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Abstract

Monotherapy clinical trials with mutation-targeted kinase inhibitors, despite some success in other 

cancers, have yet to impact glioblastoma (GBM). Besides insufficient blood-brain-barrier 

penetration, combinations are key to overcoming obstacles such as intratumoral heterogeneity, 

adaptive resistance, and the epistatic nature of tumor genomics that cause mutation-targeted 

therapies to fail. With now hundreds of potential drugs, exploring the combination space clinically 

and pre-clinically is daunting. We are building a simulation-based approach that integrates patient-

specific data with a mechanistic computational model of pan-cancer driver pathways (receptor 

tyrosine kinases, RAS/RAF/ERK, PI3K/AKT/mTOR, cell cycle, apoptosis, and DNA damage) to 

prioritize drug combinations by their simulated effects on tumor cell proliferation and death. Here 

we illustrate a first step, tailoring the model to 14 GBM patients from The Cancer Genome Atlas 

defined by an mRNA-seq transcriptome, and then simulating responses to three promiscuous 

FDA-approved kinase inhibitors (bosutinib, ibrutinib, cabozantinib) with evidence for blood-brain-

barrier penetration. The model captures drug binding to primary and off-targets based on 

published affinity data, and simulates responses of 100 heterogeneous tumor cells within a patient. 

Single drugs are marginally effective or even counter-productive. Common copy number 

alterations (PTEN loss, EGFR amplification, NF1 loss) have negligible correlation with single 

drug or combination efficacy, reinforcing the importance of post-genetic approaches that account 

for kinase inhibitor promiscuity to match drugs to patients. Drug combinations tend to be either 

cytostatic or cytotoxic, but seldom both, highlighting the need for considering targeted and non-

targeted therapy. Although we focus on GBM, the approach is generally applicable.
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Introduction

Glioblastoma (GBM—see a list of abbreviations in Supplementary Table 1) is a highly 

invasive and deadly brain tumor with ~1 year median survival rates and few efficacious 

treatments1. It is the most common malignant brain tumor with the poorest prognosis2. 

Aberrant tyrosine kinase signaling is a hallmark of GBM, and is present in 88% of patients3. 

Over 140 non-synonymous somatic mutations of kinases in GBM have been documented4, 

nearly 20 kinase genes serve as prognostic biomarkers for tumor recurrence due to their 

enrichment5, and the four GBM transcriptional subtypes (proneural, classical, mesenchymal, 

and neural6) are statistically associated with distinctive genetic aberrations in kinases or 

genes that functionally interact with kinases (PDGFRA mutations, EGFR amplification, 

PTEN loss, NF1 deletions)7.

In other cancer types, oncogene-targeted small molecule kinase inhibitors, like imatinib for 

BCR-ABL8–13 in leukemias, have transformed chemotherapy by improving outcomes and 

providing treatments that are matched to specific mutations. However, such precision 

medicine approaches are not always efficacious. In some cases, mutation-matched patients 

do not respond to the drug14–17, or alternatively, resistance develops16,18–21. Moreover, 

monotherapy can even activate the target pathway, depending on cellular context22,23. In 

GBM, such small molecule kinase inhibitors have not been efficacious, due to in part to a 

lack of brain-penetration24, but also perhaps to intra-tumoral, spatial, genomic, and 

phenotypic heterogeneity of the disease25.

Some kinase inhibitors are selective for the primary target, but many bind to a large 

proportion of the kinome at therapeutically-relevant concentrations26. Conclusive 

determination of whether such off-target activity contributes to efficacy is difficult. However, 

the facts that sorafenib (primary targets of VEGFR, PDGFR and RAF family kinases) and 

sunitinib (primary targets of VEGFR and PDGFR family kinases) (i) have indications for 

and clinical efficacy against several cancer types which may or may not involve these 

primary targets (not counting off-label use) (ii) have been shown, respectively, to bind 21% 

and 60% of the assayed catalytic kinome with Kd<3 μM26, and (iii) that cell viability IC50’s 

are often orders of magnitude above primary target Kd’s27,28, support this thought.
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Combination therapy is a logical and clinically-proven path forward. For example, in other 

cancer types, one can target two separate driver/resistance pathways29–33, or even the same 

pathway (e.g. Raf and MEK)34–36, an irrational genomic-based pharmacological approach. 

There are now at least 28 FDA-approved small molecule kinase inhibitors37 hitting varied on 

and off-targets. Rather than developing new kinase inhibitors, we aim to rationalize 

combination therapy with current drugs and maintain acceptable safety as toxicity can be 

severe for many kinase inhibitors38,39. There are nearly 400 two-way and over 3,000 three-

way combinations, not even considering doses, standard-of-care drugs, and the temporal 

order of drug administration. Obtaining clinical evidence to support such decision making is 

scientifically challenging, and may require new cross-company collaboration incentives.

