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Abstract

The m: n : θb procedure is often used for validating an assay for precision, where m levels of an 

analyte are measured with n replicates at each level, and if all m estimates of coefficient of 

variation (CV) are less than θb, then the assay is declared validated for precision. The statistical 

properties of the procedure are unknown so there is no clear statistical statement of precision upon 

passing. Further, it is unclear how to modify the procedure for relative potency assays in which the 

constant standard deviation (SD) model fits much better than the traditional constant CV model. 

We use simple normal error models to show that under constant CV across the m levels, the 

probability of passing when the CV is θb is about 10% to 20% for some recommended 

implementations; however, for extreme heterogeniety of CV when the largest CV is θb, the passing 

probability can be greater than 50%. We derive 100q% upper confidence limits on the CV under 

constant CV models and derive analogous limits for the SD under a constant SD model. 

Additionally, for a post-validation assay output of y, we derive 68.27% confidence intervals on 

either the mean or log geometric mean of the assay output using either y ± s (for the constant SD 

model) or log(y) ± rG (for the constant CV model), where s and rG are constants that do not 

depend on y. We demonstrate the methods on a growth inhibition assay used to measure biologic 

activity of antibodies against the malaria parasite.
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1 Introduction

Before an assay is routinely used in drug development or in scientific studies, consumers of 

the assay should be reasonably confident that the assay is measuring what they think it is 

measuring. The tests that are done to study properties of an assay are known as the 

validation process. Different tests are done on different assays, and some common properties 

tested are selectivity (how the assay performs in the presence of expected components such 

as impurities), stability (how the assay performs after the sample has been subjected to 

different conditions over differing time intervals), accuracy (how close the value of an assay 

is to its known true value), and precision (how close individual readouts of an assay are 

when applied to replicates) [1]. An assay that has passed the tests is known as a validated 

assay. It is good practice to use validated assays in scientific studies, and often regulatory 

agencies request that assays be validated when used in studies that are reviewed by them.

In practice, once an assay has been validated, the readout from that assay is often treated as 

if it is measured without error (e.g., with perfect accuracy and perfect precision). Although 

ignoring error variability is convenient, it may sometimes be useful to have measures of 

precision for use with assay readouts post-validation to give users an idea of the size of the 

variability of the readout.

This paper focuses on validation tests for precision in bioassays, focusing on two classes of 

bioassays, concentration assays and relative potency assays (both defined below).

We begin with the US Food and Drug Administration’s guidance on bioanalytical method 

validation for what we call “concentration assays”, assays that quantitatively determine 

concentrations of analytes (e.g., drugs, metabolites, therapeutic proteins) in biological 

matrices (e.g., blood, plasma, urine, skin) [1]. We measure precision on replicates, which for 

concentration assays are “multiple aliquots of a single homogeneous volume of biological 

matrix” ([1], p. 5–6). The guidance recommends an m: n : θb procedure for validating an 

assay for precision: m different sample concentration levels are each measured on n 
replicates, and if the sample coefficient of variation (CV) for each of the m levels is less than 

θb then the assay passes the precision validation. In this paper we do not differentiate 

between within-run precision and between-run precision, since both can be statistically 

evaluated similarly. Some implementations of the m : n : θb procedure are 3 : 5 : 15% (for 

chromatographic methods, p. 5 of [1]), and 3 : 5 : 20% (for ligand binding assays, p. 13 of 

[1]). Typically, an m:n: θb procedure has m between 2 and 6 and n between 3 and 6 (see 

Table I of [2]).

Although the m : n : θb procedure is well defined, to the best of our knowledge its statistical 

properties have not been studied. This paper fills that need using simple normal error 

models. We show that if there is homogeneity of CV across the m levels and the true CV is 
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equal to the bound θb, then some implementations have overall probability of passing of 

about 10% (for 3 : 5 : 15% and 3 : 5 : 20% procedures) or 20% (for the 4 : 6 : 20% 

procedure). We show that if there is extreme heterogeneity of precision between the m 
levels, the probability of passing the m: n : θb procedure can be larger than 50% when the 

maximum coefficient of variation for one level is θb.

For concentration assays, the constant coefficient of variation model is often appropriate. 

Under that model we measure precision by the CV, which is the standard error of replicates 

divided by the mean of replicates. A necessarily important property of the CV as a precision 

parameter for concentration assays is that it is scale invariant, so that changing the units 

(e.g., from amount of particles per microliter to amount per liter) will not change the 

precision parameter.

