
Learning Bundled Care Opportunities from Electronic Medical 
Records

You Chen1, Abel N. Kho2, David Liebovitz3, Catherine Ivory4, Sarah Osmundson5, Jiang 
Bian6, and Bradley A. Malin1,7,8

1Dept. of Biomedical Informatics, School of Medicine, Vanderbilt University, Nashville, TN

2Institute for Public Health and Medicine, Northwestern University, Chicago, IL

3School of Medicine, University of Chicago, Chicago, IL

4School of Nursing, Vanderbilt University, Nashville, TN

5Dept. of Obstetrics and Gynecology, School of Medicine, Vanderbilt University, Nashville, TN

6Dept. of Health Outcomes and Policy, University of Florida, Gainesville, FL

7Dept. of Biostatistics, School of Medicine, Vanderbilt University, Nashville, TN

8Dept. of Electrical Engineering & Computer Science, School of Engineering, Vanderbilt 
University, Nashville, TN

Abstract

Objective—The traditional fee-for-service approach to healthcare can lead to the management of 

a patient’s conditions in a siloed manner, inducing various negative consequences. It has been 

recognized that a bundled approach to healthcare - one that manages a collection of health 

conditions together - may enable greater efficacy and cost savings. However, it is not always 

evident which sets of conditions should be managed in a bundled manner. In this study, we 

investigate if a data-driven approach can automatically learn potential bundles.

Methods—We designed a framework to infer health condition collections (HCCs) based on the 

similarity of their clinical workflows, according to electronic medical record (EMR) utilization. 

We evaluated the framework with data from over 16,500 inpatient stays from Northwestern 

Memorial Hospital in Chicago, Illinois. The plausibility of the inferred HCCs for bundled care was 

assessed through an online survey of a panel of five experts, whose responses were analyzed via an 
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analysis of variance (ANOVA) at a 95% confidence level. We further assessed the face validity of 

the HCCs using evidence in the published literature.

Results—The framework inferred four HCCs, indicative of 1) fetal abnormalities, 2) late 

pregnancies, 3) prostate problems, and 4) chronic diseases, with congestive heart failure featuring 

prominently. Each HCC was substantiated with evidence in the literature and was deemed 

plausible for bundled care by the experts at a statistically significant level.

Conclusions—The findings suggest that an automated EMR data-driven framework conducted 

can provide a basis for discovering bundled care opportunities. Still, translating such findings into 

actual care management will require further refinement, implementation, and evaluation.
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Introduction

Under a fee-for-service healthcare model, each of a patient’s conditions is managed 

relatively independently [1–2]. This approach to care can lead to several problems, including 

delays in (or failure to deliver) service, testing and treatment redundancies, and increased 

costs for healthcare organizations (HCOs) and patients. In turn, these problems can lead to 

declines in quality, patient satisfaction, and cost effectiveness [3]. It is anticipated that a shift 

from fee-for-service to pay-for-value has the potential to resolve, or at least reduce the 

severity of, many of these problems [4–5]. To realize this alternative vision, HCOs are 

migrating towards a bundled care model, which is a middle ground between F4S and 

capitation reimbursement that aims to account for the interplay between various health 

conditions, rather than focus on each in isolation [6–7].

There are numerous challenges in realizing bundled care. Two of the more pressing are: 1) it 

is not always evident which health condition collections (HCCs) are appropriate for such a 

care model and 2) the cost of refining current healthcare systems to support bundled care 

should be minimized. While HCOs already manage certain complex health needs of patients 

(e.g., management of comorbidities when treating the primary health problem), such 

routines often arise in an ad hoc fashion and are not formalized. As such, there is an 
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opportunity to design a data-driven approach to learn HCCs, which are, or could be, ripe for 

bundling. A data-driven approach may be further beneficial because, if models are based on 

the current activities of healthcare professionals, then HCOs could minimize implementation 

costs for newly established, or the formalization of existing, management routines.

Towards this goal, there is growing evidence that data derived from electronic medical 

records (EMRs) can be mined to discover associations between health problems [8–14], 

infer clinical phenomena [15–18], and model healthcare workflow patterns [19–23]. More 

recently, it has been shown that the relationship between health problems and workflows can 

be specialized for certain phenomena, such as congestive heart failure [24]. In this paper, we 

build on such observations and introduce an automated learning framework to discover more 

general HCCs, which share similar workflows according to the utilization records of an 

EMR system. We hypothesize that such HCCs could be bundled and managed together 

based on their shared workflows.

