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Abstract

We proposed an unsupervised hybrid method - Intelligent Word Embedding (IWE) that combines 

neural embedding method with a semantic dictionary mapping technique for creating a dense 

vector representation of unstructured radiology reports. We applied IWE to generate embedding of 

chest CT radiology reports from two healthcare organizations and utilized the vector 

representations to semi-automate report categorization based on clinically relevant categorization 

related to the diagnosis of pulmonary embolism (PE). We benchmark the performance against a 

state-of-the-art rule-based tool, PeFinder and out-of-the-box word2vec. On the Stanford test set, 

the IWE model achieved average F1 score 0.97, whereas the PeFinder scored 0.9 and the original 

word2vec scored 0.94. On UPMC dataset, the IWE model’s average F1 score was 0.94, when the 

PeFinder scored 0.92 and word2vec scored 0.85. The IWE model had lowest generalization error 

with highest F1 scores. Of particular interest, the IWE model (trained on the Stanford dataset) 

outperformed PeFinder on the UPMC dataset which was used originally to tailor the PeFinder 

model.
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1. Introduction

Radiology is central to modern healthcare, providing detailed clinical information for 

disease detection, staging and treatment planning while also playing an important role in 

monitoring and predicting outcomes. Radiology reports are composed of unstructured free-

text, and conversion into a computer manageable representation for large scale analysis 

requires strategies for efficient and automated information extraction. Natural language 

processing (NLP) tools are designed to convert unstructured text into coded data which may 

enable automatic identification and extraction of information from radiology text reports for 

a variety of clinical applications, including diagnostic surveillance, cohort building, quality 

assessment, labels for computer vision data, and clinical decision support services.

Despite the advantages, NLP remains an underutilized technique for large-volume radiology 

report data extraction in both research and clinical practice environments due to high 

development costs and lack of generalizabiltiy of models. Many of the best performing NLP 

methods are Dictionary-based [1] or Rule-based analysis [2], which, while accurate for a 

specific task, requires tremendous manual effort to tune the methods for a particular case-

study/dataset. Recently, deep learning has provided researchers with tools to create 

automated classification models without requiring hand-crafted feature engineering which is 

adapted widely for medical images [3, 4, 5]. However, the deep learning methods have yet to 

show similar performance gains on information extraction from free text radiology reports. 

A challenge to applying deep learning methods to information extraction in text is modeling 

ambiguity of free text narrative style for clinical reports, lexical variations, use of 

ungrammatical and telegraphic phases, and frequent appearance of abbreviations and 

acronyms.

We propose a hybrid method - Intelligent Word Embedding (IWE) that combines semantic-

dictionary mapping and neural embedding technique for creating context-aware dense vector 

representation of free-text clinical narratives. Our method leverages the benefits of 

unsupervised learning along with expert-knowledge to tackle the major challenges of 

information extraction from clinical texts, which include ambiguity of free text narrative 

style, lexical variations, use of ungrammatical and telegraphic phases, arbitrary ordering of 

words, and frequent appearance of abbreviations and acronyms. Ideally, the transformation 

of large volume of free-text radiology reports into dense vectors may serve to unlock rich 

source of information for solving a variety of critical research challenges, including 

diagnostic surveillance, cohort building, and clinical decision support services. In this study, 

we will exploit the embedding created by the IWE method to generate annotation of a large 

multi-institutional cohorts of chest CT radiology reports based on various level of 

categorizations of PE.

In the targeted case-study, the first important determinant is whether the patient has a PE or 

not, which informs medical care and treatment decisions; however it is possible that the 

patient has had prior imaging that diagnosed PE and subsequent imaging may demonstrate 

an unchanged, diminished, or otherwise chronic PE, in which case medical treatment may 

change based on whether the PE had responded to prior therapy. Finally it is controversial 

whether subsegmental PE requires treatment at all, and is not felt to have the same clinical 
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implications as central PE, and thus this category holds valuable importance for clinical 

decision making [6, 7].

We formulated annotation of the radiology reports in terms of three different PE categorical 

measures (PE present/absent, PE acute/chronic, PE central/subsegmental) as separate 

classification task. Note that a given report cannot have labels of ‘PE acute/chronic’ or ‘PE 

subsegmental only/central’ without the label of ‘PE present’. Our formulation is mainly 

influenced by the fact that the performance of the ‘PE positive’ label alone and drawing 

conclusions in comparison to other NLP classifiers has significant value as the primary 

clinical state based on the imaging study. The characteristics of ‘PE acute’ vs ‘PE chronic’ 

or ‘PE subsegmental’ vs ‘PE central’ location, while important, are each inherently more 

challenging and have less clinical impact compared to the fundamental disease state and 

conflating these labeling tasks would provide less information about individual label 

performance for this exploratory evaluation.