While the constant CV model has been used widely, there could be assays which fit better 

with a constant SD model. One such assay, and the one that motivated this work, is a growth 

inhibition assay (GIA) that measures the inhibitory activity of certain antibodies to the 

growth of malaria parasites in vitro. A constant CV model is a very poor model for the GIA, 

primarily because the GIA is a relative potency assay, meaning its activity is measured 

relative to a control sample. The output for a sample x is y(x) = 100(1−a(x)/a(xcontrol)), 

where a(x) is some measurement of biological activity in the sample that must be normalized 

by a similar readout for a control sample, a(xcontrol). Other relative potency assays have this 

same structure; for example, standard membrane feeding assays, which measure the 

inhibition of malaria parasites in mosquitoes [3]. For the GIA, the biological activity 

measured by a(·) is the amount of growth of malaria parasites in vitro. To see why the 

constant CV model does not work for the GIA, imagine if the test sample has very little 

effect on parasite growth, then a(x)/a(xcontrol) will be close to 1 and the expected value of the 

readout y(x), say μ(x), will be close to 0. Since the CV is the standard deviation over μ(x), 

small changes in μ(x) close to zero can have large changes in the CV. Thus, in general the 

constant CV model is not well suited for relative potency assays. Further, a relative potency 

assay is not necessarily proportional to the amount of analyte in the sample, since there 

could be threshold effects where after a certain amount of analyte is in the sample, further 

increases do not increase the biological activity that is being measured. So there is no need 

for relative potency assays to be scale invariant, because the scale is determined relative to 

the control sample. An alternative model that may be appropriate for a relative potency assay 

is the constant standard deviation (SD) model.

Lio, Lu, and Liao [4] discussed estimating precision under the constant SD model using a 

random effects model with several levels. Their data example had 80 replicates of a single 

sample. For biological assays like the GIA, that many replicates per sample is often 

infeasible.

In order to validate a relative potency assay for precision, a constant SD model may often fit 

better. Because in this model we cannot use a scale invariant measure of precision such as 

CV, there is no bound (e.g., CV less than 20%) that will apply to many different assays. The 

acceptable bound for a constant SD model assay is different for each assay. We suggest that 

we use the statistical properties of the m: n : θb procedure to propose a new nomenclature, 
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so that procedures of this type would be known as m:n: q procedures, where the q is the 

confidence level for an upper bound of the precision parameter under a model where that 

precision parameter is constant. The m: n : q nomenclature allows us to more 

straightforwardly generalize the m:n: θb procedure for a constant CV model to a constant 

SD model. Further, unlike the m: n : θb procedure which only results in a binary pass/fail 

decision, our new procedure results in an upper bound on the precision measure. We can get 

a binary pass/fail decision from that upper bound, since an assay passes our validation 

procedure if the upper bound is less than some specified acceptable bound for that assay 

(although that acceptability bound is not part of the new nomenclature). But we get 

additional information from the upper bound also. We show that when the precision is 

constant across all m levels, the upper bound can be interpreted as an upper confidence limit 

on the precision parameter. Further, we show how to use that upper bound in order to get 

68.27% confidence intervals on the expected readout from using the assay on a post-

validation sample, x*. Specifically, for the constant SD model assays the post-validation 

68.27% confidence interval for the expected readout is of the form y(x*) ± s, and for the 

constant CV models the 68.27% confidence interval for the log geometric mean is of the 

form log(y(x*)) ± rG, where s and rG are constants that do not depend on y(x*).

After further delineating the notation (Section 2), we explore the statistical properties of the 

m: n : θb procedure in Section 3. In Section 4, we introduce m: n : q nomenclature, where q 
represents the confidence level of an upper bound on θ under homogeneity. The m: n : q 
nomenclature ties the procedure to its statistical properties in an ideal situation, and we give 

confidence limits for θ under two different constant CV models. In Section 5, we show how 

to create an m : n : q procedure for the constant SD model. We give an outline of how the 

m : n : q procedure would be used without the mathematical details in Section 6. In Section 

7, we show how to create effective standard deviation intervals, that is, 68.27% confidence 

intervals for representing the precision of an measurement taken post-validation. In Section 

8 we study the statistical properties of our procedure under heterogeneous precision across 

the m levels. In Section 9 we apply that procedure to some GIA data, and we end with a 

discussion.

2 Notational Formation of the Problem

Let y(x) be the observed value for the assay for sample x. For example, y(x) would be the 

measured growth inhibition of sample x in the GIA assay. Let E(Y(x)) = μ(x). In the GIA, 

μ(x) is the unknown mean growth inhibition from infinite replications of the assay on sample 

x. For concentration assays, we often work with the geometric mean, μG(x) = exp(E [log {Y 
(x)}]).

Let σ2(x) be the variance. This could represent the between-lab variance, the within-lab 

variance, or the within-day variance, or some other variance. For applications we must 

specify which variance we are interested in testing. For this paper, we assume that which 

variance being tested is clear, and we do not notationally indicate the type of variance. The 

coefficient of variation will be denoted θ(x) = σ(x)/μ(x). For some models we assume that θ 
is constant and does not depend on x within the range of interest, and for other models we 

alternatively assume that σ is constant.
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For validation of an assay, we test the assay on m levels. The m sample levels are thought to 

produce results that cover the range of sufficiently precise measurability of the assay. At 

each of the m levels, we typically perform n technical replicates. The replicates are at the 

levels for which the precision needs to be validated. For example, the activity is measured by 

GIA on a plate, on a particular day, and at a specific lab. If we want to measure the day-to-

day precision of the assay at a specific lab, then we repeat the assay on n different days on n 
aliquots from the same sample in that lab.