In this paper, we report on how we accomplished this goal by designing a data-driven 

framework that relies upon a generative topic modeling strategy to infer an association 

network between HCCs and workflows. We applied a community detection algorithm to 

infer HCC clusters via the association network. We evaluated this framework with four 

months of inpatient data (over 16,500 inpatient stays) from Northwestern Memorial Hospital 

(NMH) and confirmed the plausibility of inferred HCC clusters through an online survey 

with administrative and clinical experts. We further demonstrated the face validity of HCC 

clusters through evidence in the published literature.

Background

The past several years have witnessed a number of investigations both expert- and data-

driven, into modeling and characterizing clinical phenotypes and workflows. However, there 

has been limited research into automatically establishing relationships between these 

phenomena. In this section, we review representative expert and data-driven methodologies 

and illustrate their relationship with our own approach.

Phenotyping Algorithms

Phenotyping aims to use EMR data to detect phenotypes of clinical interest. There has been 

a flurry of activity in various learning methods for high-throughput phenotyping over the 

past several years. There are two typical phenotyping algorithms: expert- and data-driven, 

the latter of which can be further partitioned into supervised and unsupervised techniques.

Expert-driven methods leverage rules developed by experts to identify phenotypes. These 

methods require substantial manual effort from domain experts. For instance, Kho et. al. 

developed rule-based phenotyping algorithms to identify subjects for five primary 

phenotypes (e.g., type 2 diabetes) to support further analysis in genomic association studies 

[61–62]. Their phenotyping algorithms were developed based on the analysis of EMR data 

and criteria managed by the Centers for Disease Control and Prevention.
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Supervised data-driven phenotyping requires domain experts to exert a substantial of human 

manual effort to label cases (i.e., phenotypically positive individuals) and controls (i.e., 

phenotypically negative individuals) and then train and calibrate classifiers. For each new 

patient record, the classifiers can determine their class label (e.g., case versus control) 

according to their features. The NIH-sponsored Electronic Medical Records and Genomics 

(eMERGE) [51] consortium, a network of academic medical centers, has developed a variety 

of supervised phenotyping algorithms [15–16, 52–54]. For instance, Chen et. al. designed a 

supervised learning algorithm to detect rheumatoid arthritis, colorectal cancer, and venous 

thromboembolism [52]. Additionally, Zheng et. al. developed a machine learning algorithm 

to identify type 2 diabetes from EMR data [18].

Unsupervised data-driven phenotyping does not require manual chart review, but instead 

automatically clusters phenotypes or subtypes [17, 24, 26, 55–56]. The challenge for this 

type of learning is in the validation of the discovered phenotypes or subtypes. Specifically, 

there is no clear ground truth for the phenotypes or subtypes that are identified through such 

an approach. A traditional approach to evaluate the learned phenotypes is to involve clinical 

and administrative experts to let them review their plausibility [17, 64]. For instance, Ho et. 

al developed a tensor factorization model to automatically identify phenotypes for several 

major diseases (e.g., metabolic syndrome) from EMR data and, subsequently, recruited 

expert respondents to review their plausibility. Additionally, Chen et. al. developed a 

unsupervised learning algorithm to infer phenotypes from EMR data coming from two 

distinct healthcare systems and validated the similarity, stability and transferability of the 

learned phenotypes [26].

Workflow Modeling Algorithms

Workflow modeling algorithms can be grossly categorized into two types: i) observational 

and ii) data-driven.

Observational studies often rely on manual data collection approaches, such as observations 

and interviews. One such example was presented by Unertl and colleagues [63], which 

analyzed direct observations and interviews in hospitals to understand workflow and 

information flow in the care of chronic diseases. Data-driven algorithms, by contrast, have 

been proposed to infer clinical pathway patterns through the activity logs of healthcare 

systems [24–25, 57–59]. Almost all of these approaches followed a similar style: i) infer 

workflow patterns, then ii) evaluate the effectiveness of the methods in a clinical case study. 

For instance, Bouarfa et. al. derived a workflow consensus from clinical activity logs to 

detect outlying workflows without prior knowledge from experts [57]. They adopted a tree-

guided multiple sequence alignment approach to model the consensus of workflows. This 

strategy was validated over the workflow processes associated with laparoscopic 

cholecystectomy, where the results indicated the derived consensus conforms to the main 

steps of the surgical procedure as described in best practice guidelines. In another example, 

Chen et. al. introduced an altered latent Dirichlet allocation (LDA) based framework to infer 

clinical workflows through the utilization of an EMR [25] and applied such framework to 

infer 8 different types of workflows for heart failure patients [24].
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To date, phenotyping and workflow modeling algorithms have been developed 

independently. While there has been little investigation into relating these concepts together, 

this is vital to the establishment of effective care coordination strategy [60].

