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Abstract: Unlike most optical coherence microscopy (OCM) systems, dynamic speckle-field 
interferometric microscopy (DSIM) achieves depth sectioning through the spatial-coherence 
gating effect. Under high numerical aperture (NA) speckle-field illumination, our previous 
experiments have demonstrated less than 1 μm depth resolution in reflection-mode DSIM, 
while doubling the diffraction limited resolution as under structured illumination. However, 
there has not been a physical model to rigorously describe the speckle imaging process, in 
particular explaining the sectioning effect under high illumination and imaging NA settings in 
DSIM. In this paper, we develop such a model based on the diffraction tomography theory 
and the speckle statistics. Using this model, we calculate the system response function, which 
is used to further obtain the depth resolution limit in reflection-mode DSIM. Theoretically 
calculated depth resolution limit is in an excellent agreement with experiment results. We 
envision that our physical model will not only help in understanding the imaging process in 
DSIM, but also enable better designing such systems for depth-resolved measurements in 
biological cells and tissues. 
© 2017 Optical Society of America 

OCIS codes: (050.1960) Diffraction theory; (180.1655) Coherence tomography; (110.3175) Interferometric imaging; 
(110.6150) Speckle imaging; (180.3170) Interference microscopy. 

References and links 

1. D. A. Agard, “Optical sectioning microscopy: cellular architecture in three dimensions,” Annu. Rev. Biophys. 
Bioeng. 13(1), 191–219 (1984). 

2. J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods 2(12), 920–931 (2005). 
3. P. J. Keller, F. Pampaloni, and E. H. K. Stelzer, “Life sciences require the third dimension,” Curr. Opin. Cell 

Biol. 18(1), 117–124 (2006). 
4. M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10(4), 128–138 (1988). 
5. T. Wilson, “Optical sectioning in confocal fluorescent microscopes,” J. Microsc-Oxford 154(2), 143–156 (1989). 
6. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a 

conventional microscope,” Opt. Lett. 22(24), 1905–1907 (1997). 
7. M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and 

J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured 
illumination,” Biophys. J. 94(12), 4957–4970 (2008). 

8. P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” 
Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000). 

9. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 
248(4951), 73–76 (1990). 

Journal © 2017 Received 8 Nov 2016; revised 21 Dec 2016; accepted 22 Dec 2016; published 3 Jan 2017 

                                                                                                      Vol. 25, No. 1 | 9 Jan 2017 | OPTICS EXPRESS 130 

#280315 http://dx.doi.org/10.1364/OE.25.000130 



10. H. U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. 
Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the 
whole mouse brain,” Nat. Methods 4(4), 331–336 (2007). 

11. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live 
embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004). 

12. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, 
C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). 

13. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and 
applications,” Rep. Prog. Phys. 66(2), 239–303 (2003). 

14. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. 
Commun. 1(4), 153–156 (1969). 

15. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase 
microscopy,” Nat. Methods 4(9), 717–719 (2007). 

16. C. J. R. Sheppard, M. Gu, and X. Q. Mao, “Three-dimensional coherent transfer-function in a reflection-mode 
confocal scanning microscope,” Opt. Commun. 81(5), 281–284 (1991). 

17. M. Gu, Principles of Three Dimensional Imaging in Confocal Microscopes (World Scientific, Singapore; River 
Edge, NJ, 1996). 

18. G. E. Sommargren, “Optical heterodyne profilometry,” Appl. Opt. 20(4), 610–618 (1981). 
19. K. Creath, “Phase-measurement interferometry techniques for nondestructive testing,” Moire Techniques, 

Holographic Interferometry, Optical NDT, and Applications to Fluid Mechanics 1554, 701–707 (1991). 
20. B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase 

microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photonics 6(1), 57–119 
(2014). 

21. P. Hosseini, R. Zhou, Y. H. Kim, C. Peres, A. Diaspro, C. Kuang, Z. Yaqoob, and P. T. C. So, “Pushing phase 
and amplitude sensitivity limits in interferometric microscopy,” Opt. Lett. 41(7), 1656–1659 (2016). 

22. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast 
microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999). 

23. M. G. Somekh, C. W. See, and J. Goh, “Wide field amplitude and phase confocal microscope with speckle 
illumination,” Opt. Commun. 174(1-4), 75–80 (2000). 

24. B. Redding, Y. Bromberg, M. A. Choma, and H. Cao, “Full-field interferometric confocal microscopy using a 
VCSEL array,” Opt. Lett. 39(15), 4446–4449 (2014). 

25. Y. Choi, P. Hosseini, W. Choi, R. R. Dasari, P. T. C. So, and Z. Yaqoob, “Dynamic speckle illumination wide-
field reflection phase microscopy,” Opt. Lett. 39(20), 6062–6065 (2014). 

26. D. A. Agard, Y. Hiraoka, P. Shaw, and J. W. Sedat, “Fluorescence microscopy in three dimensions,” Methods 
Cell Biol. 30, 353–377 (1989). 

27. Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells 
using regularized tomographic phase microscopy,” PLoS One 7(11), e49502 (2012). 

28. S. S. Kou and C. J. R. Sheppard, “Image formation in holographic tomography: high-aperture imaging 
conditions,” Appl. Opt. 48(34), H168–H175 (2009). 

29. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” 
Nat. Phys. 3(2), 129–134 (2007). 

30. N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-
resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015). 

31. T. Kim, R. Zhou, M. Mir, S. D. Babacan, P. S. Carney, L. L. Goddard, and G. Popescu, “White-light diffraction 
tomography of unlabelled live cells,” Nat. Photonics 8(3), 256–263 (2014). 

32. R. Zhou, T. Kim, L. L. Goddard, and G. Popescu, “Inverse scattering solutions using low-coherence light,” Opt. 
Lett. 39(15), 4494–4497 (2014). 

33. T. Kim, R. J. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples 
by quantitative phase imaging,” Laser Photonics Rev. 10(1), 13–39 (2016). 

34. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena 
(Springer, 1975), pp. 9–75. 

35. M. Shan, V. Nastasa, and G. Popescu, “Statistical dispersion relation for spatially broadband fields,” Opt. Lett. 
41(11), 2490–2492 (2016). 

36. Y. Choi, T. D. Yang, K. J. Lee, and W. Choi, “Full-field and single-shot quantitative phase microscopy using 
dynamic speckle illumination,” Opt. Lett. 36(13), 2465–2467 (2011). 

1. Introduction 

Depth selectivity, or the so-called sectioning effect, is important in optical imaging of 
microscopic objects that have complex 3D features [1–3]. Over the years, many depth-
resolved optical microscopy techniques have been proposed including scanning confocal 
microscopy (SCM) [4,5], structured-illumination microscopy [6,7], two-photon fluorescence 
microscopy [8,9], light sheet microscopy [10,11], optical coherence tomography (OCT) 
[12,13], and optical diffraction tomography (ODT) [14,15]. Among these methods, SCM is 
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the most widely implemented microscopy technique. Furthermore, C. J. R. Sheppard and his 
colleagues have pioneered the development of 3D coherent transfer function (CTF) method to 
help understand the optical sectioning effect in SCM systems [16,17]. 

Interferometric microscopy offers extreme sensitivity in measuring sample deformation or 
absorption along the axial dimension without using fluorescence staining [18–22]. In an 
interferometric microscopy system, the sectioning effect can be realized via either the spatial- 
or the temporal-coherence property of light under wide-field imaging mode. OCT, as an 
interferometric imaging technique, normally uses the temporal-coherence gating effect to 
achieve depth resolved measurements [13]. Its depth resolution is typically a few microns, 
which is mainly determined by the bandwidth or the temporal coherence of the light source 
used. Similarly, the spatial-coherence gating effect has also been utilized in interferometric 
microscopy to obtain depth-resolved measurements [23]. B. Redding et al. reported a full-
field interferometric confocal imaging method, where the spatial coherence was manipulated 
by using a multimode fiber [24]. The measured spatial resolution however was limited to a 
few microns. Soon after, Y. Choi et al. demonstrated a reflection-mode dynamic speckle-field 
quantitative phase microscopy system with ~500 nm lateral resolution and ~1 micron depth 
resolution [25]. This type of system is promising in studying the nanoscale dynamics of 
depth-resolved structures such plasma and nucleic membranes in complex eukaryotic cells. If 
applied to 3D imaging, this reflection phase imaging system can potentially solve the 
“missing cone” problem during image reconstruction, which otherwise requires priori 
constraints, such as the non-negativity and piecewise smoothness for convergence [26,27]. 