We benchmark the performance of IWE model against a state-of-the-art rule-based solution 

PeFinder [8] and out-of-the-box word2vec model [9, 10] using radiology reports from two 

major academic institutions: Stanford and University of Pittsburgh medical center. The 

proposed embedding produced high accuracy (average F1 score Stanford dataset - 0.97, 

UPMC dataset - 0.94) for three different categorical measures of PE despite the fact that the 

reports were generated by numerous radiologists of differing clinical training and 

experience. Besides, the IWE model trained on the Stanford dataset, and used to create 

embeddings from UPMC dataset, beat the PeFinder model which was originally developed 

on the UPMC dataset. IWE model also improved upon the out-of-the-box word2vec and 

showed more generalizability on heterogeneous datasets. We also explored the visualization 

of vectors in low dimensional space while retaining the local structure of the high-

dimensional vectors, to investigate the legitimacy of the semantic and syntactic information 

of words and documents. In the following sections, we detail the methodology (Sec. 3), 

present the results (Sec. 4) and finally conclude by mentioning core contributions, 

limitations and future research directions (Sec. 5).

2. Related works

MedLEE (Medical Language Extraction and Encoding System) in an example of traditional 

NLP approach in medical domain which relies on controlled vocabulary and grammatical 

rules in order to convert free-text into a structured database [11, 12]. Dang et al. processed 

1059 radiology reports with Lexicon Mediated Entropy Reduction (LEXIMER) to identify 

the reports that include clinically important findings and recommendations for subsequent 

action [13]. A core limitation of such rule-based systems is that all the kinds of entities and 

relations need to be pre-specified, and it requires enormous amount of manual effort to 

initiate such systems if the number of such entities and relations that need to be extracted is 

significantly large. Moreover, extension of such systems, even for a similar case-study, needs 

nearly equal amount of manual work.

In addition to traditional dictionary-based and rule-based NLP techniques, various 

combinations of NLP pipelines and Machine learning methods have been proposed [14, 15] 
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that do not demand substantial manual effort and can be retrained without reprogramming 

for any domain. Sohn et al used tokenizer combined with machine learning to identify 

patients with abdominal aortic aneurysms [16]. Nguyen et al.[17] combined traditional 

supervised learning methods with Active Learning for classification of imaging 

examinations into reportable and non-reportable cancer cases.

However, the performance of machine learning models heavily depends on finding 

meaningful vector space projections of the unstructured texts. In most approaches, 

documents are represented by a simple sparse bag-of-words (BoW) representations which 

face several challenges in the clinical domain: (i) scalability - BoW encode every word in the 

vocabulary as one-hot-encoded vector, but clinical vocabulary may potentially run into 

millions; (ii) semantics of the words - the vectors corresponding to same contextual words 

are orthogonal; (iii) word orderings - BoW models also don’t consider the order of words in 

the phrase.

There is now an emerging trend with deep learning that adopts a distributed representation 

of words by constructing a so-called neural embedding of each word or document. The 

word2vec model introduced by Mikolov et al. [9, 10] is the most popular approach for 

providing semantic word embeddings. One of the biggest challenges with word2vec is how 

to handle unknown or out-of-vocabulary (OOV) words and morphologically similar words. 

This can particularly be an issue in domains like medicine where synonyms and related 

words can be used depending on the preferred style of radiologist, and words may have been 

used infrequently in a large corpus. If the word2vec model has not encountered a particular 

word before, it will be forced to use a random vector, which is generally far from its ideal 

representation. Our proposed method - Intelligent Word Embedding (IWE) that can 

efficiently handle OOV words by combining neural embedding with the semantic dictionary 

mapping.

3. Material and Methods

3.1. Dataset

3.1.1. Cohorts

Stanford dataset: With the approval from the Stanford Institutional Review Borad (IRB), 

we obtained radiology reports from Stanford medical center for contrast-enhanced CT 

examinations of the chest performed between January 1,1998 and January 1,2016. Using 

radiology procedure codes, a total of 117,816 CT examinations of the chest with contrast 

reports were selected for our analysis. All examinations were de-identified in a fully HIPAA- 

compliant manner and processing of data was approved by the IRB.

Two experienced radiologists performed annotation of total 4512 randomly selected reports. 

Three binary labels were assigned to individual reports which was defined according to three 

categorical measures of PE: (1) PE present/absent; (ii) PE acute/chronic; (iii) PE central/

subsegmental only. If a PE was definitely present in the report it was annotated as positive 

for PE present, or else annotated as negative. Chronicity was labeled as either acute or 

chronic based on the text description. In the setting of acute on chronic, or “mixed” 

chronicity, the report was labeled as acute to reduce the false negative rate. The 
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“subsegmental only” label was used in cases where the PE was described as subsegmental 

and did not include more central locations.

Interrater reliability was estimated as Cohen’s Kappa Score and the raters were highly 

consistent for the first two categories of determining PE present and PE Acute with kappa 

scores of 0.959 and 0.969 respectively. Significant disagreement (kappa score of 0.664) was 

observed when looking at PE subsegmental label. A senior radiologist resolved all 

conflicting cases manually for preparing the ground truth labels.