Research Design and Methods

The framework for relating phenotypes and workflows is generally composed of four parts: 

i) a workflow inference module, which is based on the electronically documented actions of 

EMR users, ii) a HCC inference module, based on patient-specific clinical phenomena 

indicated in an EMR (e.g., diagnosis codes), iii) an association module, which constructs the 

association network of HCCs and workflows, and then infer HCC clusters according to the 

similarity in their workflow patterns and iv) an evaluation module, which consists of online 

surveys from administrative and clinical experts to determine if the HCC clusters are worthy 

of consideration for bundling.

We begin with a high-level overview of the models and then proceed with a deeper dive into 

each component. The general relationships between the workflow module, HCC model and 

association modeling algorithm are depicted in Figure 1.

Here, we take a moment to formalize the environment. Let P = {p1, p2, ⋯, pn} be the set of 

patients, S = {s1, s2, ⋯, sn} be the set of action sequences (issued by approved EMR users) 

and D = {d1, d2, ⋯, dl} be the set of clinical phenomena (e.g., diagnosis codes). Each patient 

hi in H is defined as a sequence si in S (as shown in Figure 1a) and a collection of clinical 

phenomena in D, as shown in Figure 1e. The set of workflows W = {w1, w2, ⋯, wk} (Figure 

1b-left) and HCCs HCCs = {h1, h2, ⋯, hq} (Figure 1d-right) are learned from S and D, 

respectively. Specifically, a workflow wi is defined as a probability distribution over a set of 

subsequences in S′ = {s′1, s′2, ⋯, s′q} (Figure 1b-left). s′i is defined as a subsequence that 

frequently occurs across the sequences in S. An HCC hj is a probability distribution over a 

set of diagnoses (e.g., Figure 1d-right depicts three HCCs).

A patient is explained by their affinity to workflows and HCCs through φW (Figure 1b-right) 

and φH (Figure 1d-left), respectively. For instance, as shown in Figure 1b-right, workflow w1 

has a probability of 0.8 of explaining the affinity between the sequence for patient p1 and 

w1. The strength of association between a workflow and an HCC is measured via the set of 

patients in common they explain. The HCC clusters are inferred via the association network 

that was established between the HCCs and workflows (as shown in Figure 1c).

To focus on the knowledge learned from the EMR, we relied on existing inference 

algorithms to learn workflows and HCCs. For orientation, we provide two examples as 

shown in Figure 2 and 3 to illustrate how the algorithms work, but refer the reader to [25] 

and [26] for a more detailed description.

Workflow Inference Algorithm

The workflow inference algorithm [25] learns topics, W = {w1, w2, ⋯, wk}from the 

sequences in S via a modified LDA algorithm [27–28]. S is a set of patient sequences. Each 

patient sequence was revised to retain the strong event relations and filter out the weak event 
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relations. The strength of an event relation is measured as the number of times the relation 

appearing in patient sequences S. As shown in Figure 2, if we remove event relations with 

scores less than a threshold of 2, then s3 = e2 → e1 → e5 → e6 (e.g., both e2 → e1 and e1 → 
e5 have a score of 1) will be revised to s3 = e5 → e6. Each revised sequence is made up of 

subsequences, each of which is a series of events with strong relations between neighbors. 

For instance, s2 = e1 → e2 → e5 → e6 was revised to consist of two subsequences: s′1 = e1 

→ e2 and s′2 = e5 → e6. Briefly, the set of workflow topics is inferred from a matrix R|P|×|S

′|. Here, R|P|×|S′|(i, j) corresponds to the number of times a subsequence s′j was in a patient 

sequence si. Each workflow topic is represent by a set of subsequences with their 

corresponding probabilities. For instance, as shown in Figure 2, the algorithm inferred two 

workflow topics. The first topic t1 consists of two subsequences e1 → e2 and e5 → e6, and 

the second topic t2 consists of one subsequence e4 → e3. φW corresponds to a matrix of the 

likelihoods that the patients’ sequences in S are explained by the topics in W. As shown in 

Figure 2, the first two patient sequences are explained by topic t1, while the last two patient 

sequences are explained by topic t2.