The multiple basic and clinical observations lead us to hypothesize that a kinase network, 

rather than a single kinase of interest, will be a better therapeutic target in GBM, as well as 

other cancer types. Determining which inhibitors to administer to patients, in which 

combinations, and at what concentrations via traditional experimental means is time- and 

materials-prohibitive due to the hundreds of 2-way combinations that would need to be 

tested for currently available drugs. The current lack of success with single drug therapies, 

the unpredictable promiscuity of many kinase inhibitors, and the vast number of 

combinatorial experiments needed to find promising GBM treatments support the need for 

simulation approaches that can more rapidly account for all known drug-binding affinities to 

determine potential downstream effects of inhibitor administration.

In this work, we present a simulation-based approach towards choosing drug combinations 

in GBM. Namely, we integrate transcriptomic data from TCGA GBM patients with a 

mechanistic model of pan-cancer driver pathways we recently constructed40. This model 

predicts how multiple microenviromental signals such as growth factors influence stochastic 

proliferation and death of individual cells, in the presence of a variety of kinase inhibitor 

drugs. The combination of these two creates a “virtual patient” which can be used to 

simulate responses to multiple drugs. We illustrate this approach using three FDA-approved 

kinase inhibitors with evidence for blood-brain-barrier penetration41.

Results

Mechanistic Systems Pharmacology Model of Pan-Cancer Driver Pathways

We have recently developed a mechanistic model of pan-cancer driver pathways that predicts 

how varied doses of microenvironmental signals influence the dynamics of stochastic 

proliferation and death in single cells40. The model represents signaling through multiple 

receptor tyrosine kinases, proliferation and growth pathways (RAS/RAF/ERK; PI-3K/AKT/

mTOR), the cell cycle, DNA damage and apoptosis (Fig. 1). There are a total of 141 genes. 

Expression comprises epigenetics, transcription and translation for each gene, and captures 

stochastic gene expression that is important for heterogeneous responses to 

chemotherapy42,43. Some genes are functionally redundant, so the 141 mRNAs are summed 

during translation to create 102 “protein conglomerates” that represent functionally unique 

but genetically redundant proteins (e.g. ERK1 and ERK2 summed to ERK). It is important 

to note that genetic redundancy is with respect to modeled function, and we do not imply 

these genes are completely functionally redundant in all contexts44,45. The model is 
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composed of 1197 total species (genes, mRNAs, lipids, proteins, and post-translationally 

modified proteins/protein complexes). Besides stochastic gene expression, the model is a 

system of compartmental ordinary differential equations (ODEs).

The mechanism of action of multiple targeted and non-targeted anti-cancer drugs are 

represented in this model. This gives a direct interface to modeling drug action that allows 

for systems pharmacology applications to cancer precision medicine. This includes 

modeling the promiscuity of kinase inhibitors that are thought to be important for both 

efficacy and toxicity but are as yet very difficult to rationalize26. It is in this sense that such 

mechanistic descriptions have been labeled as enhanced pharmacodynamics (ePD) models. 

Such ePD models are of interest to improve our ability to predict patient-specific responses 

to complex drug combinations and regimens, particularly for diseases such as cancer with 

multivariate and idiosyncratic etiology46–49. Conveniently, most pharmacokinetic (PK) 

models are also based on ODEs, so coupling ePD models such as the one used here to 

existing or new PK models is straightforward. This allows not only in silico prioritization of 

drug choices, but also optimization of quantitative properties such as dosing and regimen 

timing that are of utmost importance in pharmacology but are difficult to inform via genetic 

methods. In this work, we focus on short-term single constant doses and three targeted 

therapies with promiscuity across multiple modeled kinases, but extensions to these 

directions are a logical next step that is within close reach (as we have done before50).

While models such as these are often seen as moving in a positive direction for personalized 

cancer therapy, we must emphasize that such methods are still in very early stages. Much 

additional work is required to improve the fidelity and predictive capacity of the models 

across biological contexts and cell types, and even within a single cell type. This includes 

not only refinement of the already large scope of the current model, but also extension to 

other biologically important mechanisms and pathways (e.g. metabolism, hypoxia, immune 

function and heterotypic interactions), and quantification of how uncertainty in both model 

parameters and structure propagates into uncertainty in model predictions for precision 

medicine.

