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Progranulin is a highly conserved secreted protein that is expressed in multiple cell types, both
in the CNS and in peripheral tissues. Both directly and via its conversion to granulins, pro-
granulin regulates cell growth, survival, repair, and inflammation. Progranulin has a major role
in regulation of lysosomal function and microglial responses in the CNS. Autosomal dominant
mutations of the progranulin (GRN) gene leading to protein haploinsufficiency are linked to
familial frontotemporal dementia with neuropathologic frontotemporal lobar degeneration
(FTLD) associated with accumulation of TAR-DNA binding protein of 43kDA (TDP-43)
inclusions (FTLD-TDP). Homozygous GRN mutations are linked to neuronal ceroid lip-
ofuscinosis (NCL). These findings have stimulated interest in elucidating the normal regulation
and function of progranulin and granulins and the pathomechanisms by which progranulin
deficiency leads to neurodegeneration. These topics have been recently reviewed1–5 and some
salient aspects are discussed here.

Representative case
A 67-year-old right-handed man was evaluated for progressive forgetfulness, word-finding
difficulties (particularly for nouns), and apathy over the previous 3 years. On mental status
examination, he exhibited difficulties with attention, calculations, and delayed recall. There
were no parkinsonian or motor neuron disease findings on examination. Difficulties with
problem-solving manifested 5 years after symptom onset, forcing his retirement. Progression of
fluent aphasia symptoms predominated over the next few years, with episodic memory less
affected. At his final evaluation, 6 months prior to his death, he developed global aphasia, was
dependent on activities of daily living, and had switched to his left hand for tasks due to severe
apraxia of his dominant hand. He had preserved social graces, humor, and enjoyment for music.
He died at age 76 years, 12 years after initial symptom onset. Corresponding MRI and FDG-
PET neuroimaging findings are shown in figure 1. Family history was relevant for dementia or
parkinsonism in an autosomal dominant pattern affecting >15 relatives. Brain autopsy in several
family members revealed TDP-43-positive neuronal intranuclear inclusions in the neocortex
and striatum consistent with FTLD-TDP pathology type 1.6,7 Genetic sequencing in the
progranulin (GRN) gene identified a heterozygous c.154delA. mutation in exon 3 of GRN in
this patient and several affected members of this kindred.

Comment
This is a representative case of autosomal dominant FTLD (manifested in this patient
primarily by progressive aphasia with subsequent mixed corticobasal syndrome features)
due to heterozygous GRN mutations, as described in several series.8–16 The mechanism of
neurodegeneration in this disorder is incompletely understood. The recognition that ho-
mozygous GRN mutations are associated with NCL, together with evidence from mouse
models, suggest that neurodegeneration due to progranulin deficiency may reflect loss of its
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effects as a neurotrophic factor, regulator of lysosomal
function, inhibitor of excessive microglial activation, or
combination thereof.

Structure and regulation
of progranulin
Structure
Progranulin is a highly conserved secreted protein encoded by
the GRN gene on human chromosome 17q21. Progranulin
contains 7 and a half repeats of cysteine-rich granulin motifs
separated by linker regions.4,17 A signal sequence allows
progranulin to be secreted as a glycosylated protein that is
proteolytically cleaved into 6 KDa peptides (granulins A-G)
(figure 2). Each granulin domain typically contains 12 cys-
teine residues that form 6 disulfide bonds, which provide
granulins with a compact β-sheet configuration. The cleavage
of progranulin into granulins may be mediated by several
proteases, including matrix metallopeptidases, disintegrin and
matrix metalloproteases, neutrophil serine proteinase 3, and
elastases released from activated microglia.18 Progranulin may
have effects on its own as a holoprotein or via its granulin
products. Levels of progranulin and granulins may be regu-
lated independently, either in the same or in opposite direc-
tions. Granulins oppose the effects of the holoprotein in
inflammation4,19 and neuroprotection.20

Expression and regulation
Progranulin is expressed in many cell types throughout the
body.21 In the CNS, it is produced by neurons, astrocytes,
microglia, and endothelial cells. It is mainly expressed in
neocortical neurons, granule and pyramidal cells of the hip-
pocampus, Purkinje cells, ventromedial hypothalamus, and
motor neurons21 and is upregulated in activated microglia.
There are different GRN transcripts with either short or long
59 untranslated regions; the presence of an upstream open
reading frame in the longer 59 untranslated region reduces
mRNA stability and represses protein translation.22 Micro-
RNAs, such as miR-659, also regulate progranulin expres-
sion.23 Several stressors, such as hypoxia, glucose deprivation,
acidosis, or oxidative stress, induce progranulin expression in
vitro. The effects of hypoglycemia on GRN transcription in-
volve p38 mitogen–activated protein kinase and downstream
phosphorylation of transcription factors24; stimulation by
hypoxia may be in part mediated by interactions of microRNA
miR-659-3P with GRN transcripts.23 During synthesis, pro-
granulin is translated directly into the endoplasmic reticulum
and associates with disulfide isomerases yielding a mature

protein with up to 44 disulfide bonds.25 Progranulin under-
goes regulated glycosylation that protects the protein from
lysosomal degradation.

