 2) not 3 3,245

5 limit 4 to English language 3,204

6 limit 5 to yr=“2009 -Current” 2,480

7 limit 6 to (editorial or erratum or letter or note or comment) [Limit not valid in Embase, Ovid 
MEDLINE(R), Ovid MEDLINE(R) In-Process; records were retained]

36

8 6 not 7 2,444

9 remove duplicates from 8 1,651

Wang et al. Page 26

J Biomed Inform. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A.2 Scopus

1 TITLE-ABS-KEY(clinic OR clinical OR “electronic health record” OR “electronic health records”)

2 TITLE-ABS-KEY(“coreference resolution” OR “co-reference resolution” OR “information extraction” OR 
“named entity extraction” OR “named entity recognition” OR “natural language processing” OR “relation 
extraction” OR “text mining”)

3 TITLE-ABS-KEY(“information retrieval”)

4 PUBYEAR AFT 2008 AND LANGUAGE(english)

5 (1 and 2 and 4) and not 3

6 DOCTYPE(le) OR DOCTYPE(ed) OR DOCTYPE(bk) OR DOCTYPE(er) OR DOCTYPE(no) OR 
DOCTYPE(sh)

7 5 and not 6

8 PMID(0*) OR PMID(1*) OR PMID(2*) OR PMID(3*) OR PMID(4*) OR PMID(5*) OR PMID(6*) OR 
PMID(7*) OR PMID(8*) OR PMID(9*)

9 7 and not 8

A.3 Web of Science

1 TOPIC: (clinic OR clinical OR “electronic health record” OR “electronic health records”) 

AND TOPIC: (“coreference resolution” OR “co-reference resolution” OR “information 

extraction” OR “named entity extraction” OR “named entity recognition” OR “natural 

language processing” OR “relation extraction” OR “text mining”) AND LANGUAGE: 

(English) AND DOCUMENT TYPES: (Article OR Abstract of Published Item OR Book 

OR Book Chapter OR Meeting Abstract OR Proceedings Paper OR Review) Indexes=SCI-

EXPANDED Timespan=2009–2016

2 TS=(“information retrieval”)

3 1 NOT 2

4 PMID=(0* or 1* or 2* or 3* or 4* or 5* or 6* or 7* or 8* or 9*)

5 3 NOT 4

A.4 ACM Digital Library

+clinic +”information extraction” -”information retrieval”

+clinical +”information extraction” -”information retrieval”

+”electronic health record” +”information extraction” -”information 

retrieval”

+”electronic health records” +”information extraction” -”information 

retrieval”

+clinic +”coreference resolution” -”information retrieval”

+clinical +” coreference resolution” -”information retrieval”

+”electronic health record” +” coreference resolution” -”information 

retrieval”

+”electronic health records” +” coreference resolution” -”information 

retrieval”
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+clinic +”co-reference resolution” -”information retrieval”

+clinical +”co-reference resolution” -”information retrieval”

+”electronic health record” +”co-reference resolution” -”information 

retrieval”

+”electronic health records” +”co-reference resolution” -”information 

retrieval”

+clinic +”named entity extraction” -”information retrieval”

+clinical +”named entity extraction” -”information retrieval”

+”electronic health record” +”named entity extraction” -”information 

retrieval”

+”electronic health records” +”named entity extraction” -”information 

retrieval”

+clinic +”named entity recognition” -”information retrieval”

+clinical +”named entity recognition” -”information retrieval”

+”electronic health record” +”named entity recognition” -”information 

retrieval”

+”electronic health records” +”named entity recognition” -”information 

retrieval”

+clinic +”natural language processing” -”information retrieval”

+clinical +”natural language processing” -”information retrieval “

+”electronic health record” +”natural language processing” -”information 

retrieval”

+”electronic health records” +”natural language processing” -”information 

retrieval”

+clinic +”relation extraction” -”information retrieval”

+clinical +”relation extraction” -”information retrieval “

+”electronic health record” +”relation extraction” -”information retrieval”

+”electronic health records” +”relation extraction” -”information retrieval”

+clinic +”text mining” -”information retrieval”

+clinical +”text mining” -”information retrieval “

+”electronic health record” +”text mining” -”information retrieval”

+”electronic health records” +”text mining” -”information retrieval”

All limited from 2009 to present.
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Highlights

• A literature review for clinical information extraction applications.

• 1,1917 publications were identified for title and abstract screening.

• 263 publications were fully reviewed in terms of publication venues and data 

sources, clinical IE tools, methods, and applications.

• Understand gap between clinical studies using EHR data and studies using 

clinical IE, and provide potential solutions to bridge the gap.
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Figure 1. 
The number of natural language processing (NLP)-related articles compared to the number 

of electronic health record (EHR) articles from 2002 through 2015.
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Figure 2. 
Article selection flow chart.
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Figure 3. 
Categorization of publication venues.
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Figure 4. 
Distribution of included studies, stratified by category and year (from January 1, 2009, to 

September 6, 2016).
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Figure 5. 
The distribution of studies in terms of clinical narrative data utilized per year.
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Table 1

The most frequently used note types for clinical notes (top 5) and diagnostic reports (top 3) and the 

corresponding brief descriptions and number of papers in the included publications.

Note Type Brief Description No. of Papers

Clinical notes

Discharge summaries A document that describes the outcome of a patient’s hospitalization, 
disposition, and provisions for follow-up care. 26

Progress notes A document that describes a patient’s clinical status or achievements during 
the course of a hospitalization or over the course of outpatient care. 15

Admission notes

A document that describes a patient’s status (including history and physical 
examination findings), reasons why the patient is being admitted for inpatient 
care to a hospital or other facility, and the initial instructions for that patient’s 
care.

9

Operative notes A document that describes the details of a surgery. 5

Primary care notes A document that describes the details of an outpatient during a primary care. 3

Diagnostic reports

Radiology reports Results of radiological scans and X-ray images of various parts of the patient’s 
body and specific organs. 43

Pathology reports Results of pathological examinations of tissue samples and tissues of organs 
removed during surgical procedures. 22

Colonoscopy reports Results of a colonoscopy. 4
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Table 3

The most frequently used machine learning methods (top 6) and the corresponding number of papers in the 

included publications.

Method No. of Papers

Support Vector Machine (SVM) 26

Logistic regression (LR) 11

Conditional random field (CRF) 9

Decision Tree (DT) 8

Naïve Bayes (NB) 6

Random Forest (RF) 4
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Table 5

Application areas of clinical IE and the corresponding number of publications.

Application Areas No. of Papers

Disease study areas

Neoplasms 27

Diseases of the circulatory system 23

Diseases of the digestive system 12

Diseases of the nervous system 12

Endocrine, nutritional and metabolic diseases, and immunity disorders 12

Mental disorders 12

Diseases of the respiratory system 11

Injury and poisoning 8

Diseases of the musculoskeletal system and connective tissue 6

Symptoms, signs, and ill-defined conditions 5

Infectious and parasitic diseases 3

Diseases of the genitourinary system 2

Diseases of the blood and blood-forming organs 1

External causes of injury and supplemental classification 1

Drug-related studies

Adverse drug reaction 3

Medication extraction 9

Drug exposure 2

Drug-treatment classification 1

Dosage extraction 3

Clinical workflow optimization

Adverse events 5

Quality control 8

Patient management 6

Measurement value extraction 8
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