UPMC dataset: We obtained 858 reports from University of Pittsburgh medical center that 

were originally used to develop PeFinder classifiers. The reports were all de-identified in a 

fully HIPAA-compliant manner. The annotations were defined according to two categorical 

measures of PE: (1) PE present/absent; (ii) PE acute/chronic. Three medical students 

independently annotated the reports with five distinct states and binary annotations for each 

document were obtained from the user annotations as follows: probably positive and 

definitely positive were collapsed to positive; probably negative, indeterminate, and 

definitely negative were considered negative; after collapsing annotations to binary values, 

the authors generated labels for each report by a majority vote of the annotators [8].

3.1.2. Synopsis of the cohorts—In this study, we utilized the ‘Impression’ section of 

the radiology reports to classify them according to PE categorical measures since the PE 

assessment categories are often only reported in impression section of the reports. We 

implemented a python-based section segmentation algorithm - Report Splitter, to recognize 

section headings and to use them to segment ‘Impression’ section from both Stanford and 

UPMC dataset. Despite the fact that the purpose of impression section is to provide a high-

level summary of the clinical findings, it is not trivial to recognize the PE assessment 

descriptions, due the high ambiguity in the expression and variations in syntax. In Table 1, 

we present the synopsis of the Stanford and UMPC dataset according to report-level, 

sentence-level and word-level statistics which again reflects a large diversity between the 

style of impression sections. For instance, the number of words in the impression section of 

the reports ranged from 11 to 3015 in the UPMC dataset while for Stanford dataset in varies 

from 11 to 2116. Same observation holds for the sentence length. More importantly, 117,387 

unique words are noticed only in the Stanford dataset when all the reports belongs to 

contrast-enhanced CT examinations of the chest performed in the same institution, which 

makes the automated report classification task even more challenging.

3.1.3. Sample distribution—Figure. 1 presents the sample distribution within the 

annotated Stanford and UPMC dataset according to the PE categorical measures. As seen 

from the figure, ~ 68% of the samples in both Stanford and UPMC cohorts represents PE 

absent, and are also labeled as ‘negative’ for PE acute/chronic class label. Only ~ 10% of the 

samples in the Stanford cohort are labeled as ‘positive’ for the PE subsegmental category. 

The percentage of imbalance in our dataset can be considered as the representative sample of 

real clinical scenarios.
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3.2. Intelligent word embedding (IWE) model

Figure. 2 presents the high-level model schema of Intelligent word embedding (IWE) where 

two complimentary approaches - (i) Semantic dictionary mapping, and (ii) word2vec, are 

combined together for creating dense vector representation of individual clinical reports. 

Finally, a supervised classification model is trained to learn the mapping between the vectors 

of the training set and ground truth labels for predicting the annotation of test cases. The 

majority of the pipeline is unsupervised, and only the classification block needs manually 

labeled data.

3.2.1. Report Condenser—We implemented a python-based text processor, Report 
Condenser which transformed all 117,816 report impressions through a series of pre-

processing steps to focus only on the significant concepts of the free-text reports, that would 

enhance the semantic quality of the resulting word embeddings. First, it cleansed the texts by 

normalizing the texts to lowercase letters and removing words of following types: general 

stop words (a, an, are,...,be, by,...,has, he,...,etc), words with very low frequency (< 50), 

unwanted terms and phrases (e.g. medicolegal phrases, headers, etc). Following removal 

steps, Report Condenser searched the updated corpus to identify frequently appearing pairs 

of words based on pre-defined threshold value of occurrence (> 5000) and condensed them 

into a single word to preserve useful semantic units for further processing. Some examples 

of the concatenated words are: ‘bilater pulmonari’ → ‘bilater_pulmonari’, ‘mass effect’ → 
‘mass_effect’, ‘lung nodule’ → ‘lung_nodule’.

3.2.2. Semantic-dictionary mapping—We use a lexical scanner that recognizes corpus 

terms which share a common root or stem with pre-defined terminology, and map them to 

controlled terms. In contrast with traditional NLP approaches, this step does not need any 

sentence parsing, noun-phrase identification, or co-reference resolution. We used dictionary 

style string matching where we directly search and replace terms, by referring to the 

dictionary. We adopted multilevel semantic mapping methodology. First, we used the more 

general publicly available CLEVER terminology [18] to replace common analogies/

synonyms for creating more semantically structured texts. We mainly focused on the terms 

that describe family, progress, risk, negation, and punctuations, and normalized them using 

the formal terms derived from the terminology. For instance, {’no’, ‘absent’, ‘inadequate to 
rule out’ .. } → ‘NEGEX’, {’suspicion’, ‘probable’, ‘possible’} → ‘RISK’, {’increase’, 
‘invasive’, ‘diffuse’, ..} → ‘QUAL’. The common-term dictionary contains on total 800 

unique terms.

In the second level of the mapping, we built a domain specific dictionary for Pulmonary 

embolism (PE) case study by using three distinct bio-portal ontologies [19] - SNOMEDCT, 

MEDDRA, and RadLex. The main idea is to reduce the variations of radiological terms that 

are often used by the clinician while reporting pulmonary embolism cases. We collected 44 

unique domain-specific terms from the radiologists. We created a SPARQL based ontology 

crawler that search for the domain specific key terms remotely on a bio-portal ontology 

specified by the unique ID, and grabs all the sub-classes and synonyms of the domain-

specific terms from the targeted ontology. Figure 3 presents the functioning of the ontology 

crawler in a higher-level where, the crawler extracted 3 sub-trees given 3 key-terms(red 
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dashed). Finally, the crawler automatically resolves the redundancy and creates a focused 

dictionary for “Pulmonary embolism (PE)” case-study.