3 Statistical Properties of the m:n:θb Procedure

3.1 Constant of Coefficient of Variation

Consider the statistical properties of the m:n: θb procedure under the constant CV model 

where θ1 = ··· = θm, and θj is the true CV for the jth level. Let θ̂j be the sample CV estimate. 

If θ̂j < θb for all j = 1, …, m, then the assay passes the m : n : θb validation procedure, 

otherwise it fails. We consider first the statistical properties of passing the jth level. Let θ̂j < 

θb be a decision rule for a hypothesis test of H0j : θj ≥ θb versus H1j : θj < θb. We show in 

Section S2.1 of the Supplementary materials that for the normal constant CV model if we 

reject H0j when θ̂j < θb then this test has significance level αℓ (here the ℓ subscript denotes a 

test on each ℓevel), where . The value αℓ has the interpretation as 

the probability of passing one of the m levels, when the true CV for that level is θb. As one 

might suspect the values of αℓ are close to 50% because there is about an even chance that θ̂j 

< θb or θ̂j ≥ θb when the truth is that θ = θb. In Table 1 we give the values for αℓ for some 

m:n: θb procedures (see [1] and Table I of [2], and note that the 4 : 6 : 20% rule is a 

validation of precision rule and should not be mistaken for an assay acceptance criteria as in 

[5]). The αℓ values are slightly larger than 50% because of the asymmetry of the distribution 

of θ̂j.

Although significance levels of greater than 50% are not typically acceptable, the overall 

type I error rate of rejecting ALL m levels is much more reasonable. Under the constant CV 

model θ = θj for all j, and because of independence of the data at different levels, we can test 

H0 : θ ≥ θb versus H1 : θ < θb by rejecting at the  level when we reject each of the m 
levels at αℓ. So αq is the total significance level of the m: n : θb procedure under the normal 

constant CV model, where the type I error rate represents the probability of passing the 

procedure when the true θ = θb. Table 1 gives different αℓ and αq levels for some standard 

m:n:θb procedures under the normal constant CV model.

To see how robust these results are to the choice of error distribution we consider the 

lognormal constant CV model. In this case, we use a different estimator of CV, 

, where ν̂ is an estimate of the variance of log(Y) (see equation S10). Let θ̃j 
be the estimate for the jth sample level, and pass the associated m:n:θb procedure if θ̃j < θb 

for all j = 1, …, m. Then we show in Supplemental Section S3.1 that the probability of 

passing each level given θ = θb is αℓ = Wn−1(n − 1), where Wdf (x) is the cumulative 

distribution of a chi-square with df degrees of freedom. When for n = 5 we have αℓ = 0.593 

(giving ) and for n = 6 we have αℓ = 0.584 (giving ). 
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Comparing to Table 1, we see that these αℓ and q = 1 − αq values from the lognormal 

constant CV model are very close to those from the normal constant CV model. So the 

choice between the two constant CV models has little affect on the statistical properties.

3.2 Non-constant CV

Suppose we wanted to show that θj < θb for j = 1, 2, …, m without assuming constant CV. 

Under a hypothesis testing framework the hypotheses would be

To reject the null hypotheses, we must reject for all values of θ = [θ1, θ2, …, θm] in the null. 

Suppose that θj ≪ θb for j = 1, …, m − 1 and θm = θb. Then for standard values of n (e.g., 5 

or 6) or larger, Pr[θ̂j < θb] ≈ 1 for j = 1, …, m − 1, and

So in the extreme case when one level has CV much much larger than the others and the 

largest CV is θb, the probability of passing the m : n : θb procedure is about αℓ, which is 

greater than 50% (see Table 1). As another example, the 3 : 5 : 15% procedure under the 

normal constant CV model can have up to a 52.3% chance of passing when the largest CV is 

16%.

4 Reframing the m : n : θb Procedure as Confidence Limits

Using the relationship between hypothesis tests and confidence intervals, we can reframe the 

m: n : θb procedure in terms of confidence limits. Let yj = [yj1, …, yjn] represent the 

replicates for level j. Using standard normal or lognormal models, we can get a 100(1−αℓ)% 

one-sided confidence interval with an upper bound of θ̄j ≡ θ̄j(yj; 1−αℓ). The formulas for θ̄j 

are given in the supplement (see equation S4 for the normal model, and equation S11 for the 

lognormal model). For example, the per-level significance levels given by αℓ in Table 1 

represent the values such that θ̄j = θ̂j in the normal constant CV model. We can get an 

analogous result for the lognormal constant CV model where we can solve for αℓ (e.g., αℓ= 

0.593 for n = 5) so that θ̃j = θ̄j(yj; 1 − αℓ). Thus, when θ̂j < θb for the normal constant CV 

model (or θ̃j < θb for the lognormal constant CV model), then the m: n : θb procedure passes 

the jth level, which means that the upper 100(1 − αℓ)% confidence limit is less than θb.