It is often the case that the fitness of an LDA model, and thus the number of topics k, is 

determined through an information theoretic measure, such as perplexity [27–28]. However, 

in our situation, we aim to determine the value that maximizes the separation between the 

workflow topics, which are more semantically meaningful. As such, we calibrate k by 

setting it to the value that minimizes the average covariance between the workflow topics.

HCC Modeling Algorithm

The HCC modeling algorithm [26] also learns topics HCCs = {h1, h2, …, hq} via a modified 

LDA method as well. Briefly, the set of topics is inferred from a matrix R|P|×|D|. Here, R|p|×|D|

(i, j) corresponds to the number of times that diagnosis code dj was assigned to patient pi. 

Figure 3 depicts an example of three topics. Each topic is represented by a collection of 

diagnosis codes. For instance, as shown in Figure 3b, topic t1 consists of d1 and d2, t2 

consists of d3 and d4, and t3 consists of d5 and d6. φh is a matrix of the likelihoods that 

patients are explained by the topics. Figure 3c depicts an example of the probabilities that 

the patients’ conditions are explained by topics in the form of HCCs. We use the same 

strategy invoked for workflow topics to set the number of topics for HCCs, which we denote 

as q.

Measuring Associations

Each workflow and phenotypic topic is leveraged to explain the patients (Figure 2 and 

Figure 3). We use the patients they explain in common to measure their association. 

Specifically, the degree of association between a workflow topic wi and an HCC topic hj is 

measured as the cosine of their respective vectors:

(1)
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where φW(i)is a vector indicating the distribution of probabilities that a workflow topic wi 

explains each patient. For instance, as shown in Figure 2e, the first workflow explains four 

patients with the following vector of probabilities (〈p1, 0.8〉, 〈p2, 1〉, 〈p3, 0.8〉, 〈p4, 0.8〉). 
Similarly, φH(j) is a vector specifying the distribution of probabilities that a phenotypic topic 

hj explains each patient. For instance, as shown in Figure 3c, the first HCC topic explains 

four patients with a vector of probabilities (〈p1, 0.8〉, 〈p2, 1.0〉, 〈p3, 0〉, 〈p4, 0〉). According 

to Equation (1), the cosine similarity between the first workflow and HCC topic Cosine(w1, 

h1) is 0.7494.

Our goal is to infer HCC clusters that share workflows because we anticipate that each 

cluster is a candidate for bundled care management. Thus, we use a community detection 

algorithm [29] to infer HCC clusters via the association network of HCCs and workflows. 

We guide the algorithm using a heuristic that is based on the optimization of the modularity 

measure [30], which is efficient (in running time) and effective (in quality of communities) 

for weighted and undirected graphs. Modularity is defined as:

(2)

where m is the number edges in the network, kv, kw is the degree of vertex v and w 
respectively, Avw = 1 means there is an edge between the two vertices and Svr is defined as 1 

if vertex v belongs to group r and zero otherwise. Clusters with high modularity have dense 

connectivity within HCCs, as well as workflows within clusters, but sparse connectivity 

between clusters.

Plausibility Evaluation for Bundled Care

We investigated if the HCC clusters are potential candidates for bundled care management. 

To do so, we designed a survey that consisted of paired 〈inferred, random〉 HCC clusters that 

we provided to administrative and clinical experts for review. We did not indicate which 

cluster was inferred or which was randomly generated to the experts. Each inferred HCC 

topic was represented as the list of diagnoses that exhibited the largest probabilities for a 

specific topic. A random cluster was generated by selecting a number of HCC topics at 

random, the number of which was set equal to the number of HCC topics within the inferred 

cluster. Each random topic was also represented as a list of diagnoses. Each random cluster 

contained the same number of diagnoses as its inferred counterpart.

We recruited a set of experts to answer questions of the following form, “To what extent do 
you believe health conditions in the displayed group can be managed in a bundled way?” For 

each question, we provided five candidate answers (in the form of Not At All Likely, 
Slightly Likely, Moderately Likely, Very Likely and Completely Likely). To perform 

hypothesis testing, we converted these answers into values in the range 0 to 1 (e.g., Not = 0, 

Slightly = 0.25, Moderately = 0.5, Very = 0.75, and Completely = 1). Further details about 

the survey design, including the specific questions, are provided in online Appendix A.
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Given the responses, we conducted a series of formal hypothesis tests, each of which can be 

summarized as: “For a given pair of 〈inferred, random〉 clusters of health conditions, experts 

can distinguish the inferred from the random in terms of bundled care”. We applied a linear 

regression model and analysis of variance (ANOVA) [31] to test the significance of 

difference at the 95% confidence level.