Trafficking and lysosomal degradation
Progranulin is incorporated into vesicles and follows the
secretory pathway, undergoing regulated exocytosis in an
activity-dependent manner (figure 2). In neurons, pro-
granulin is localized in dense-core vesicles and is cotrans-
ported with brain-derived neurotrophic factor by both
anterograde and retrograde axonal transport.26 Neuronal ac-
tivity increases the density of progranulin clusters along axons
and increases progranulin recruitment at synapses. The basal
secretion of progranulin in microglia is low; but upon acti-
vation, its secretion increases substantially.27 Once in the ex-
tracellular space, progranulin may undergo cleavage to
granulins by action of extracellular proteases28 or uptake into
target cells via binding to sortilin-1.29 Sortilin-1 delivers pro-
granulin via the endosome to the lysosome, where pro-
granulin is cleaved and degraded.30 Progranulin has functional
interactions with prosaposin, which is a secreted glycoprotein
that has several similarities with progranulin. Like pro-
granulin, prosaposin undergoes cleavage into cysteine-rich
peptides called saposins and utilizes sortilin as a trafficking
receptor to the lysosome, where saposins promote sphingo-
lipid hydrolysis.31 Progranulin forms heterodimers with pro-
saposin; the interaction between these 2 proteins facilitates
the lysosomal trafficking of each other.32 Prosaposin functions
as a molecular bridge between progranulin and either the
mannose-6 phosphate receptor or low-density lipoprotein
receptor-related protein 1 in lysosomes, thereby providing
a direct route for progranulin to reach this organelle.33,34

Progranulin induces sortilin ubiquitination and in-
ternalization via clathrin-dependent endocytosis and sorting
into early endosomes for lysosomal degradation. This con-
stitutes a regulatory feedback mechanism whereby sortilin
downregulation ensures sustained progranulin-mediated sig-
naling and neuroprotection.35 Whereas glucose deprivation
upregulates expression of progranulin expression, it reduces
levels of sortilin.24

Functions of progranulin
Progranulin is a widely secreted growth factor regulating cell
growth and survival, wound repair, and inflammation.16

Transcriptome analysis using RNA sequencing and bio-
informatics in differentiated neuronal SH-SY5Y cells showed
that both progranulin and the individual granulins elicit
upregulation or downregulation of genes involved in

Glossary
FTLD = frontotemporal lobar degeneration; FTLD-TDP = frontotemporal lobar degeneration associated with accumulation of
TAR-DNA binding protein of 43kDA; LAMP-1 = lysosome-associated membrane protein-1; NCL = neuronal ceroid
lipofuscinosis; TDP-43 = TAR-DNA binding protein of 43kDA; TFEB = transcription factor EB.
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transcriptional regulation, splicing, response to stress, endo-
somal sorting, cytoskeleton maintenance, and proteostasis.36

Trophic and neuroprotective functions
Progranulin and granulin E peptide promote survival and
neurite outgrowth in neocortical, hippocampal, and motor
neurons in vitro.37,38 Progranulin may act as an autocrine

neurotrophic factor, as it is cotransported with brain-derived
neurotrophic factor and secreted in an activity-dependent
manner. Progranulin may exert neuroprotection by triggering
survival signals involving phosphorylation cascades mediated
by mitogen-activated kinases, extracellular signal related ki-
nase, phosphatidylinositol 39kinase, and glycogen synthase
kinase-3 β.37 The receptor mediating the neurotrophic effects

Figure 1 MRI and FDG-PET neuroimaging findings

(A–C)MRI shows comparative coronal and axial T2–fluid-attenuated inversion recovery images 7, 9, and 11 years after symptomonset. (D) FDG-PET imaging 9
years after symptom onset shows dramatic asymmetric L > R posterior cingulate cortex and precuneus hypometabolism along with asymmetric left frontal,
temporal, and parietal lobar hypometabolism.