The PE dictionary contains total 44 unique terms and on average 5–8 are mapped with each 

unique terms. For instance, all the equivalent terms of pulmonary embolism are formalized 

as: {’pulmonary embolism’, ‘pulmonary embolus’, ‘lungenembolie’, ...} → ‘pe’. Our 

semantic dictionary mapping step considerably reduced the size of our vocabulary (~40%) 

by preserving the true semantics of terms, thereby making the words in the vocabulary more 

frequent. Therefore, the automatic dictionary tailoring using ontology crawler provide a 

solution to efficiently utilize multiple large-scale ontologies while increasing the overall 

processing performance.

3.2.3. Unsupervised embedding—The corpus of pre-processed reports was used to 

create vector embeddings for words in a completely unsupervised manner using a word2vec 

predictive model. The Semantic dictionary mapping step (Section 3.2.2) not only 

considerably reduced the size of our vocabulary by mapping the words in corpus to the 

controlled terms derived from the domain specific dictionary for Pulmonary embolism (PE) 

and CLEVER, but also decreased the probability of OOV word encounter. The idea behind 

this is that the context of controlled terms formalized in the knowledge-base should capture 

the true semantics and can facilitate information extraction from the reports. Therefore, the 

reports are pre-processed using Report Condenser and Semantic dictionary mapping to 

balance the text consistency with less term variation which facilitates the application of 

word2vec directly to parse radiology reports.

The model probes the finer structure of the word vector space by representing each word as 

a distribution of weights across several hundred dimensions. So instead of a one-to-one 

mapping between an element in the vector and a word, the representation of a word is spread 

across all of the elements in the vector. It also captures the semantic regularities of words. 

We first constructed a vocabulary from our pre-processed corpus, and then learned vector 

representations of words in the vocabulary. One word is considered per context, which 

means the model will predict one target word given one context word. The loss function of 

prediction model is: , where wo is the output word, vwo′ 
is its output vector, h is the average of vectors of the context words, and V is the entire 

vocabulary.

We used both Hierarchical Softmax as well as Negative Sampling for training word 

embedding model and we found based on the experiments that Negative Sampling to be 

faster and better training algorithm for this case-study. Mikolov et al. [10] also advocated 

Negative Sampling as the method that results in faster training and better vector 

representations for frequent words. The cost function of Negative Sampling is: E = −log 

σ(vwo′.h) − Σwj∈ωneg log σ(−vwj′.h), where ωneg is the set of negative samples, wo is the 

output word, vwo′ is its output vector and h is the average of vectors of the context words.

We explored all possible combinations of the following configurations to train the word2vec 

model: (1) the dimension of word vectors: (100, 200, 300, and 700); and (2) the size of the 
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context window: (10, 20, 30, and 50). Using 10-fold cross validation on the training dataset 

(Stanford dataset), we found that the optimized performance was achieved with the skip-

gram architecture, vector dimension of 300 and a window size of 30.

3.2.4. Document vector creation—The document vectors were created by a word 

averaging approach that simply averages the word vectors created through the trained model. 

Each document vector was computed as: , where Vdoc is the set of 

words in the report and vw refers to the word vector of word w. We also experimented with 

2-step Doc2vec model that, first, modifies the word2vec algorithm to unsupervised learning 

of continuous representations for larger blocks of text, and then we retrain the model with 

lower learning rate (10 times smaller than original learning rate) on a smaller subset of 

labeled data. But the initial experiments showed that accuracy of unsupervised word 

averaging approach for the targeted learning task performed better than the 2-step semi-

supervised Doc2Vec approach.

3.2.5. Classification—Ideally, IWE generated document embeddings can be utilized to 

train any Parametric classifiers (Logistic Regression) as well as Non-Parametric classifiers 

(Random Forests, Support Vector Machines, K-Nearest Neighbors (KNN)) to fulfill various 

type of classification tasks. For this study, we experimented with binary logistic regression 

models (Lasso) with 10 fold cross validation on the same training dataset as described in 

Sec. 3.1 and report the performance on the test sets. We train three separate Lasso models 

for predicting PE present/absent, Acute/chronic, Central/Subsegmental using the same 

vector embeddings as input. Out of the 4512 annotated reports in the Stanford corpus, 3512 

reports were randomly selected for training and remaining 1000 selected as test sets. The 

classification models trained on the Stanford dataset have been directly applied on the 

UPMC dataset (858 reports) for testing. Note that in the current study only the impression 

section of the radiology reports has been considered.