To achieve a power of 0.8 with a standard deviation of 0.4 in the difference in experts’ scores 

for inferred and random clusters, the required sample size was five respondents. As such, we 

invited five knowledgeable professionals with a diverse array of expertise, including HCO 

management, internal medicine, and emergency care. Each participant was emailed an 

introduction to the goals of the research and a link to access a REDCap survey [32]. The 

response rate was 100% because all respondents agreed to participate in the survey 

beforehand.

Experimental Design

Dataset

This study focused on four months of inpatient EMR data from Northwestern Memorial 

Hospital (NMH) during 2013. In this data, an event corresponds to an instance of an EMR 

access and is represented as a 〈role, patient〉 pair, which indicates an HCO employee 

affiliated with the role had an access event on the patient’s records. We rely on the 

employee’s role, as opposed to the employee themselves, to represent the access events 

because the role has been shown to be more stable to represent clinical workflow [64]. There 

were 1,138,317 access events distributed over 16,569 patient encounters. Additionally, each 

patient was associated with a set of ICD-9 codes assigned after discharge from the hospital. 

The EMRs contained 144 unique roles and 4,543 unique ICD-9 codes.

In recognition of the fact that multiple ICD-9 codes may be applied to describe the same 

clinical phenomena [33–34], various phenotyping investigations (e.g., [35–36]) have adopted 

alternative vocabularies for the secondary analysis of EMRs, such as the Phenome-Wide 

Association Study (PheWAS) vocabulary [15]. PheWAS codes correspond to groups of 

ICD-9 codes more closely match the clinical and biological basis of diseases and reduce 

variability in identifying diseases. Based on this expectation, we translated a patient’s ICD-9 

codes to PheWAS codes, which compressed the space into 1,374 unique PheWAS codes.

Number of Topics

The number of workflow and HCC topics were determined by minimizing the similarity 

over the range of 15 to 35 possible topics. This occurred when k = q = 25. At this point, the 

workflows and HCCs exhibited a minimum similarity of 0.003 and 0.031, respectively.

Results

To provide context for the findings, we begin with a depiction of the learned workflow and 

HCC topics. Next, we report on the clusters of HCCs and the extent to which they were 

deemed plausible for bundled care and had face validity according to evidence in the 

published literature.
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Learned Workflow and HCC Topics

Recall that each workflow and HCC topic is expressed as a probability distribution over 

terms (i.e., subsequences of actions and PheWAS codes, respectively). To illustrate each 

topic succinctly, we depict the 10 terms with the largest probabilities. This cutoff was 

selected because the terms beyond this point had a negligible contribution to the probability 

mass for the affiliated topic. Specifically, none of these terms contributed a probability that 

was larger than 0.01.

We use ProM [37], a software tool for process mining, to visualize workflow topics as a 

directed graph. The graphs for all 25 workflow topics and their corresponding top 10 

subsequences are provided in Appendix B. To orient the reader to workflow topics, we list 

workflow topic 15, which consists of two loops (a pair of + symbols represents the 

beginning and ending of a loop), as an example in Figure 4.

The first loop resides between a Radiology Technologist (RAD) and an NMH Physician 
Hospitalist invoking Computerized Physician Order Entry (CPOE). This loop was associated 

with the process of an echocardiography, where a physician approves the quality of a 

radiological report or participates in the peer review process of a report. The second loop 

resides between an NMH Physician CPOE and a Patient Care Staff Nurse - Lactation. This 

loop is likely associated with a primary physician and staff nurse responsible for an 

inpatient’s care associated with obstetrics.

Each HCC topic is expressed as a probability distribution over the PheWAS codes. The top 

10 PheWAS codes, along with their associated probabilities, for each HCC topic is provided 

in Appendix C. We summarized each HCC topic and provided a label to refer to them (as 

shown in Appendix C). To provide intuition, we report on an example of the topics 

associated with childbirth in Table 1. This topic shows that interventions are required for 

complicated pregnancies and delivery associated problems (e.g., short gestation, endocrine 

and metabolic disturbances of fetus or newborn).