Initializing a Virtual Cohort

The model described above was developed in a non-transformed epithelial cell line context, 

MCF10A. It was trained upon expression data obtained from a serum- and growth factor-

starved state, and from a multitude of perturbation response data including biochemical and 

phenotypic measurements following various doses and combination of growth factors and 

drugs. Our initialization procedure takes the simulated cell from this starting state to one that 

best represents an individual patient’s tumor cell behavior, given the available data (Fig. 2). 

We perform these simulations on a deterministic “average” cell, and introduce stochastic 

gene expression at a later stage.

The first step is defining the absolute expression levels of mRNA and protein from the 

transcriptomic data from a patient. To do this, we first convert mRNA-seq data in units of 

FPKM into molecules/cell40,51. Although there are some transcripts that may have bias from 

such linearity, in general it has been reported FPKM metrics show a large linear range of 

detection52. Ideally, unique molecular identifier-based quantification would be used53,54. We 
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define expected protein levels from these mRNA levels given protein-to-mRNA ratios 

calculated from our MCF10A datasets40. It is often assumed that protein does not correlate 

well with mRNA, but that is on a genome wide basis. It has been now shown that for a 

particular gene, the ratio of protein to mRNA is typically constant, although this ratio can 

vary widely across the genome due primarily to translational regulation51,55,56. Protein 

abundance in cell lines and tissues is now thought to be largely predictable using gene-

specific ratios of protein-to-mRNA levels in lieu of direct protein level measurements51. The 

ratio of protein-to-mRNA levels for a particular gene but across tissue types is largely 

conserved, and while transcriptomic data may allow for accurate estimation of unknown 

protein abundances, technical variation within data may limit accurate predictability56. 

However, though most genes have this predictability property, not all genes will; there may 

be important notable exceptions which have yet to be fully elucidated57. Thus, although our 

modeling approach necessarily predicts protein levels from mRNA levels using gene-

specific ratios, a largely reasonable approximation, future work must investigate the degree 

to which this is suitable for particular genes.

Once expected protein levels are determined, we set these initial conditions in the model and 

let species equilibrate in a serum-starved context by simulating the model for a long time 

scale (~1000 hours). Because signaling processes alter protein complexes, post-translational 

modifications, and protein stability, the initial protein levels do not match the expected 

protein levels. To reconcile these differences, we adjust the effective translation rate 

constants and repeat the process until agreement is achieved (Fig. 3A). This step is routinely 

carried out after most steps in the initialization.

Once the model reflects the patient expression context, there are several empirical 

parameters we vary to ensure the cell cycle and apoptosis phenotypes are responsive in an 

appropriate way. We approximate the level of basal cyclin D synthesis that brings the 

simulated cell to the brink of cycling (Fig. 3B–C), and likewise the basal caspase 8 cleavage 

rate that brings the cell to the brink of death (Fig. 3D–E). The biological rationale for this is 

that the average cell at this point has not incorporated any activating mutations, nor are there 

any growth factors in the microenvironment, so they should on average be primed to enter 

the cell cycle or to undergo apoptosis with the appropriate stimuli. This assumption is very 

hard to substantiate with experiments, but is nevertheless necessary to ensure a responsive 

phenotypic simulation, the results of which without this assumption are largely non-sensical. 

We noticed that in some patients, apoptosis can proceed gradually as opposed to in a switch-

like manner as is commonly seen58; future work will further tune the caspase positive 

feedback loop responsible for such behavior to ensure qualitative agreement.

The next step is to move the simulated cell from a serum-starved cell culture situation into a 

tumor microenvironment. First, we set the cellular and extracellular volumes equal, as 

opposed to a very large extracellular volume as in cell culture. Next, we use the mRNA-seq 

data to inform the levels of genetically encoded growth factors. There are little data available 

to constrain the conversion of transcript levels to extracellular growth factor concentrations. 

Therefore we must invoke biologically reasonable assumptions. We assume that the 

transcript levels for a particular ligand, when averaged across the entire virtual patient 

population, gives an extracellular growth factor concentration equal to the affinity for its 
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cognate receptor (or in the case of multi-targeted ligands, to its highest affinity receptor). 

Then, a patient with less than average ligand transcript levels would have less ligand 

concentration than said affinity, and vice versa. This allows the range of ligand expression 

levels across patients to proportionally affect the downstream signaling in a biologically 

consistent manner. This does not yet take into account mechanisms such as sequestration 

mediating by extracellular growth factor binding proteins, but nevertheless is a key step 

towards capturing growth factor microenvironment. After this step, the simulated cell is now 

being stimulated with a variety of microenvironment signals, which turns on signaling 

pathways (Fig. 3F–G).