Despite of the recent experimental advances in depth-resolved interferometric imaging 
using dynamic speckle-fields, there has not been a full physical model to describe the 
sectioning effect in such systems [23]. Most of the previous theoretical analysis of depth 
resolution was based on small scattering angle approximations or paraxial approximations, 
including the SCM transfer function calculations [16,17], where the diffraction effects that 
potentially degrade the image reconstruction quality in high NA imaging are not fully 
accounted for. Later on, C. J. R. Sheppard’s group has also calculated the 3D CTF for high 
NA imaging conditions for holographic tomography [28]. Recently, through solving the 
inverse scattering problem with the diffraction tomography theory, accurate 3D CTF has been 
obtained for low temporal-coherence interferometric tomography systems, which enabled 
more precise 3D reconstruction with improved spatial resolution in all dimensions for tissue 
[29,30] and cellular imaging [31–33]. This highlights the importance of including the 
diffraction effects in coherent imaging. 

In this paper, we have extended the diffraction tomography theory to dynamic speckle-
field interferometric microscopy or DSIM. We have successfully developed a model to 
calculate the axial response function in reflection-mode DSIM systems, which can be used to 
determine the depth resolution. The theoretically calculated depth resolution agrees well with 
our previous experimental results [25]. In the following, a full description of the physical 
model is provided. First of all, we describe a typical reflection-mode DSIM system, including 
the light scattering process, the interference fields, and the detection measurement function. 
Then, we solve the scattered field from the inhomogeneous wave equation to calculate the 
cross-correlation function, which is directly related to the measurement quantity. Finally, we 
calculate the axial response function of a thin 2D slice to obtain the depth resolution. Our 
study shows that the depth resolution is proportional to the square of the NA of the 
illumination and imaging objective. In the discussion section, we also verify that 
transmission-mode DSIM systems do not have sectioning effects for flat objects. 

2. Reflection-mode dynamic speckle-field interferometric microscopy 

In this section, we first describe the working principle of a typical reflection-mode DSIM 
system. Then, we solve the backward scattered field for an arbitrary object to determine the 
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measurement function on the detector plane. This lays the foundation for calculating the axial 
response function and the depth resolution. 

2.1 System configuration and working principle 

 

Fig. 1. Illustration of reflection-mode DSIM. (a) The system configuration of a reflection-
mode DSIM based on a Linnik-type interferometer; (b) A description of the electromagnetic 
fields involved in the imaging system. 

Typically, a Linnik-type interferometer is used in a reflection-mode DSIM system. Figure 
1(a) shows the schematic of such a system (more details can be found in [23,25]). The field of 
interest starts from the diffuser plane, consisting of a disk shape ground glass, which is 
conjugated to the back focal planes of the reference arm objective (Obj1) as well as that of the 
imaging arm objective (Obj2). The sample surface, reference mirror, and the detector are also 
in conjugate planes through imaging optics. When the diffuser rotates at a high-speed (this 
allows for sufficient averaging of speckles during the camera integration time), the generated 
dynamic speckle-field forms a smooth distribution in the objective back aperture planes. 
According to our following theoretical model, it would be ideal for this field distribution to 
uniformly fill up the back aperture of Obj1 and Obj2 to achieve the optimum illumination 
with the best sectioning effect. Next, we describe the fields that are involved in the imaging 
process as described in Fig. 1(b). 