Clusters of HCC and Workflow Topics

The modularity of the HCC and workflow topic cluster was 0.62. This indicates that the 

HCC topics and workflow topics within each cluster exhibited strong associations, while 

they exhibited weak associations between clusters. Figure 5 depicts the four inferred HCC 

topic cluster (shown in blue, green, purple and red) and their affiliated workflow topics.

Cluster C1 (in green) is associated with fetal abnormality; C2 (in red) is associated with late 

pregnancy; C3 is associated with prostate problems and its corresponding complications (in 

purple); while C4 is complex, but is associated with various chronic problems, including 

cerebrovascular disease, coronary atherosclerosis, congestive heart failure (CHF), diabetes, 

and kidney failure (in blue).

To gain a deeper understanding of the inferred clusters and their associated workflow 

patterns, let us consider C1 as an example. The health conditions affiliated with C1 are the 

following HCC topics:
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h12: Birth trauma,

h17: Fetal abnormality, and

h24: Mother complicating pregnancy,

which were associated with care patterns that incorporated the following workflow topics:

w3: Interactions between physicians and staff nurses,

w11: Interactions between physicians, anesthesiologists, advanced practice clinicians 
and pharmacists,

w13: Interactions between physicians and unit secretaries,

w14: Interactions between physicians, anesthesiologists and staff nurses, and

w22: Interactions between physicians, radiologists and unit secretaries.

This suggests that pregnancy complications (e.g., fetal abnormality and mother complicating 

pregnancy) are already managed together, requiring communication between various 

clinicians, obstetricians, anesthesiologists, radiologists, nurses, pharmacists, and 

administrative personnel.

Plausibility of Phenotypic Clusters for Bundled Care

The results of the plausibility survey are provided in Table 2. It can be seen that the experts 

always scored the inferred clusters as the more plausible for bundled care. All four clusters 

were statistically significantly higher than the randomized cluster in terms of the 

respondents’ scores (based on a 95% confidence interval). This suggests that the HCC 

clusters associated with fetal abnormality, late pregnancy, prostate problems and CHF are 

plausible candidates for bundled care.

Additionally, to orient the reader to each HCC cluster, we provide each, along with an 

informal summary, in Table 2.

Evidence in the Published Literature for HCC Clusters

While the HCC clusters were deemed plausible for bundled care from a management 

perspective, we further investigated if the health conditions within such clusters were 

clinically related. If there was support from both care process and clinical perspectives, we 

anticipate that the identified HCC clusters would be better received by HCO administrators.

Towards this goal, we reviewed evidence for the inferred HCC cluster in the peer-reviewed 

literature. Evidence was uncovered for each cluster, a summary of which is shown in Table 

3. For instance, within cluster C3, bone loss is known to be caused by hypogonadism 

following prostate cancer [38]. Furthermore, acid reflux is known to be affiliated with 

thyroid problems [39].
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Discussion

Main Findings

This study proposed a data-driven framework to automatically learn clinical workflow 

patterns, phenotypic patterns and the relationships between them. We believe this approach, 

and the associated empirical analysis, provide evidence to assist in identifying, as well as 

refining, bundled care models. The study has several notable implications.

First, the associations we uncovered between patients with a bundle of healthcare conditions 

and clinical workflows can provide knowledge that HCOs can build upon to establish care 

teams that are in alignment with a patient’s needs. In particular, we learned workflow 

patterns at the level of HCO employees and their affiliated roles. We believe this provides 

evidence to depict who works with whom in a care team and what are the interactive 

relationships between the team members. Moreover, the relationship between workflow and 

phenotypic patterns suggests that a set of related health conditions could be managed by a 

set of HCO employees in the form of a workflow. This is important because it suggests such 

workflows could be leveraged to put the right HCO employees in place for the right patients. 

For instance, consider patients who are nearing childbirth. These patients’ conditions may be 

affiliated with three specific HCC topics: h12: Birth trauma, h17: Fetal abnormality, and h24: 

Mother complicating pregnancy. And, these HCC topics are associated with care patterns 

that incorporate three specific workflow topics: w3: associated with physicians and care staff 
nurses, w14: associated with anesthesiologists, and w22: associated with radiologists. Now, if 

a patient is associated with the three HCC topics, it may be better to assign the patient to a 

care team that includes all HCO employees from all three workflows. In doing so, the HCO 

could manage the patient’s conditions in a bundled manner, as opposed to attempting to 

manage each health condition independently.