If we assume constant CV (see Section 3.1) so that θj = θ for all j, then because of 

independence of the data at different levels, we can test H0 : θ ≥ θ0 versus H1 : θ < θ0 by 

rejecting at the  level when we reject each of the m levels at αℓ; in other words, we 

reject when
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Inverting the hypothesis test, we get a 100(1 − αℓ)% = 100q% upper confidence limit for θ 
of θ̄(y, q) ≡ θ̄max, where y = [y1, …, ym]. Then for the appropriate choice of αℓ (e.g., such 

that θ̂j = θ̄j), the following two events are equivalent: the data y pass the m: n : θb procedure 

and θ̄(y, q) < θb.

In hypothesis testing we often set the significance level at some traditional value (e.g., 0.05), 

which is associated with some traditional confidence level (e.g., 95%). We propose that we 

could rename the m: n : θb procedures based on the overall confidence level under the 

constant CV assumption, which we denote as q = 1 − αq. We propose renaming the m:n:θb 

procedure as a m:n: q procedure. For example, the 3:5:15% procedure in m:n:θb 

nomenclature, would be renamed the 3 : 5 : 79.3% normal constant CV model procedure in 

m:n: q nomenclature (see the first row of Table 1). The advantage of the new nomenclature 

is that it is tied to the statistical properties, so that switching from a constant CV model to an 

analogous procedure for a constant SD models is straightforward.

If there is no need to force equivalence of the m : n : q the procedure to a standard m : n : θb 

procedure, we could use a slightly modified procedure by rounding the overall confidence 

level, using for example a m: n : q procedure such as a 3 : 5 : 80% procedure or a 4 : 6 : 90% 

procedure (see Table 1). The associated individual level significance for an m:n: q procedure 

would be αℓ = (1 − q)1/m.

5 A Validation Procedure for the Constant SD Model

The m : n : q procedure for the constant SD model is formed in an analogous way as for the 

constant CV model. Let σj = σ(xj) for j = 1, …, m, then if we can assume σ1 = σ2 = ··· = σm, 

then we can use an overall 100q% upper confidence limit of

(1)

where σ̄
j(yj, 1−αℓ) is the 100(1 − αℓ) upper confidence limit for σj using standard results for 

the normal model (see equation S2), and where . If σb is an 

acceptability bound on σ, then the m:n: q procedure passes if σ̄(y, q) < σb. Although each 

acceptability bound σb is tied to the assay, the level q can be the same between a large class 

of assays.

6 The Proposed Precision Validation Process

Here is a brief description of our proposed precision validation process, including post-

validation measures of precision.
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1. Choose either a constant CV or a constant SD model for your assay within the 

range of application for which you wish to use the assay.

2. Choose a design for the validation procedure. The shorthand notation for the 

validation design is m:n: q. We measure m levels of some samples, take n 
replicates on each level, and use the data to calculate an upper bound, which may 

be interpreted under constant precision across the m levels as a 100q% one-sided 

upper confidence limit on the precision parameter.

3. Choose a statistical model (e.g., lognormal constant CV or normal constant SD), 

and calculate the 100q% upper confidence limit for the precision parameter 

under constant precision, which is the maximum of the m individual confidence 

limits at level 1−αℓ, where αℓ = (1 − q)1/m. Denote this upper bound as either θ̄(q) 

(for a constant CV model) or σ̄(q) (for a constant SD model).

4. If there is a specified bound (either θb or σb), then the assay is validated for 

precision if θ̄(q) < θb or σ̄(q) < σb. If there is no specified bound, declare the 

assay validated for precision at θ̄(q) (for the constant CV model) or at σ̄(q) (for 

the constant SD model) with level q.

5. Calculate a constant, either r or rG (for constant CV models) or s (for constant 

SD models) that will be used to create an approximate 68.27% confidence 

interval on μ(x*) or μG(x*), and x* is a post-validation sample assumed to be 

within the range of applicability of the assay. For the constant SD model, the 

confidence interval on μ(x*) is of the form, y(x*) ± s. If the data are normal with 

σ1 = ··· σm = σ then y(x*) ± σ is a 68.27% confidence interval. We call a 68.27% 

confidence interval of the form c ± d, an “effective standard deviation interval”, 

and d is the effective SD. For example, for the constant CV model the effective 

standard deviation interval is a 68.27% confidence interval on either log(μ(x*)) or 

log(μG(x*)) and is of the form log(y(x*)) ± r or log(y(x*)) ± rG. The actual 

coverage of the effective SD intervals will be larger than 68.27% under constant 

precision, and may be smaller than 68.27% when there is substantial 

heterogeneity. Details are in Sections 7 and 8.