With signaling pathways turned on, we now revisit the same cell cycle and apoptosis tuning 

steps to find the critical cyclin D synthesis and basal caspase 8 cleavage rates that bring the 

simulated cell to the brink of the cell fates. When stochastic simulations are enacted 

subsequently, this will lead to a fraction of the population cycling and dying, as is 

ubiquitously seen in tumors.

We applied this procedure to initialize 14 patients with varied transcriptomic aberrations that 

are likely driver alterations (Table 1). Certainly, point and other mutations are widely 

important in GBM, but as an illustration of the approach here we focus on transcriptomic 

tailoring, limiting ourselves to this virtual patient subset that are likely to not be driven by 

such mutations, but rather the transcriptomic alterations that we are taking into account. We 

note here that many copy number and other alterations are integrated at the level of the 

transcriptome. Lastly, we include a step to initialize the levels of basal DNA damage and its 

repair by enzyme levels given by the mRNA-seq data. However, because in this study we are 

only considering kinase inhibitors and not DNA damaging agents, it is not immediately 

relevant.

Creating an Intratumorally Heterogeneous Population of Cells for Each Virtual Patient

The initialization procedure above creates a model variant for every considered patient 

mRNA-seq data set. The model at this point corresponds to an average tumor cell. To model 

intratumoral heterogeneity arising from stochastic gene expression, we now create 100 

separate simulations starting from this initial average cell (Fig. 3). Each simulation proceeds 

along a different stochastic gene expression trajectory for 72 hours, resulting in 100 

simulated tumor cells for each patient, now randomized by stochastic gene expression. This 

results in heterogeneous cell cycle entry and in some cases apoptosis (top panels in Fig. 4, 

although this particular virtual patient showed no cell death events), as well as a spectrum of 

signaling activities (e.g. ERK and AKT activation—bottom panels in Fig. 4). The net result 

of this step is an emulation of intratumoral heterogeneity within a particular genetic 

subclone. If assumptions and/or data are available to suggest the presence of multiple 

subclones within a tumor, then one could simply create a different heterogeneous population 

for every subclone.

Modeling Promiscuous Action of Blood-Brain-Barrier Penetrant Kinase Inhibitors

A recent review highlights targeted kinase inhibitors that have evidence for blood-brain-

barrier (BBB) penetration41. While such BBB penetration is often considered a liability for 
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chemotherapeutics due to the sensitivity of neurons, the lack of BBB penetration is thought 

to be a major limiting factor for effective treatment of GBM (and brain metastases)25. We 

therefore identified three FDA-approved anti-cancer kinase inhibitors to focus on in this 

study: bosutinib (BOS), ibrutinib (IBR) and cabozantinib (CAB) (Table 2). The primary 

targets of these compounds are BCR-ABL (BOS), BTK (IBR), MET/VEGFR (CAB), which 

show little to no overlap with known genetic driver events in GBM, so using them for GBM 

is nonsense from a genetic standpoint. However, literature data for the promiscuity of these 

inhibitors59,60 elucidates why they may have efficacy in GBM, as they bind to and inhibit a 

variety of kinases within modeled pan-cancer pathways (Table 2). Furthermore, most of 

these kinases are connected to each other through the pan-cancer network architecture, so it 

is feasible that varied inhibition of multiple kinases may propagate through the network to 

achieve desired pharmacodynamic effects, even if direct genetic/primary or off-targets of 

drugs are not of interest. We modified the original model such that these three drugs, when 

present, bind to and sequester/inhibit the relevant kinase targets with the experimentally 

reported affinities (as shown in Table 2).

Using the Virtual Cohort to Screen Drug Combinations in silico

With the virtual GBM patient cohort, 100 heterogeneous cells for each patient, and an 

extended model for the promiscuous pharmacodynamics of BOS, IBR and CAB in hand, we 

now performed simulations to evaluate the potential efficacy of single drugs or two-way 

drug combinations on the virtual cohort. While as mentioned above, the dynamic and 

differential equation nature of our model allows interfacing with pharmacokinetics models, 

we here only investigate responses to an initial long-lasting high dose (10 uM—on the high 

end of a typical range for kinase inhibitor plasma concentration61) of the drugs or drug 

combinations, leaving this more complex dynamic optimization of dosing and regimens for 

future studies.