120 Neurology | Volume 90, Number 3 | January 16, 2018 Neurology.org/N

Copyright    2017 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.ª

http://neurology.org/n


of progranulin is yet to be identified. Progranulin binds to the
ephrin-type A receptor 2 in the cell surface,39 leading to
downstream activation of AKT (protein kinase B); this kinase
is a common mediator of many effects of growth factor
signals.40 Via this mechanism, progranulin promotes angio-
genesis. Progranulin is also an endoplasmic reticulum stress-
responsive factor. Endoplasmic reticulum stress increases
progranulin expression, leading to activation of extracellular
signal related kinase 1/2 and AKT signaling through pro-
granulin interaction with tumor necrosis factor receptor 2.41

Activation of growth factor signal pathways by progranulin
may rescue cortical neurons from cell death induced by glu-
tamate or oxidative stress. Studies in experimental models of
ischemia also show that progranulin regulates vascular per-
meability via vascular endothelial growth factor, suppresses

neuroinflammation via interleukin 10 in microglia, and elicits
neuroprotection in part by inhibition of cytoplasmic re-
distribution of TDP-43.42 In the periphery, progranulin binds
perlecan, a major heparan sulfate proteoglycan of basement
membranes and cell surfaces; this interaction could contribute
to a fine regulation of tumor angiogenesis and affect cancer
growth.43

Lysosomal function
There is evidence that progranulin regulates the formation
and function of lysosomes. Progranulin colocalizes with the
lysosome-associated membrane protein-1 (LAMP-1) and
promotes lysosomal acidification by regulating levels of V-type
proton ATPase subunit d2; regulates levels of lysosomal pro-
teins such as cathepsin D44; and binds to the transcription

Figure 2 Structure, processing, transport, and regulation of progranulin

(A) Progranulin is encoded by the granulin (GRN) gene and contains 7.5 repeats of cysteine-rich granulin motifs separated by linker regions and is pro-
teolytically cleaved into granulins A–G. The cleavage of progranulin into granulinsmay bemediated by several proteases, includingmatrixmetallopeptidases
(MMPs), a disintegrin andmatrix metalloproteases (ADAMTs), neutrophil serine proteinase 3, and elastases released from activatedmicroglia (B). Expression
of the GRN gene increases in response to cellular stressors such a hypoxia and hypoglycemia. Once synthesized, progranulin follows the secretory pathway
via dense-core vesicles where it is cotransported with brain-derived neurotrophic factor (BDNF) and prosaposin via axonal transport and then secreted by
exocytosis. In the extracellular space, progranulin may either undergo cleavage to granulins or uptake into target cells via binding to sortilin-1. Sortilin-1
delivers progranulin via the endosome and multivesicular bodies (MVBs) to the lysosome, where progranulin is cleaved and degraded. Progranulin forms
heterodimers with prosaposin, which promotes progranulin uptake in the lysosome via the mannose-6 phosphate receptor (M6PR). Progranulin regulates
the formation and function of lysosomes, in part via the transcription factor EB (TFEB). In response to lysosomal stress, TFEB translocates to the nucleus and
upregulates severe genes controlling lysosomal proteins, including progranulin. Transmembrane lysosomal protein 106B (TMEM106B) is located in the
endosomes and lysosomes and opposes the effects of progranulin on lysosomal function.
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factor EB (TFEB), a master regulation of lysosomal bio-
genesis.45 Upon translocation from the lysosome to the nu-
cleus, TFEB activates the coordinated lysosomal expression
and regulation gene network as part of lysosomal stress re-
sponse.45 This results in upregulation of genes encoding pro-
teins involved in lysosomal biogenesis and function, including
progranulin46 and prosaposin. Transcriptome analysis shows
that progranulin downregulates the charged multivesicular
body proteins 1A and 5 subunits of the endosomal sorting
complex required for transport III.36 This complex is involved
in internalization and transport of neuronal growth factors and
signaling molecules and is one critical component of the
endosomal–lysosomal pathway.47 Mutation of the charged
multivesicular body protein 2B subunit of this complex results
in FTLD.48 Studies in Grn−/− knockout mice showed that
progranulin deficiency is associated with increased immuno-
reactivity for LAMP-1 and increased expression of cathepsin-D,
V-type ATPase subunit d2, and TFEB.49

Microglial function
Progranulin is a microglial chemoattractant and can increase
endocytosis of extracellular peptides such as β-amyloid.50 In
wild-type microglia, progranulin is localized to recycling
endosomes, late endosomes, and early lysosomes, suggesting
its role in regulating trafficking in these compartments.27