Second, the associations between workflow and HCC topics should provide support for 

HCOs to manage patients and conduct resource allocation more efficiently. For instance, if 

the volume of patients associated with complicated pregnancies (e.g., birth trauma, fetal 

abnormality) grows, then HCOs could dedicate a larger amount of resources to workflow 

topics w3, w14 and w22.

Third, we believe that the evidence derived through our framework can be leveraged to 

design testable hypotheses regarding workflow and patient outcomes. Specifically, the 

output of our framework could be relied upon to investigate the differences between learned 

care teams and existing patient management protocols. This could be accomplished in terms 

of their impact on patient outcomes, such as readmission rates or length of stay in the 

hospital.

Limitations and Next Steps

Despite the merits of our findings, there are several limitations that we wish to highlight for 

future investigations. First, this study focused on the development of a methodology to infer 

general collections of health conditions that share similar workflow patterns according to 

EMR system utilization. However, we did not validate the clinical meaning (e.g., semantic 

context) for each of the inferred HCCs nor their workflows. If such HCC and workflow are 
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to be relied upon in care management applications, their semantics will require further 

interpretation by administrative experts.

Second, while all four HCC clusters were deemed plausible for bundled care, several 

associations within congestive heart failure cluster C4 were not clear to the experts. 

Specifically, there are a number of reasons why renal failure and liver disease might co-

occur in a patient, such that this cluster may be too general in nature. In this respect, our 

study indicates health conditions have the potential to be managed in a bundled manner, but 

what precisely should be managed is an open question and will require guidance by process 

management experts.

Third, we acknowledge that this is a pilot only, which focuses on a case study of four 

months of data from a single HCO. As such, we uncovered only four HCC clusters. It is 

unknown if the proposed strategy directly generalizes to other healthcare systems.

Conclusions

In this paper, we introduced a data-driven framework to mine EMRs for HCC clusters that 

might benefit from the establishment, or formalization, of bundled care routines. We 

evaluated our approach with four months of inpatient data from a large hospital system and 

uncovered four clusters of HCCs, which were deemed plausible for bundled care by 

knowledgeable experts and evidence in the literature. We anticipate working with process 

management and clinical experts to assess the workflow patterns affiliated with each inferred 

cluster to ascertain how they can support bundled care. Furthermore, we plan to test the 

performance and efficacy of such the framework with data from additional healthcare 

systems.
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Appendices

Appendix A

Survey questions.
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Appendix B

Workflow topics, each of which is represented by its top 10 subsequences and visualized as 

a process graph via Business Process Model and Notation (BPMN) in ProM.

Appendix C

HCC topics, each of which is represented by its top 10 PheWAS codes.
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Highlights

1. A data-driven framework to infer an association network of health condition 

collections (HCCs) and workflows.

2. A strategy to learn HCC clusters based on the associations network.

3. An online survey method to evaluate the plausibility of HCC clusters 

managed in a seemingly bundled way.
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Figure 1. 
A high-level architecture for discovering associations between clinical workflows and 

HCCs, which are further leveraged to infer HCC clusters. (Legend: e = action event, p = 
EMR patient, d = diagnosis, HCC = Health condition collection, s = action sequence, s′ = 
action subsequence and w = workflow)
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Figure 2. 
The process by which workflows are generated from patient sequences. The input is the 

patient sequences (see a), and the outputs are the topics (workflows) (see d) and the 

explanations between the patient sequences and the topics (see e).
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Figure 3. 
The process by which HCCs topics are generated from patients’ diagnoses. The input is the 

patient diagnosis codes (see a), and the outputs are HCC topics (see b) and explanations 

between the topics and the patient diagnoses (see c).
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Figure 4. 
The directed graph of an echocardiography-based prenatal workflow. This visualization is 

based on the 10 subsequences with largest probabilities for the workflow topic. Note that, in 

this diagram, a pair of + symbols represents the beginning and ending of a loop.
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Figure 5. 
Four clusters of HCC topics inferred via their shared workflow topics. The edges represent 

the association strength between HCC and workflow topics. The wider the edge, the stronger 

the association. (Legend: h = HCC topic; w = workflow topic)
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Table 1

The ten PheWAS codes in a HCC topic that are the most indicative of childbirth.