4. Results

4.1. Validation of the embedding

We explored the semantic quality of the embedding generated by our IWE method in two 

different ways. First, we find similar word clusters in a totally unsupervised manner to verify 

the positioning of synonyms (and related words). This can show at the very low scale that if 

our vector embedding is able to preserve legitimate semantics of the natural words and 

clinical terms. Second, we visualize the document vectors to fulfill the purpose of analyzing 

the proximity of documents that have different levels of PE categorization. If the documents 

corresponding to the same class (risk) appear close to each other and form clusters, we can 

infer that our embedding carries substantial signals which can be useful to boost the 

performance of any standard classifiers.

Word embedding: For projecting the high dimensional trained embeddings of words and 

documents in 2D, we used t-Distributed Stochastic Neighbor Embedding (t-SNE) method 

[20] since it is able to capture much of the local structure of the high-dimensional data, 

while also revealing global structure. Figure. 4 (on the left) shows the 2D visualization of the 
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complete vocabulary constructed using the t-SNE approach where each data point represents 

a word. To investigate the semantic correctness of the word embedding, we performed 

clustering of the space using a modified version of k-means - k-means++, where randomized 

seeding technique has been adopted to determine the starting centroids of the clusters. The 

optimal number of clusters - ‘k’, has been determined by Silhouette analysis [21] where ‘k’ 

is selected according to the highest separation distance between the resulting clusters. For 

our vocabulary of size 3650 words, we tried the number of cluster within the range [10, 

1000] and the highest silhouette measure was 0.62 for k = 200 which depict a reasonably 

strong clustering of the space. Interestingly, most of the clusters contain semantically similar 

words. We present a few representative clusters in Table 2 where terms related to ‘Cancer’, 

‘Cardiac’, ‘Skeletal’, ‘Location’, ‘Effsusion’, ‘Procedure’ are clustered together without 

even inclusion of any prior knowledge. This clustering outcome illustrates that our word 

embedding was able to preserve the semantics of the relevant terms in an unsupervised 

manner.

Report embedding: In the next level of validation, we used one time execution of the t-SNE 

method with the perplexity of the conditional probability distribution as 30 for projecting the 

high-dimensional document vector created by IWE model into 2D space. In Figure. 5 and 6, 

we visualize the subsequent vector embeddings of the whole reports from Stanford and 

UPMC dataset derived by the IWE model. These visualizations have been created only on 

the test cases (Stanford - 1000 and UPMC - 858) and the coloring has been shown based on 

the ground truth annotations defined by the radiologists. The figures show that the 

embeddings created from IWE models were able to preserve meaningful signal for 

distinguishing the reports annotated with varying risk PE factors, and formed natural clusters 

in the embedding space. Though this is only a two-dimensional projection of the original 

high dimensional document vector, the results clearly exhibit that the embeddings could be 

very informative to automatically classify the reports using any standard classifier. It is 

important to note that the document embeddings generated by the IWE model is completely 

unsupervised (see Figure 2), yet it was able to preserve the semantics of the reports at 

varying level of PE categorizations.

4.2. Classification performance

We first created a simple baseline using bag-of-words model (BoW) which represents the 

radiology reports as the bag (multiset) of its words, disregarding grammar and even word 

order but keeping multiplicity. For comparative assessment of IWE model, we applied the 

previously published rule-based PeFinder model [8]. We also performed comparison of IWE 

with baseline neural embedding where we generated the embedding of the documents using 

out-of-the-box word2vec model [9, 10] and used logistic regression on top of it. The 

experiments have been performed on 1,000 classified reports from Stanford dataset and 858 

reports from the University of Pittsburgh Medical Center which were used originally to train 

the PeFinder. Both IWE and standard word2vec model has been trained from scratch on 

117,816 CT reports belonging to the Stanford dataset, and on top of the embeddings the 

same supervised classifier has been trained only on the Stanford training dataset (3512 

reports) and tested on both unseen Stanford and UPMC testset.
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Receiver Operating Characteristic (ROC) curves is a well-accepted method to show the 

tradeoff between specificity and sensitivity where the models produced a sort of scores for 

test samples, and presents pairs of specificity and sensitivity values calculated at all possible 

threshold scores. The ROC curve also provides a single performance measure called the 

Area under the ROC curve (AUC) score where higher AUC represents better performance. 

The ROC for IWE model are shown in Figure 7 where we present the curves on both 

Stanford and UPMC dataset side-by-side. Different colors represent three different PE 

categorical labels considered in the study. On Stanford test set (ROC on the left), our model 

achieved AUC 0.96 for PE acute, AUC 0.95 for PE positive, and AUC 0.92 for PE 

subsegmental. Even without retraining on UPMC test set (ROC on the right), our model 

maintained the similar performance level with AUC 0.96 for both PE acute and PE positive. 

However, the interpretation of ROC curves requires a special caution. This is mainly due to 

the fact that ROC may actually introduce more uncertainty into machine learning 

classification accuracy comparisons than resolution, and end up showing a very optimized 

performance. Moreover, it is not possible to draw a fair comparison between the models with 

ROC curves because the PeFinder model does not output probability scores for its 

predictions - just binary outcomes.