For every patient and drug, the entire range of biochemistry represented in the model is 

accessible; we focus on cell division (Cyclin A), apoptosis (cleaved PARP/PARP), and two 

widely relevant biomarkers for controlling cell division and death, doubly phosphorylated 

ERK (ppERK) and AKT (ppAKT) (Fig. 5A). From each of these simulated biochemical 

profiles across the heterogeneous cell population, we count the number of cell divisions 

(Cyclin A peaks—see Methods) and cell death events (cPARP > PARP) (Fig. 5B). For this 

particular example of a single virtual patient with PTEN loss, BOS and CAB monotherapy 

similarly inhibit ppERK, while IBR has little effect on either the ppERK or ppAKT 

biomarkers. Phenotypically, however, BOS accelerates the cell cycle, while CAB inhibits it. 

IBR, despite its inability to significantly inhibit either biomarker, does impact the cell cycle, 

but not cell death. These single agents are largely inferior to the two-way combinations, of 

which BOS+CAB achieves the highest combined effects on cell cycle and cell death. This 

effect correlates with the largest ppERK downregulation.

Across all 14 virtual patients, the effect of these three drugs or drug combinations is 

typically limited to either cytostatic or cytotoxic, but seldom both (Fig. 6A), as opposed to 

the highlighted virtual patient above that showed effects on the cell cycle and cell death. 

There is not a discernable pattern with respect to the type of transcriptomic aberrations (Fig. 
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6B). While this virtual cohort has a limited number of patients and we have not yet 

comprehensively addressed mutations, this result is consistent with the generally 

idiosyncratic response of GBM subtypes to a range of therapies25. Single drugs are typically 

ineffective both for reducing cycling and inducing death, and can even exacerbate the 

situation by accelerating the cell cycle or inhibiting death (Fig. 6B–C). However, if single 

drugs are ineffective, then the combinations also tend to be ineffective for a particular 

phenotypic modality (proliferation or death). When single drugs show some efficacy, 

combinations show increased efficacy. IBR+CAB is the predicted combination of choice 

across most patients that either maximizes cell death or minimizes cell proliferation. 

However, since none of these kinase inhibitor treatments can strongly induce both cytotoxic 

and cytostatic effects, additional combinations with more drugs are needed. Moreover, 

exploration of longer time scales over more complex drug regimen properties considering 

dose and dynamics, along with pharmacokinetic profiles, will be informative to understand 

the putative GBM virtual cohort responses to these drugs and their combinations more fully.

Discussion

Aberrant tyrosine kinase signaling in GBM has proven difficult to successfully target in 

clinical trials with single kinase inhibitors, so an efficient method for determining 

efficacious, and perhaps even optimal combinations of brain-penetrant inhibitors is needed 

on a patient-specific basis. We represented the mechanism of action of three FDA approved 

brain-penetrant anti-cancer kinase inhibitor drugs (Bosutinib, Ibrutinib, and Cabozantinib), 

accounting for their promiscuity, in a mechanistic computational model of multiple glioma 

driver pathways. Using this same model then tailored to transcriptomic data from TCGA 

glioma patients, we simulated patient-specific responses to single doses or combinations of 

drugs. Our preliminary virtual cohort simulations showed observable differences across 

patients, indicating that expanding upon these methods and incorporating more drugs could 

be a viable method for predicting efficacious drug(s) for a specific patient based on the 

transcriptomic makeup of their tumor.

Combining the details of mechanistic modeling with genomics, and drug pharmacokinetics 

and pharmacodynamics, we developed an enhanced pharmacodynamic (ePD) model46, a 

modeling approach that has successfully described antibody-ligand interactions62 and the 

VEGFR pathway in cancer50,63. ePD models consider drug effects not from the typical 

empirical Emax sigmoid model, but rather from a first-principles and mechanistic perspective 

where possible47. Thus, ePD models leverage prior knowledge of basic biological 

mechanisms of the target cells or systems of interest to make predictions of drug effect. Such 

a model simulates how all considered species will respond to drug treatments, so while key 

outputs can be analyzed (such as proliferation or apoptosis), drug effects on every modeled 

protein can be monitored to explore hypotheses for other downstream or off-target effects. 

Fittingly, such modeling typically also gives insight into these mechanisms when compared 

to new data, such as those encountered during pharmacological studies. This comparison 

highlights when current mechanistic understanding needs to be refined to account for new 

data.
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Physiologically-based pharmacokinetic (PBPK) modeling is another common mechanistic 

approach to predict drug behavior in humans, but from the drug concentration dynamics 

standpoint. They incorporate physiologic parameters in the form of different compartments 

corresponding to different organs in the body connected by blood circulation to guide drug 

selection and dosing64,65. PBPK models have been utilized in drug discovery for candidate 

selection, risk simulation, dosing frequency and determining which organ systems will be 

affected by the drugs.64,65 They are in principle straightforward to couple with ePD models 

since they are all primarily based on differential equation formalism, although this is beyond 

the scope of the current work. We envision such coupling to eventually be a powerful 

predictive tool in both drug development and precision medicine.