PheWAS Code Description Probability

1010 Tests associated with child birth 0.25

637 Short gestation; low birth weight; and fetal growth retardation 0.18

656 Other perinatal conditions 0.16

656.1 Perinatal jaundice; isoimmunization 0.10

651 Multiple gestation 0.05

656.3 Endocrine and metabolic disturbances of fetus and newborn 0.05

747.11 Cardiac shunt; heart septal defect 0.05

656.2 Other respiratory conditions of fetus and newborn 0.02

647 Infectious & parasitic conditions complicating pregnancy 0.02

747.13 Congenital anomalies of great vessels 0.01
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Table 2

Survey results of the knowledgeable experts (n = 5) regarding the plausibility of HCC clusters for bundled 

care. Each cluster is represented as a list of PheWAS codes and a brief summary. Each row reports the distance 

between the Likert score of the inferred HCC cluster and its random counterpart. Note that a positive distance 

indicates the inferred cluster received a higher Likert score.

Cluster PheWAS Code and Description Likert Score Difference P-value

Informal Description: Fetal abnormality leads to complicated pregnancy and additional delivery problems (e.g., fetal distress), which requires 
interventions, such as those provided by the birth trauma service.

C1

649 Other conditions of the mother complicating 
pregnancy

0.95 6.09 × 10−8*

652 Malposition and malpresentation of fetus or 
obstruction

654 Abnormality pelvic soft tissues & organs 
complicating pregnancy

658 Problems associated with amniotic cavity and 
membranes

659 Indications for care or intervention related to 
labor and delivery NEC

663 Umbilical cord complications during labor 
and delivery

665 Obstetrical/birth trauma

Informal Description: Late pregnancy suggests a larger size infant requiring intervention (e.g. use of suction or forceps), which can cause 
temporary skull injuries.

C2

637 Short gestation; low birth weight; and fetal 
growth retardation

0.95 6.09 × 10−8*

645 Late pregnancy and failed induction

649 Other conditions of the mother complicating 
pregnancy

656 Other perinatal conditions

656.1 Perinatal jaundice/isoimmunization

665 Obstetrical/birth trauma

819 Skull fracture and other intracranial injury

1010 Other tests

1008 Internal injury to organs

Informal Description: Anemia and hypogonadism are often complications of prostate cancer and can lead to bone loss. When the thyroid does 
not produce a sufficient amount of hormones, it can cause lower esophageal sphincter dysfunction. This allows stomach contents and digestive 
juices to enter the esophagus, which may lead to gastroesophageal reflux disease.

C3

244 Hypothyroidism

0.65 2.80 × 10−4*

272.1 Hyperlipidemia

276.14 Hypopotassemia

285.9 Anemia

327.32 Obstructive sleep apnea

401.1 Essential hypertension

495 Asthma

530.11 Gastroesophageal reflux disease
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Cluster PheWAS Code and Description Likert Score Difference P-value

600 Hyperplasia of prostate

740.1 Osteoarthritis; localized

Informal Description: Cerebrovascular disease and coronary atherosclerosis are the most common cause of congestive heart failure (CHF); 
smoking and diabetes are associated with all three diseases. Depression is associated with coronary disease. Liver test abnormalities and renal 
failure may occur with CHF.

C4

250.2 Type 2 diabetes

0.70 7.04 × 10−5*

272.1 Hyperlipidemia

286.5 Hemorrhagic disorder due to intrinsic 
circulating anticoagulants

296.2 Depression

316 Substance addiction and disorders

318 Tobacco use disorder

401.1 Essential hypertension

401.22 Hypertensive chronic kidney disease

427.21 Atrial fibrillation

428 Heart failure

428.1 Systolic/diastolic heart failure

433.31 Transient cerebral ischemia

452 Venous embolism & thrombosis

585.3 Chronic renal failure

591 Urinary tract infection

707.1 Decubitus ulcer

*
= statistical significance at the 0.05 confidence level)
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Table 3

Evidence in the peer-reviewed literature to support the face validity of the HCCs within each inferred cluster.

Cluster Evidence of Associations in the Literature

C1

• Birth trauma associated with fetal big size and fetal distress [40]

• Trauma in pregnancy [41–42]

C2

• Late pregnancy and child birth [43]

• Mode of delivery in nulliparous women has an effect on neonatal intracranial injuries [44]

• Most fetal injuries occur in late pregnancy [45]

C3

• Bone loss following hypogonadism with prostate cancer [38]

• The acid reflux-thyroid connection [39]

• Anemia associated with advanced prostate cancer [46]

C4

• Tobacco and alcohol usage had increased risk of mortality for cerebrovascular disease and liver disease [47]

• Thrombotic complications in heart failure [48–49]

• Associations among diabetes, kidney disease, and cardiovascular disease [50]
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