Therefore, we decided to evaluate the proposed model’s, BoW, out-of-box word2vec and 

PeFinder performance in terms of Precision, Recall, and F1 score. In Table 3, we present the 

simple baseline BoW model’s performance. In Table 4 and 5, we show the performance 

measures in-terms of precision and recall value for the three comparative models - (i) rule-

based - PEFinder, (ii) baseline neural embedding - word2vec, (iii) proposed hybrid model - 

IWE. UPMC dataset does not have the ground truth labels for PE subsegmental only 

category, and PeFinder is not engineered for classifying this category. Therefore, we 

mentioned ‘N/A’ where the performance could not be validated in comparison with the 

ground truth labels or model could not performed the classification task.

As seen from the measures, all three comparative models outperformed simple baseline 

BoW model for the Stanford as well as for the UPMC test set. The IWE model had the 

lowest generalization error across most of the dimensions of PE measures among the 

models. But, as seen from Table 4, precision measures of standard word2vec model trained 

on the same dataset are close to IWE model, and even closely outperformed IWE model for 

PE subsegmental category. But, for a completely different UPMC dataset, IWE model 

performs signifocantly better than word2vec, but PeFinder model achieved slightly higher 

Recall value for this dataset (Table 5). Therefore, we performed nonparametric statistical 

signifocant tests for both Precision and Recall score using Fisher’s exact test [22] which 

calculates an exact p – value based on the sample data (see Table 6). From the results, we 

can conclude that even if the Recall is higher for the PeFinder on UPMC dataset and 

Precision of word2vec for Stanford dataset, it is not statistically significant as p – value < 

0.001.

To capture a better view of the performance, we computed the F1 score which is a harmonic 

mean of precision and recall, for all the models and visualize as bar plot in Fig. 8). The 

graph clearly shows that IWE model performed consistently better on both Stanford and 

UPMC data set for all the categorical PE measures. On the Stanford test set, the IWE model 
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achieved average F1 score 0.97, when the PeFinder scored 0.9 and the out-of-the-box 

word2vec scored 0.94. On UPMC dataset, the IWE model’s average F1 score was 0.94, 

when the PeFinder scored 0.92 and out-of-the-box word2vec scored 0.85. This is an exciting 

result since the IWE model outperformed Pefinder which was actually trained as tested on 

the UPMC dataset. Therefore, it clearly shows that the IWE model is not over-fitted to the 

Stanford training dataset and can be easily extendable to a completely different organization 

dataset without retraining. The cross-institutional generalizibility of the IWE method is 

mainly facilitated due to the efficient integration of neural embedding and semantic 

dictionary mapping, since it can tackle the major challenges of information extraction from 

clinical texts, which include ambiguity of free text narrative style, lexical variations, use of 

ungrammatical and telegraphic phases, arbitrary ordering of words, and frequent appearance 

of abbreviations and acronyms. Only for PE subsegmental for Stanford testset, F1 score for 

standard word2vec is slightly higher than IWE, mainly due to the high precision. However, 

the Fisher’s exact test showed that the difference is not statistically significant.

5. Discussion

The purpose of this study was to propose an efficient method that can classify free text 

contrast enhanced chest CT reports based on three different clinically relevant classifications 

related to the diagnosis of pulmonary embolism - (1) PE present/absent; (ii) PE acute/

chronic; (iii) PE central/subsegmental only. We designed a hybrid semi-supervised method 

termed Intelligent Word Embedding (IWE) that combines word embedding approach 

proposed by Mikolov et al [10] with domain specific semantic dictionary mapping technique 

for creating dense vector embedding of the reports. The combination of the neural language 

model with a semantic dictionary aims to address one of the biggest limitation of word2vec 

which is the inability to handle unknown or out-of-vocabulary (OOV) words and 

morphologically similar words. Thanks to the embeddings, we successfully annotated the 

radiology reports according to the categorization of PE with average F1 score of 0.97% 

given a small set of annotated reports. Experiments performed in this study showed that the 

hybrid IWE model outperforms the out-of-the-box word2vec model for the PE risk 

categorization task while using the same discriminative model on top of the embedding. 

Moreover, considerable higher performance of the IWE model over the word2vec on the 

UPMC dataset suggests that the neural embedding model combined with semantic 

dictionary mapping can be more generalizable for a different organizational dataset. 

Therefore, such model will also require minimal human effort for task specific 

customization. To our knowledge, this is a new approach to overcoming the challenge of 

handling OOV words in word embedding techniques.

We selected the pulmonary embolism case-study mainly because it is one of the most 

common indications for a chest CT with contrast in the emergency setting and has a high 

population morbidity and mortality [23]. Extracting the characterization of the location, 

severity, and timing of the pulmonary embolism diagnosis from the unstructured radiology 

report would be valuable to precision health and big data initiatives that leverage the clinical 

record for clinical informatics prediction and risk modeling. In a typical clinical setting, 

identification of cases requires through manual review of the huge hospital repository and 

identify exams in order to review the dictated report to determine the characteristics of the 
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resulting exam and diagnosis. Our work has demonstrated that deep-learning based word 

embedding tool, rather than more traditional labor intensive feature engineering approaches 

to NLP, can efficiently automate this process and achieve superior performance. Our 

framework only need a small subset of labeled data to train the discriminative model on top 

of the dense vector embedding.