We defined 14 virtual patients from TCGA transcriptomic profiles to screen for drug 

combinations that maximize apoptosis and/or minimize cell proliferation. None of the 

combinations were antagonistic with respect to apoptosis and proliferation. Efficacious 

single drugs, when combined, induced equal or greater cell death and equal or lower 

proliferation. Such efficacy interactions were not quite additive nor synergistic. Within 

simulation results, we noted that typically if one cell of a heterogenous simulated tumor 

were sensitive to the first drug, it is likely sensitive to the second. Thus, addition of more 

drugs seems to increase the likelihood of a new cell becoming sensitive to therapy. With the 

incorporation of more drugs in future simulations, perhaps greater additive or synergistic 

effects will become apparent as different subclones within the tumor are targeted. Targeting 

such subclonal heterogeneity is thought to be a major key to treating not only gliomas, but 

many cancer types66,67,7.

Two of the virtual patients’ cells (Patients 1 and 2) never underwent apoptosis in the 

presence or absence of drugs, but also maintained low levels of cell division, even 

decreasing in the presence of drugs, particularly the combinations. Patients 1 and 2 exhibited 

PDGFR/PDGF and EIF4E/RSK transcriptomic alterations, respectively. Cabozantinib, with 

a very high binding affinity for PDGFRA, has the greatest impact on decreasing 

proliferation in Patient 1 who is characterized by highly elevated PDGFRA levels. Patient 2, 

exhibiting higher levels of RSK/EIF4E, responded best to Ibrutinib, which had a low binding 

affinity for RSK, and high affinity for EGFR, which when inhibited has been shown to 

decrease EIF4E levels, thus resulting in decreased apoptotic resistance68. This is perhaps 

why simulations indicate increased apoptosis in Patient 2 following greater EGFR inhibition. 

Five of the virtual patients (3, 6, 8, 9, and 14) showed no changes in apoptosis following 

drug treatment, but did show differences in cell division events. The two patients from this 

subset with EGFR amplifications (9, 14) both exhibited the weakest response to the 

Bosutinib/Ibrutinib combination, and responded best when Cabozantinib was present. The 

other two EGFR amplification patients (4,11) showed greatest cell death in the presence of 

Cabozantinib. Cabozantinib and Ibrutinib both bind EGFR, which could explain their 

success in treating patients with EGFR amplifications. Ibrutinib is not as successful as 

Cabozantinib in these patients, perhaps because Cabozantinib also strongly binds MET and 

MAP2K1 (MEK1), the latter of which is downstream of both EGFR and MET, thus shutting 

down EGFR signaling more completely than Ibrutinib. The three patients with NF1 loss (5, 

6, and 13) all responded best to the combination of Ibrutinib and Cabozantinib, with either 

increased apoptosis (5, 13) or decreased proliferation (6). Both Ibrutinib and Cabozantinib 
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bind to BRAF and CRAF, and Cabozantinib binds to MEK1 (as mentioned above). These 

are all part of the RAS pathway which is upregulated as a result of NF1 loss, leading to 

increased cell survival and proliferation69, likely explaining the success of this inhibitor 

combination in combatting the upregulation of the RAS pathway. In the four patients with 

decreased PTEN levels (3, 7, 8, and 12), Bosutinib treatment resulted in the worst outcome 

as measured by both cell proliferation and apoptosis. Bosutinib has the greatest affinity for 

MEK, but the anti-tumor properties of MEK inhibition are impaired in patients with PTEN 

loss70, which may explain these simulation results. The mechanistic nature of our modeling 

approach allows reasoning about such phenomena on a patient-specific basis which is 

difficult to envision a priori.

VEGF is an important mediator of angiogenesis in GBM71, a highly vascularized tumor72. 

VEGF binding to VEGFR transduces signals to the PI3K/Akt pathway73, an important 

cancer-promoting pathway controlling aspects of cell survival, cycling, and growth that is 

frequently altered in tumors. Our pan-cancer model in its current state does not include 

VEGFR because MCF10A cells, the non-tumorigenic breast epithelial cells the model was 

originally built upon, do not express detectable levels of VEGFR74. VEGFR is 

predominantly expressed by vascular endothelial cells, but has also been seen in monocytes, 

macrophages, smooth muscle cells, trophoblasts, osteoblasts, and microglia75. It is the 

VEGFR expressing macrophages that have been shown to increase glioma angiogenesis, 

while the glioma tumor cells typically overexpress VEGF75. One of Cabozantinib’s primary 

targets is VEGFR, and while we model eleven additional high affinity targets, including 

MET and PDGFR (its two other primary targets), the model in its current state does not yet 

simulate Cabozantinib’s anti-tumor effects through angiogenesis. This is something which 

may require more complex models involving multiple cell types within the tumor in cases 

where VEGFR expression is not driving tumorigenesis from within tumor cells themselves.