Progranulin may have anti-inflammatory properties via
binding to tumor necrosis factor receptor 2, expressed on
microglia.51 In contrast, granulins bind to and potentiate
signaling fromToll-like receptor 9 inmacrophages involved in
innate immunity.52 Studies inGrn−/− knockout mice indicate
that progranulin is required to suppress excessive microglial
activation. Complete loss of progranulin causes aberrant in-
crease in phagocytosis and secretion of proinflammatory
cytokines by microglia.53–55 Transcriptome profiling in these
mice shows that progranulin deficiency leads to an age-
dependent, progressive upregulation of lysosomal and innate
immunity genes, including those encoding the complement
components C1q and C3; this is associated with enhanced
synaptic pruning by microglia.27 With aging, Grn(−/−) mice
developed marked microglia infiltration and preferential C1q
promoted elimination of inhibitory synapses in the ventral
thalamus, leading to thalamocortical excitability and
obsessive-compulsive disorder–like grooming behavior.27

Clinical correlations
Frontotemporal lobar degeneration
The majority of patients with FTLD have accumulation of
ubiquitinated proteins, primarily TDP-43 (FTLD-TDP), in the
cytoplasm and nucleus.56 Mutations of the GRN gene on
chromosome 17q21 are a common cause of FTLD-
TDP.6,8–11,16 These mutations include heterozygous frameshift,
splice-site, and nonsense mutations and all result in GRN
haploinsufficiency and loss of approximately 50% of functional
progranulin.8–10 The clinical, neuroimaging, and neuropatho-
logic features of FTLD-TDP due toGRNmutations have been
the subject of various reviews12–15 and only few salient features

are emphasized here. In general, this disorder manifests with
behavioral or language difficulties, but the clinical manifes-
tations vary widely among families and among individuals
within individual families. Disease presentations may resemble
primary progressive aphasia,10 corticobasal syndrome,57 Alz-
heimer disease dementia (with prominent hippocampal
sclerosis),58,59 or Lewy body disease.60 Mild parkinsonism is
common but motor neuron disease is rare.12–14 The age at
onset is also variable, and ranges from the 4th to the 9th decade.
In contrast to mutations in the microtubule-associated protein
tau (MAPT) and C9orf72 genes, there tends to be markedly
asymmetric involvement of the frontal, temporal, and parietal
lobes61 (as shown in the representative case), and frontal white
matter abnormalities can also be present.62 Neuropathologic
features include frontal predominant atrophy with high density
of TDP-43 inclusions in both the cytoplasm and nucleus.6 In
the cortex, there is a predominant involvement of superficial
cortical layers; the striatum may be prominently affected in
some cases.63

A genome-wide association study showed that single nucleotide
polymorphisms (variants) of the TMEM106B gene on chro-
mosome 7p21 encoding transmembrane lysosomal protein
106B may either increase (T allele) or decrease (C allele) the
risk of developing FTLD-TDP.64 These polymorphisms also
modify the risk of FTLD-TDP associated with chromosome
9 open reading frame 72 (C9orf72) gene expansion, as well
as that of Alzheimer disease with hippocampal sclerosis.65

TMEM106B is a transmembrane glycoprotein predominantly
located in the endosomes and lysosomes and its normal levels
appear to be critical for lysosomal size, acidification, transport,
and function. Increased TMEM106B expression promotes
TFEB translocation to the nucleus (a marker of lysosomal
stress) and reduces the number, maturation, and acidification of
lysosomes causing a delay in endolysosome-dependent degra-
dation.66 Studies in Grn−/− transgenic mice show that pro-
granulin deficiency results in accumulation of TMEM106B as
well as lysosomal abnormalities including lipofuscin accumu-
lation during aging.67 This suggests that lysosomal dysfunction
in progranulin deficiency may lead to abnormal processing of
TDP-43 and other proteins. Cleaved granulins may also impair
lysosomal degradation of proteins such as TDP-43.20

Neuronal ceroid lipofuscinosis
Homozygous GRN mutations cause NCL.3,11,68 NCL are pri-
marily childhood neurodegenerative disorders associated with
mutations in several genes (CLN1 toCLN14) encoding proteins
with different cellular locations and functions.69 Many NCL
proteins have been localized to lysosomes. The phenotype of
CLN-11 linked to progranulin deficiency includes progressive
visual loss, cerebellar ataxia, and myoclonic seizures developing
between 20 and 30 years of age; skin biopsy shows the typical
accumulation of vacuole-like organelles similar to other NCL
forms. NCL-like features may also occur before the onset of
dementia in patients with FTLD-TDP due to heterozygous
GRN mutations.70 Noninvasive retinal imaging may reveal pre-
clinical retinal lipofuscinosis, lymphoblasts accumulate
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prominent NCL material, and lysosomal inclusions may also be
detected in cortical neurons at postmortem cortex.70 An NCL
phenotype may also occur in siblings within families with neu-
ropathologic confirmed FTLD.68