7 Interpreting Single Sample Results Post-Validation

After an assay has been validated for precision, we want some measure of precision to be 

used with the assay for any subsequent use. We choose effective standard deviation intervals, 

although, we could alternatively use 95% confidence intervals on μ(x*) or on log(μ(x*)). In 

the subsections, we study effective standard deviation intevals in the three models when the 

precision parameters are estimated from an m:n: q procedure.

7.1 The Normal Constant SD Model

First, assume the constant SD model fits, so that σ = σ1 = σ2 = ··· = σm. Consider an m: n : q 

validation procedure that gives unbiased variance estimators,  for j = 1, …, m. Let the 

mean of those estimators be . Then by the properties of the normal 

model and the sum of independent chi square variates,
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is distributed chi square with m(n − 1) degrees of freedom. So by the independence of σ̂
2 

(from the m : n : q procedure) and y(x*) (from post-validation data), analogously to the usual 

derivation of the t distribution confidence interval from a normal sample, we get a 100(1 − 

γ)% confidence interval on μ(x*) as

(2)

where  is the qth quantile of the t distribution with df degrees of freedom. When the 

target nominal level is 68.27, then γ = 1 − 0.6827 = .3173, and we get an effective standard 

deviation of . For example, with a 3 : 5 : q procedure we get s = 1.043 * 

σ̂ and with a 4:6:q procedure we get s = 1.026 * σ̂.

Another possibility is to use the 100q% upper confidence bound from the m:n: q procedure, 

σ̄(q), as the effective standard deviation. The advantage of using σ̄(q) as the effective 

standard deviation is that only one number needs to be reported from the validation process, 

and it serves as both the precision bound and the effective standard deviation. For typical 

values of q (e.g., 80% or 90%), using σ̄(q) as the effective standard deviation will give 

conservative coverge under constant SD and ensure at least 100(1 − γ)% coverage for small 

to moderate departures from the constant SD assumption (see Section 8).

7.2 The Lognormal or Normal Constant CV Model

First consider the lognormal model and effective standard deviation intervals on log(μG) that 

is statistically analogous to the normal constant SD model. In the lognormal constant CV 

model, log(Y(x*)) ~ N(ξ(x*), ν) and ξ(x*) = log(μG(x*)) and θ = {exp(ν) − 1}1/2. Let ν̂ = 

(1/m)Σν̂
j, where ν̂

j is the unbaised variance estimator of νj. Then we can get a 100(1 − γ)% 

confidence interval on log(μG(x*)) analogously to equation 2 as

(3)

The analogous conservative effective SD interval uses

(4)
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Since μG is not defined for the normal constant CV model, we give no confidence intervals 

for it for that model.

The effective SD intervals for log(μ) under the constant CV models are more complicated. 

There is no simple form (such as the t distribution confidence intervals of equation 2) for 

giving confidence interval when using an estimator of θ. Our strategy for creating 

confidence intervals is three steps. First, we assume that θ is known, and derive the 100(1 − 

γ)% “log-centered” confidence interval, i.e., a confidence interval of the form log(y)±r(θ, 1 

− γ), where r(θ, 1 − γ) is a different function for each model. In the Supplement, we give 

the form for r(θ, 1 − γ) for the normal constant CV model in equation S8, and for the 

lognormal constant CV model in equation S12. Second, we propose as an effective SD 

interval log(y(x*)) ± r(θ̄, 1 − γ), where θ̄ = θ̄(y, q) is given in Section 4 for the two models. 

Third, we test the coverage of the confidence interval under the constant CV assumption.

Mathematically, we write the coverage as

(5)

where the probability is taken over both the validation data, Y, and the post-validation data, 

Y*, which both follow the same model (e.g., lognormal) with the CV parameters θ = [θ1, …, 

θm] and θ(x*) = θ* respectively. Although μ(x) changes between the validation samples, x = 

x1, x = x2, …, x = xm, and the post-validation sample, x = x*, Π(1 − γ) does not depend on 

any μ(x) values except through θ (see Section S4). For this section we assume constant 

precision so that θ1 = θ2 = ··· = θm = θ*, while in Section 8 we study non-constant precision. 

We use the same Π(1 − γ) expression for both the normal and the lognormal constant CV 

model. In Table 2 we give the simulated coverages for both models based on 105 simulations 

with true θ values as θb from some m : n : θb procedures. We see that the coverages for the 

nominal 68.27% intervals are conservative and nearly equal for the two constant CV models. 

The conservativeness allows for some robustness if the constant precision assumption does 

not hold, as we explicitly discuss in the next section for the interval on μ(x*) from constant 

SD model and the interval on log(μg(x*)) from the lognormal constant CV model.