We also compared the performance of proposed semi-supervised hybrid method to a state-

of-the-art rule-based solution for classifying free text contrast enhanced chest CT reports - 

called PeFinder [8]. The complementary architectures help to draw substantial assessment of 

two well-known aspects of natural language processing on same contextual analysis. Among 

the three comparative models that we evaluated in the current study, the proposed IWE 

model resulted highest accuracy with average F1 score > 0.97 for Stanford dataset (Sec. 3.1) 

within all dimensions of PE measures (PE positive, PE acute and PE subsegmental). Of 

particular interest, the IWE model (trained on the Stan-ford dataset) outperformed PeFinder 

on the University of Pittsburgh Medical Center dataset labeling task which was used 

originally to tailor the PeFinder model. This demonstrates good generalizability of the 

proposed approach across institutions.

IWE performed better than PE-Finder in several ways. While the IWE model’s prediction 

was accurate, the rule-based PE-Finder wrongly classified the reports as PE present when 

there is mention of historic evidence of pulmonary embolism, e.g. “The previously described 
pulmonary emboli are no longer visualized.” or embolism occurs in a different anatomical 

region, e.g. “This is most consistent with a renal infarct, possible from embolism to a small 
renal artery branch.”. Moreover, the PEFinder also failed to identify non-significant negation 

claims in the impression section and tagged the report incorrectly as PE absent, e.g. “Stable 
partially occlusive chronic thrombus in the right main pulmonary artery. No new emboli”. 

There is no standardized lexicon of all the different words or combinations of words that can 

represents various aspect of pulmonary embolism, and the type of relations that can be 

encountered in free text reports are difficult to know in advance. Therefore, it is an 

impractical task to generate rules for every situation which is one of the main limitations of 

any rule-based method. From the high accuracy achieved by the IWE model, we can 

conclude that neural embedding can be utilized as a very powerful tool for extracting 

semantics of the free-text radiology reports. We suspect that better performance of IWE 

model occurs mainly due to the significant reduction of vocabulary size and domain specific 

word embedding steps.

This study has several limitations. First, our model lacks the sensitivity for word order that 

limits the ability of learning long term and rotated scope of negex term. However, thanks to 

the semantic mapping and word occurrence analysis, the adjacent negex terms are 

concatenated with the targeted entity in the pre-processed text before Word2Vec training, 

e.g. ‘negex_pulmonari’. As a result, the model had the opportunity to learn the 

representation of the entity and the adjacent negation of the entity without explicitly 

considering the sentence boundary. The trained IWE model derived negative cosine 

similarity score(−0.245) for word the ‘pulmonari’ and ‘negex_pulmonari’.
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Second, we used free text reports from two large academic medical practices which may 

have some similarities in radiology report dictation narrative which could be more variable 

in smaller institutions or non-academic medical practices and may limit the generalizability 

of the models. Additionally, the dataset included in the study are associated to a very narrow 

domain, i.e. contrast-enhanced CT examinations of the chest, and thus the variation in the 

vocabulary of radiology reports is relatively small. We expect that the superiority in the 

performance of the proposed combination of semantic mapping and neural embedding will 

vary when multi-topic and multi-institutional free-text reports will be considered; future 

work may consider applying the IWE model to the whole medical repository of major 

hospital system for creating dense vector representation of clinical notes of different 

domains (e.g. oncology, pathology), given appropriate domain-ontologies. This can help to 

develop an “Intelligent Clinical Data” platform that can normalize free text into a dense 

vector representation, while aggregating it with discreet data from EMRs and diagnostic 

information systems via its transformation interfaces.

The IWE method can be extended to a different domain with minimal human effort, only 

given two vital inputs - domain specific key terms and ontology identifiers. However, a 

completely different domain other than radiology may need also some manual tuning in the 

Report condenser and Ontocrawler, since data quality and domain-ontology schema may 

vary significantly among domains. In addition, training the discriminative model on top of 

the embedding needs human labeled data for performing the task specific annotation. Future 

work will be to discover the domain specific key terms from the free-text corpus for the 

domain-specific taxonomy creation and unsupervised clustering of the vector space for 

identifying meaningful annotation of the reports.

6. Conclusions

In conclusion, our deep learning approach to natural language processing for classifying free 

text radiology reports demonstrates high fidelity compared to state-of-the-art rule-based 

method and appears to be generalizable across institutions for the clinically relevant 

categorization related to the diagnosis of pulmonary embolism. Automated information 

extraction from radiology reports with deep learning may have many applications in 

machine vision work by providing accurate labeling of medical images on a large scale from 

the radiology report. Further, these techniques may make the valuable diagnostic 

information in radiology report text available at a large scale to be used in models that 

evaluate imaging utilization, used as part of clinical decision support models, used to predict 

outcomes, and used as a valuable tool to evaluate ordering provider imaging yield rates. This 

information can be useful in an array of applications from large scale retrospective research 

to focused clinical applications.
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Highlights

1. Proposed an unsupervised method that combines neural embedding method 

with a semantic dictionary mapping for creating a dense vector representation 

of unstructured radiology reports.