The presented model is large and complex, but is certainly not complete, considering only 

pathways within the pan-cancer scope, and even then, it does not capture all known 

important aspects of cancer cell biology, some of which related to VEGFR is discussed 

above. As we expand upon the model and tailor it to cancer-specific cell lines, there are 

more molecular species it will need to include, but for the purposes of this preliminary study 

we aim to highlight the feasibility of our method, in part shown by the differences of 

relevant biological outputs between virtual patients and drug treatments, and general lack of 

efficacy of single kinase inhibitors. GBM-relevant kinases, as defined by targets of the brain-

penetrant kinase inhibitors41, will be added to the model to allow for more accurate 

predictions of drug effects. While additional cellular pathways, such as those involved in 

development or immunology/inflammation could add breadth to the model, for the purposes 

of cancer-specific kinase inhibition, the currently included pathways cover much of the 

genetically-determined important pathways. The model as yet does not account for 

mutations, as non-transformed and genetically-stable MCF10A cells have few significant 

mutations. Modeling effects of some well-studied mutations will be straightforward (e.g. K-

Ras G12V), but most mutations are not yet functionally well-understood. Accounting for 

effects of such ill-understood mutations is a major problem for the entire cancer field that 

will require collaboration between multiple types of experimentalists and modelers, such as 

those focused on protein structure and evolutionary biology76,77. Perhaps most importantly, 
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future work will integrate experimental models where both transcriptomic (and other) input 

data can be acquired in conjunction with follow up drug treatment studies to evaluate the 

fidelity of simulations.

Future simulations will include more brain-penetrant kinase inhibitors, and at varying doses, 

to examine efficacy as a function of dosing regimen. A critical piece of this will be using 

ePD models with with PK and PBPK models. This also allows simulating effects of drug 

timing and/or sequence for each patient. This concept can also be applied to different types 

of drugs beyond kinase inhibitors such as traditional chemotherapeutics and DNA damaging 

agents; in fact, etoposide and temozolomide are currently represented in the presented 

model, and novel BCL-2 inhibitors can also be modeled. Thus, we have only scratched the 

surface of what such mechanistic, ePD modeling approaches can begin to address in not 

only glioma but general precision medicine approaches to cancer. Much work is needed to 

bring such modeling approaches towards the confidence needed for clinical relevance, but 

nevertheless, there is significant potential for dealing with these complex issues that do not 

have current solutions.

Methods

Data Acquisition from TCGA

We downloaded 165 mRNA-seq profiles from TCGA (Supplementary Table 2). For each 

patient, we converted to molecules per cell as described previously40, which uses a 

proportionality of a particular gene product from all gene products, and an estimate of total 

transcript count as 400,000 per cell. The 14 patients used in the simulation studies here are 

indicated. The genes taken from this larger dataset for tailoring to the model are given in 

Supplementary Table 3.

Model Simulation

The pan-cancer model was obtained from a biorxiv pre-print40 and simulated using 

MATLAB and the sundials suite of solvers as described within that publication. We 

extended this model to include drug binding to kinase targets listed using mass action 

kinetics and parameters in Table 2.

Computational Specifications

The computational machine used was an MSI GE62 Apache Pro Laptop with 16GB DDR4 

RAM and an Intel Core i7 6700HQ 2.6 GHz Processor. Simulations were run on Matlab 

version 2014b running the signal processing toolbox for the function findpeaks.

Counting Cell Cycle and Apoptosis Events

Simulated Cyclin A dynamic profiles were used to count cell cycle events using the 

MATLAB function findpeaks with MinPeakProminence of four. Apoptosis events were 

defined by if cleaved PARP and PARP levels crossed.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Model Overview
RTK. proliferation and growth, cell cycle, apoptosis, DNA damage, and gene expression 

submodels, with genes, compartments and connections indicated.
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Figure 2. Major Steps of the Patient Initialization Procedure
The details of these steps are described in Methods and in Results. Briefly, the goal here is to 

take a simulated cell that is non-transformed and in a cell culture environment one step at a 

time towards a patient’s tumor cell in the tumor environment. This requires a careful and 

step-wise implementation of superimposing patient data onto the canonical biochemical 

model of pan-cancer driver pathways. Starting from the non-transformed and serum-starved 