8 Robustness to the Constant Precision Assumption

Using the maximum of the m 100(1−αℓ)% upper limits does not give 

coverage if we cannot assume all θj = θ (for the constant CV models) or all σj = σ (for 

constant SD models). This is the same issue as the high probability of passing when maxj=1,

…,m θj = θb under heterogeneity with the m:n:θb procedure (see Section 3.2).

We could test the constant precision assumption, but with m:n: q designs like 3:5: q or 4 : 6 : 

q we have very little power to detect reasonable alternatives. To show this, consider 

Bartlett’s test of equality of variances [6] under some alternatives. Consider a 4 : 6 : q 
procedure, and simulate with 104 replications different alternatives. Because Bartlett’s test is 

invariant to scaling, we report the standard deviations scaled to have the largest of the m 
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values equal to 1. We see in Table 3 that unless the standard deviation ratios are very small 

(minimum to maximum ratio of 0.5, which corresponds to a variance ratio of 0.25), the 

power is less than 10%, and even the small ratios only give a power of 35.5%.

Consider the lognormal constant CV model, where log(Y) ~ N(ξ, ν). Since 

(see equation S9), testing the null that θ1 = ··· = θm is equivalent to testing the null that ν1 = 

··· = νm, and we can use Bartlett’s test on the log tranformed data. Thus, in Table 3 the 

simulation results for (σ1, …, σm) correspond to (θ1, …, θm) where

Consider coverage of the one-sided overall upper confidence limits of θ̄(q) (see Section 4) 

and σ̄(q) (see Section 5). The derivation requires constant precision over the m levels, but we 

simulate the actual coverage under different scenarios in Table 3. The simulated coverage is 

invariant to scale changes, so for example, the results for (σ1, σ2, σ3, σ4) = (1, 1, 0.9, 0.9) 

also represent results from (σ1, σ2, σ3, σ4) = (100, 100, 90, 90). Further, because of the 

statistical relationship between the two models, the simulated coverages for the normal 

constant SD model with (σ1, σ2, σ3, σ4) also represent coverages for the lognormal constant 

CV model with the θj given by equation 6. We find the coverage of σ̄(Y, q) = maxj {σ̄j(yj, 1 

− αℓ)} and θ̄(Y, q) = maxj {θ̄j(yj, 1 − αℓ)} for the 4 : 6 : q procedure can be much less than 

the nominal level q if the constant precision assumption fails.

Although we must accept that the 100q% upper limits do not have proper coverage when the 

constant precision assumption fails, the coverage on the post-validation samples for μ(x*) or 

μG(x*) is more robust. Consider first the coverage of the standard deviation intervals for 

post-validation on the constant SD model. The interval defined by equation 2 gives accurate 

coverage theoretically when the constant SD holds through all m levels. But when the 

constant SD assumption fails, we study the coverage on μ(x*) of using y(x*) ± s with s = 

σ̄(y, q) as an effective standard deviation interval and simulating with σ(x*) = maxj=1,…,m 

σ(xj). Table 4 shows that the conservativeness ensures at least nominal coverage even for 

moderate departures from homogeneity of precision. As with Table 3, the simulation results 

of Table 4 are invariant to scale changes, so each row represents a class of simulations with 

the m standard deviations equal to c(σ1, σ2, σ3, σ4) for any positive constant c. Also, since 

this is essentially the same statistical problem but on the log scale for the lognormal model 

(see beginning of Section 7.2), the same simulated coverage applies to log(μG) for that 

model (with the relation between σ and θ values given in equation 6).

9 Motivating Application

9.1 The Growth Inhibition Assay

The growth inhibition assay (GIA) is a functional assay that measures how antibodies 

(immunoglobulin G, IgG) in a blood sample inhibits the growth (and/or invasion) of certain 
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malaria parasites. It is a functional assay in the sense that it is designed to measure the 

function of a sample, rather than the amount of a specific analyte. The growth inhibition 

assay is described in detail in [7]. Briefly, the purified IgG from the test sample is mixed 

with malaria-infected red blood cells (RBCs) in a well of a 96 well plate. A negative control 

is a well with infected RBCs without test IgG on the same plate. The amount of parasite 

growth in either of those wells is measured by a biochemical assay specific for parasite 

lactate dehydrogenase using optical density wavelength of 650 (OD650). Specifically, the 

GIA from those two wells after adjusting for the OD650 from normal RBCs is

Following [8] we want to focus our validation process on the intended purposes of the GIA. 

One main purpose for the assay is to determine whether a given sample has any growth 

inhibition, and if so, how much. So the general purpose standard deviation interval should be 

useful in showing the middle 68.27% probable range of any sample. So the effective 

standard deviation of Y will be a useful statistic.