2. Applied to generate embedding of chest CT radiology reports from two 

healthcare organizations and utilized the vectors to semi-automate report 

categorization based on diagnosis of pulmonary embolism (PE).

3. Resulted lowest generalization error with highest F1 scores and outperformed 

state-of-the-art rule-based system – PEFinder.

4. The method can be extended to a different domain with minimal human 

effort, only given two vital inputs - domain specific key terms and ontology 

identifiers.
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Figure 1. 
Distribution of PE categorical measure: Stanford dataset (4512 reports) on left and UPMC 

dataset (858 reports) on right
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Figure 2. 
Schema of Intelligent word embedding (IWE) approach
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Figure 3. 
Ontocrawler pipeline
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Figure 4. 
On left all word embeddings generated by IWE (vocabulary size - 3650 words) and 

visualized in two dimensions using t-SNE; On right clustering of the word embedding space 

using K-means++.
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Figure 5. 
Unsupervised IWE reports embedding projected in 2D highlighting the label PE positive - 

Stanford test set (on left) and UPMC dataset (on right)
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Figure 6. 
Unsupervised IWE reports embedding projected in 2D highlighting the label PE acute - 

Stanford test set (on left) and UPMC dataset (on right)
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Figure 7. 
ROC Curve for IWE classifier - Stanford Test Set (on left) and UPMC Test set (on right)
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Figure 8. 
Bar plots showing F1 scores in percentage computed on Stanford Test Set(on top) and 

UPMC Dataset(on bottom) where IWE is represented as dark brown, Out-of-box word2vec 

as sand, and PEFinder as white colored bar.
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Table 1

Statistics of the reports

Features Stanford dataset (117,816 reports) UPMC dataset (859 reports)

Report-level statistics

Maximum number of words 2116 3015

Minimum number of words 2 11

Average word count 666 412

Sentence-level statistics

Maximum number of words 269 125

Minimum number of words 2 2

Average word count 33 66

Word-level statistics Unique word count 117387 4676
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Table 2

Clustered explored from IWE space using K-means++

Clusters Words

Cluster 1: Cancer

‘carcinoma’, ‘metastas’, ‘metastasi’, ‘mass’,
‘malign’, ‘adenocarcinoma’, ‘lymphoma’, ‘tumor’,
‘lymphadenopathi’, ‘carcinomatosi’, ‘adenopathi’, ‘neoplasm’,
‘cancer’, ‘lymphomat’, ‘metastat’, ‘metastat_diseas’,

Cluster 2: Cardiac ‘ventricl’, ‘heart’, ‘pulmonari_arteri’, ‘atrium’, ‘ventricular’, ‘atrial’

Cluster 3: Skeletal ‘boni’, ‘lytic’, ‘vertebr_bodi’, ‘sclerot’, ‘skeleton’, ‘bone’,
‘lucent’, ‘spine’, ‘sclerosi’, ‘osseous’

Cluster 4: Location ‘right_lower’, ‘left_lower’, ‘left_upper’, ‘right_upper’, ‘upper’, ‘lower’

Cluster 5: Effusion ‘pleural_effus’, ‘bilater_pleural_effus’, ‘left_pleural_effus’, ‘effus’, ‘right_pleural_effus’

Cluster 6: Hemorrhage/infection in 
lungs

‘hemorrhag’, ‘layer’, ‘air’, ‘pneumoperitoneum’, ‘space’, ‘wound’,
‘hemoperitoneum’, ‘empyema’, ‘pneumothorac’, ‘pneumomediastinum’, ‘hemothorax’,
‘blood’, ‘abscess’, ‘hydropneumothorax’, ‘pneumothorax’, ‘hemithorax’,
‘bronchopleur’, ‘pigtail’, ‘fluid’, ‘intraperiton’, ‘bleed’, ‘hematoma’, ‘pocket’

Cluster 7: Suspicious ‘concern’, ‘suspici’, ‘worrisom’

.......

.......

Cluster 200: Procedure

‘procedur’, ‘right_upper_lobectomi’, ‘left_upper_lobectomi’, ‘right_lower_lobectomi’,
‘right_middl_lobectomi’, ‘left_lower_lobectomi’, ‘transplant’, ‘mastectomi’, ‘therapi’, ‘therapeut’,
‘lumpectomi’,’thyroidectomi’, ‘pneumonectomi’, ‘nephrectomi’, ‘colectomi’, ‘lobectomi’,
‘hemicolectomi’, ‘treatment’, ‘oper’, ‘posttreat’, ‘chemotherapi’, ‘cholecystectomi’,
‘adrenalectomi’, ‘orchiectomi’, ‘surgic’, ‘radiotherapi’,’radiation’, ‘hepatectomi’, ‘pleurodesi’
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Table 6

Statistical significance of Precision and Recall

Dataset Statistical Significance (IWE - PeFinder) p-value Statistical Significance (IWE - word2vec) p-value

Stanford
Precision <0.0001 Precision <0.0001

Recall 0.0018 Recall 0.002

UPMC
Precision 0.2076 Precision 0.1204

Recall 0.1724 Recall 0.2403
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