state allows one to make reasoned expectations about simulated cell behavior along the steps 

of the initialization procedure. It also allows us to exclude patients for non-sensical or 

irreconcilable simulation behavior. Because in this study we only investigate kinase 

inhibitors in cell contexts driven by copy number alteration or loss, the DNA damage and 

mutation aspects of the initialization are not expanded upon yet. This procedure is applied to 

a deterministic “average” cell.
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Figure 3. Example Model Behavior During Patient Initialization
Results are shown from a particular patient (#9) as they progress along the proposed 

initialization procedure. A. Concordance of protein levels from adjusting translation after 

model equilibration. B–C. Behavior of the cell cycle (Cyclin A) below (B) and above (C) the 

critical basal cyclin D synthesis rate. D–E. Behavior of apoptosis as indicated by cleaved 

PARP (cPARP-red)) vs. PARP (blue), below (D) and above (E) the critical basal Caspase 8 

cleavage rate. When cPARP and PARP time courses cross this defines an apoptotic event. F–
G. Incorporating ligands expressed based on patient mRNA-seq data increases downstream 

signaling, as pictured by ligand concentrations (F) and activated AKT (G).
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Figure 4. Example Model Behavior During Generation of the Heterogeneous Tumor Cell 
Population
Typical results are shown from a particular patient (#8) for the cell cycle (Cyclin A), 

apoptosis (cPARP) and two widely important signaling biomarkers (ppERK and ppAkt). 

Each colored line corresponds to a different stochastic cell simulation (total of 100 per 

patient). Stochastic gene expression causes the average cell at time point zero to diverge over 

the 3-day simulation, creating 100 heterogeneous tumor cells ready for virtual drug 

combination screening.

Barrette et al. Page 20

ACS Chem Neurosci. Author manuscript; available in PMC 2019 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Example Drug Treatment
A. Results from a particular patient (#12) given a single constant dose (10 uM) for each drug 

or combination. Results for the cell cycle (Cyclin A), apoptosis (cPARP) and two widely 

important signaling biomarkers (ppERK and ppAkt) are shown here. Each colored line 

corresponds to a different stochastic cell simulation (total of 100 per patient). BOS: 

bosutinib; IBR: ibrutinib; CAB: cabozantinib. B. Results summarized by the number of cell 

cycles and cell deaths, stratified by drug treatment (different colors).
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Figure 6. Simulated Drug and Drug Combination Responses Across Patients
For every initialized patient’s heterogeneous cell population, all three drugs alone or in 

combination were given at a constant concentration of 10 uM for 72 hours. The number of 

cell division events (Cyclin A peaks) or apoptosis events (cleaved PARP crossing) were 

counted, and then analyzed relative to a no drug control. A–B. Simulation results across all 

patients (different colors), for all drug treatment conditions. In (B), different marker types 

correspond to different transcriptomic aberrations, whereas color still is matched for patients 

as in (A). C–D. Heatmap representations of the number of apoptosis events (B) or cell cycle 

events (C) across patients and drugs.
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Table 2
Promiscuity of the Three Considered Kinase Inhibitors

We assumed rapid binding because these are small molecules, and calculated off rate constants based on 

published affinity data. We implemented a 10 uM Kd threshold.

Drug Gene Targets Model Targets k_on (1/s/nM) k_off (1/s)

Bosutinib MAP2K1/MAP2K2 MEK 1 288

RPS6KA1/RPS6KA3 RSK 1 1115

PRKCA/PRKCG PKC 1 1567

CHEK1 Chk1 1 1168

FGFR1 Fr 1 2206

IGF1R Ir 1 2285

INSR Isr 1 669

PDGFRA Pr 1 3081

Ibrutinib BRAF Braf 1 1128

EGFR E1 1 18

ERBB3 E3 1 1

FGFR1/FGFR2 Fr 1 707

GSK3B GSK3b 1 2571

IGF1R Ir 1 4882

INSR Isr 1 1326

MTOR mTOR 1 8091

PDPK1 PDK1 1 2448

PIK3CA/PIK3CB/PIK3CD/PIK3CG PI3KC1 1 2039

RAF1 Craf 1 2333

RPS6KA1/RPS6KA3/RPS6KA2 RSK 1 6447

Cabozantinib BRAF Braf 1 2961

EGFR E1 1 864

FGFR1/FGFR2 Fr 1 2153

IGF1R Ir 1 8236

INSR Isr 1 1880

MAP2K1 MEK 1 214

MET MET 1 1

PDGFRA Pr 1 1

PIK3CA PI3KC1 1 1084

PIK3R1 PI3KR1 1 1084

RAF1 Craf 1 1078
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