9.2 Analysis of Replicate Data

For this demonstration, we use GIA replicate measurements on samples, where the GIA is 

based on two different strains of the Plasmodium falciparum parasite, 3D7 and FVO. Each 

sample is measured 4 times on 4 different assays. There are 6 samples measured using the 

3D7 strain, and in each of the 4 assays each of the 6 samples is measured once. Similarly, 

there are 7 samples measured using the FVO strain, and in each of 4 different assays each of 

the 7 samples is measured once. There is statistical dependence due to the samples being all 

measured on the same assay, so in a proper qualifying procedure each replicate would be 

measured on a different assay. For the purposes of illustration assume that each replicate is 

measured on a different assay.

In Figure 1 we plot the mean of the 4 replicates for each sample by its 4 GIA measurements. 

The constant standard deviation model on the GIA appears reasonable except for very large 

values of mean GIA (above about 80% the variance looks smaller). Because complete 

inhibition will give GIA values of 100% with no variation, it is reasonable to expect that 

very large values of the GIA will have smaller variation. For the puposes of this illustration, 

assume that the validation procedure was planned only for the data in the range with mean 

GIA < 80%. For these examples, we use the m: n : 90% procedures, but the m:n:80% ones 

could have also been used.

We start with the 3D7 GIA assays. The range with mean GIA < 80% leaves us with m = 4 

levels for testing. We run a 4 : 4 : 90% procedure with a constant normal variance model, so 

we calculate confidence intervals for σ at the one-sided 1 − (.10)1/4 = 1 − 0.5623 level. 

These are given as σ̄j(0.4377) in Table 5. Although 0.4377 < 0.50, the upper limit σ̄
j(0.4377) 

is greater than the sample standard deviation because in this case 

 (see equation S2). Although, 0.4377 seems like a strange 
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level for the individual upper limits, it allows us to take the maximum as a 90% confidence 

limit under constant SD, so that σ̄(.90) = 7.9. We say that between the GIA values of about 

18 and 68, the assay passes the 4:4:90 precision validation procedure with a bound of 7.9, 

and observed GIA values post-validation, y = y(x*), can be expressed as y ± 7.9. Although 

the effective standard deviation was calculated without using the values with mean GIA > 

80%, since the variance of those values are biologically expected to be less, we can 

practically extend the range of the precision up to 100%.

Now consider the FVO assays. Again, we consider only the range with mean GIA < 80%. 

This leaves us with m = 6 levels for testing. We run a 6 : 4 : 90 constant normal SD 

procedure, so we calculate confidence intervals for σ at the one-sided 1 − (.10)1/6 = 1 

− 0.6813 level under constant SD. These are given as σ̄j(0.3187) in Table 6. In this case, 

, so that the upper limit of σ is less than its estimate. This 

choice of confidence level for each sample allows their maximum to be σ̄(0.90) = 6.9. For 

GIA values between about 5 and 74 the assay passes the 6 : 4 : 90 precision validation 

procedure with a bound of 6.9, and observed post-validation GIA values, y = y(x*), can be 

expressed as y ± 6.9. As for the 3d7, we can practically extend the range of the precision up 

to 100%.

The precision bounds of less than 10% (7.9 for 3D7 and 6.9 for FVO) are considered to be 

acceptable for this type of biological assay, which is used to study the properties of 

antibodies in preclinical and and clinical vaccine development.

10 Discussion

We have reframed the m: n : θb precision validation procedures on constant coefficient of 

variation models as a series of hypothesis tests over m levels. By reframing the problem this 

way, we accomplish several goals. First, we highlight the assumptions that are implicit in the 

usual m:n:θb procedure and give some statistical properties of the usual procedure. 

Specifically, without approximate equality of CV across the m levels, it is possible to have 

greater than 50% chance of passing the usual m: n : θb procedure when the true CV on at 

least one level is larger than the bound. However, with constant CV, the probability of 

passing some standard m: n : θb procedures when the true CV is equal to the bound θb is 

closer to 10% or 20%. Second, by attaching a statistical model to the procedure, we can 

show that the maximum of the CV estimates can be interpreted as an upper confidence limit 

under the constant CV assumption across the m levels. For example, that maximum has 

confidence level of about 79% for standard 3:5:θb procedures and of about 89% for the 4 : 

6 : 20% procedure (see Table 1). Third, the reframing of the procedure allowed it to be 

applied to assays that have constant standard deviation. The new nomenclature is m:n: q 
where q is the level of the upper limit under constant precision. Assuming that either the 

standard deviation or the coefficient of variation is fixed and equal for all m levels tested, we 

have shown how to create a one-sided upper confidence limit on the standard deviation, 

σ̄(q), or on the CV, θ̄(q), based on the maximum of the upper confidence limits at each level. 