Putative disease mechanisms
As discussed above, models in knockout mice suggest that
neurodegeneration associated with progranulin deficiency
may reflect abnormal lysosomal function and exaggerated
microglial inflammation.1 Mice lacking progranulin (Grn−/−)
have impairment in social behaviors similar to those in
patients with FTLD-TDP, lysosomal dysfunction, and neu-
roinflammation with microgliosis and astrocytosis in cortical
and subcortical areas.71–73 These findings resemble those
observed in NCL. Some evidence indicates that increased
lipofuscinosis and gliosis may not be caused by intrinsic
progranulin deficiency in neurons but rather involve
microglia-derived progranulin.74 Heterozygous Grn+/− mice
may represent a better model of GRN haploinsufficiency
producing FTLD-TDP. However, unlike homozygous
knockouts, these animals have age-dependent behavioral
deficits without evidence of neuroinflammation or lip-
ofuscinoses.75 One limitation of the mouse models developed
so far is that they do not fully recapitulate the spectrum of
TDP-43 neuropathology seen in FTLD-TDP, although some
models show TDP-43 hyperphosphorylation.53,73,76 Consis-
tent with an opposing interaction between progranulin and
TMEM106 B in lysosomes, a recent study showed that loss of
TMEM106 B due to Tmem16 b deletion ameliorates lyso-
somal and frontotemporal dementia–related phenotypes in
progranulin deficient mice.77

Progranulin deficiency may result in accumulation of other
proteins associated with neurodegeneration, besides TDP-
43. There are cases of FTLD-TDP due to GRN hap-
loinsufficiency with accumulation of not only TDP-43 but
also tau and synuclein inclusions in neurons and glial
cells.78,79 Progranulin protects against β-amyloid deposition
and toxicity in experimental mouse models of Alzheimer
disease.80 Conceivably, progranulin deficiency, either
through lysosomal autophagy dysfunction or other defects of
proteostasis, may have a widespread effect on processing of
abnormal proteins. The more widespread effects, or other
factors, are likely at play since one would anticipate that
a 50% reduction in progranulin would affect the whole brain,
or at least both hemispheres relatively equally, whereas
a substantial proportion of heterozygous GRN mutation
carriers have markedly focal/asymmetric imaging findings
and associated clinical presentations.

Therapeutic implications
Given the potential neuroprotective role of progranulin and the
consequences of progranulin deficiency, there have been several
approaches aimed to increase cellular progranulin levels based
on preclinical studies. These include enhancers of GRN

transcription such as suberoylanilide hydroxamic acid (SAHA,
vorinostat)81; blockers of extracellular receptor kinase pathways
such as selumetinib (AZD6244)82; alkalinizing inhibitors of
progranulin lysosomal degradation that target vacuolar H+

ATPase, such as bafilomycin A130 or amiodarone83; and sotr-
tilin-1 antagonists and small-molecule progranulin binders to
inhibit progranulin endocytosis.84 These studies so far have
provided negative results. A clinical trial (clinicaltrials.gov/
show/NCT02149160) involving a histone deacetylase inhibitor
in GRN mutation carriers was terminated prematurely due to
financial limitations; the safety and efficacy data have not yet
been published. Plasma progranulin levels are lower in GRN
mutation carriers than in controls, suggesting that they could be
used for monitoring therapeutic response to progranulin-
enhancing agents.85 However, the variable source and dynamic
regulation of progranulin may explain the poor correlation be-
tween its concentrations in plasma and CSF.86

Perspective
Progranulin and its degradation products, granulins, have
widespread and fundamental effects in several aspects of cell
biology. In addition to its effects in the CNS, progranulin
promotes growth and chemotherapy resistance of neoplasms,
and functions as an adipokine mediating obesity and insulin
resistance.87 Where loss of progranulin function in some
forms of FTLD-TDP and NCL provide a rationale for
attempts to increase progranulin levels as a neuroprotective
approach to neurodegenerative disorders, such attempts
may be hindered by the peripheral effects of progranulin
in promoting carcinogenesis and obesity. Target selective
approaches may be necessary to fully determine the potential
benefit of upregulating progranulin signaling in the CNS.
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