We showed that after the validation procedure, the subsequent output from a sample can be 

listed as y ± σ̄(q) (for the constant standard deviation model) or log(y)±r(θ̄(q), 0.6827) or 

log(y)±rG(θ̄(q), 0.6827) (for the constant coefficient of variation model), and those intervals 
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have at least 68.27% coverage on μ, log(μ), or log(μG) when the m:n: q procedure has values 

similar to 3 : 5 : 80% or 4 : 6 : 90%. When there are moderate departures from the constant 

precision assumption the post-validation covearge is still greater than 68.27%, although the 

coverage for σ̄(q) or θ̄(q) is less than q. Additionally, we only expect the parametric 

assumptions to hold approximately in practice, so we accept slightly conservative standard 

deviation intervals to adjust for possible misspecification. Finally, since our procedure is 

based on upper confidence limits, it will automatically adjust as the replication size (n) 

changes.

The methods in this paper assume that given a sample x, the n replicates are independent. 

We also assume that the replicates for different samples are not batched together. Other 

assay designs not covered here are when a normalizing control is shared between many 

samples. Further work is needed to deal with designs such as this.

In summary, this paper develops a statistical formalism to address two main shortcomings of 

current precision validation method. First, we reframe and generalize the standard precision 

validation method to be applicable not just to a standard constant coefficient of variation 

model, but also to a constant standard deviation model. Second, we develop precision 

statistics for routine use with the assay after the validation procedure is completed.

We developed the R package testassay to perform the methods of this paper (see 

Supplementary Material).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Plot of individual GIA values from each sample by the mean GIA for each sample, for both 

3D7 (gray triangles) and FVO (black circles). Line is line of equality.
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Table 2

Coverage using the normal constant CV model and lognormal constant CV model for different m:n: q 
procedures. The value θ is the true CV for the estimation of Π(0.6827) (the coverage of the confidence interval 

for μ(x*) using the 100q% upper limit for CV from the procedure). The value Π(0.6827) is estimated by 

simulation based on 105 replications, and its nominal value is 0.6827.

m:n:q θ

Normal Constant CV Model lognormal Constant CV Model

Π(0.6827) Π(0.6827)

3:5:80% 0.15 0.770 0.768

3:5:80% 0.20 0.770 0.767

4:6:90% 0.20 0.794 0.785
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Table 3

Simulated power and simulated coverage using 10, 000 Monte Carlo replications: Simulated power to reject 

(at the 5 percent level) equal variances (normal constant SD model) or equal coefficient of variations 

(lognormal constant CV model) using Bartlett’s test. Simulated coverage of maxj σj by σ̄(q) (see Section 5) 

and maxj θj by θ̄(q) (see Section 4) and for 4:6:80% and 4:6:90% procedures.

(σ1, σ2, σ3, σ4) (θ1, θ2, θ3, θ4) Power(percent) Coverage 4:6:80% Coverage 4:6:90%

(1.0, 1.0, 1.0, 1.0) (1.00, 1.00, 1.00, 1.00) 4.8 80.2 90.1

(1.0, 1.0, 0.9, 0.9) (1.00, 1.00, 0.85, 0.85) 5.2 72.2 84.7

(1.0, 0.9, 0.8, 0.7) (1.00, 0.85, 0.72, 0.61) 8.3 55.5 71.6

(1.0, 1.0, 0.5, 0.5) (1.00, 1.00, 0.41, 0.41) 34.2 55.4 68.7
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Table 4

Simulated coverage on μ for post-validation interval of the form y ± s, using n=10,000 replications. Ideal 

coverage is 68.27% and is theoretically acheived when the constant SD assumption holds using 

 (equation 2). We also try s = σ̄(y, 0.80) and s = σ̄(y, 0.90) for 4:6:80% and 4:6:90% 

procedures.

(σ1, σ2, σ3, σ4) s= σ̄(y, 0.80) s = σ̄(y, 0.90)

(1.0, 1.0, 1.0, 1.0) 68.3 75.5 79.4

(1.0, 1.0, 0.9, 0.9) 65.9 73.3 77.3

(1.0, 0.9, 0.8, 0.7) 61.1 69.6 73.6

(1.0, 1.0, 0.5, 0.5) 57.0 69.2 73.2
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Table 5

4:4:90% procedure on GIA (3D7 strain).

sample mean(GIA) sd(GIA) σ̄j(0.4377)

3D7.2049 17.8 5.48 5.76

3D7.4098 33.8 7.35 7.73

3D7.8196 53.1 7.52 7.90

3D7.16393 68.5 6.18 6.49

Stat Med. Author manuscript; available in PMC 2019 February 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fay et al. Page 21

Table 6

6:4:90% procedure on GIA (fvo strain).

sample mean(GIA) sd(GIA) σ̄j(0.3187)

FVO.1760 4.5 7.02 6.49

FVO.3520 13.1 6.33 5.84

FVO.7040 23.7 6.72 6.21

FVO.14079 33.3 4.29 3.96

FVO.28158 47.5 5.73 5.30

FVO.56317 73.7 7.47 6.90
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