In our imaging system, the diffuser is in the Fourier plane where the speckle field is 
generated. Following the theory framework in [23], we assume that the speckle-field, 

immediately after the diffuser plane, has an angular spectrum distribution, ( ), ,xi yiS k k  where 

( ),xi yik k  is the wavevector. For simplicity, we assume a 1:1 4f relay system between the 

diffuser plane and the back focal planes (or the back aperture planes) of Obj1 and Obj2. Thus, 

the speckle angular distribution at the back aperture planes is still ( ), .xi yiS k k  A particular 

wavevector ( ), ,xi yik k  corresponding to a physical point on the back focal plane of Obj1 at 

( ) ( )0 0 0 0, 2 , 2d d xi yix y f k f kλ π λ π=  where f is the focal length of the objective and 0λ  is the 

laser wavelength in free space, generates an incident plane wave, ( ) ,iU r in the sample space 

as shown in Fig. 1(b), given by 

 ( ) ( ) ( ), ,xi yi zii k x k

i xi yi

x k z
U S k k e

+ +=r  (1) 
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where 2 2 2
0i xi yi zik k k nβ β= + + = =k  from the dispersion relation (due to the fact that the 

incident field satisfies the homogeneous wave equation), 0 02β π λ=  is the propagation 

constant in free space, n  is the medium refractive index, β  is the propagation constant in the 

medium, and ( ), ,x y z=r  is the position vector. The plane wave illuminates the sample, 

described by the scattering potential ( ) ( )2 2, ,n x y z nχ = −r  where ( ), ,n x y z  is the sample 

refractive index distribution. As a result, a backward scattered field, is generated. To obtain 
the depth-resolved measurements, the sample needs to be scanned along the axial direction 
around the focal plane. Assuming the sample focal displacement is ,Rz  the backward 

scattered field in the sample and detector space is denoted by ( );bs RU zr  and respectively, 

(where ( ), ,d d d dx y z=r ). On the detector plane, there is also a plane wave component, 

( ) ,r dU r  coming from the reference arm, which has a form similar to that of the incident 

field, 

 ( ) ( ) ( ), .xi d yi d yi di k x k y k z

r d xi yiU S k k e
+ +=r  (2) 

The backscattered sample and the reference fields interfere at the detector plane, creating an 
intensity distribution. From the measured intensity, we obtain 

( ){ } ( ) ( ){ }*
122Re 2Re; ; ,d R d Rbs drUz z UΓ =r r r  which is the real part of the cross-correlation 

function for each Rz . In this paper, we are interested in modeling the physical imaging 

process, thus, we need to fully describe the cross-correlation function, which requires solving 
the sample scattered field. 

2.2 Solving the backward scattered field 

The sample scattered field can be described by the inhomogeneous wave equation [14]: 

 ( ) ( ) ( ) ( )2 2 2 ,s s oU U Uβ β χ∇ + = −r r r r  (3) 

where ( )U r  is the total driving field which consists of both the incident and the scattered 

fields, ( ) ( ) ( ).i sU UU = +r r r  Under the first-order Born approximation, we have 

( ) ( )iU U≈r r  that allows us to solve the backward scattered field, denoted as ,bsU  in the z > 

0 sample space, for different sample focal displacement as (refer to the Appendix for the 
derivation) 

 ( ) ( ) ( )

( )
2
0 ,

,
2

, .; ,
R zi Riq z z ik z

xi yi

R x xi y yibs zi

S k k e e
z z k k k kU q k

q

β
χ

− −

⊥ −= − − −−k  (4) 

where ( ),x yk k⊥ =k is the Fourier transform variable with respect to ( ),x y⊥ =r  and 

2 2 2
x yk kq β − −= is the scattered field axial projection ( xk  and yk  have units of m−1). Notice 

that for simplicity, we will use the same representation for a physical parameter in different 
spaces by carrying the variables throughout this paper. For example, in Eq. (4) χ  is in the 3D 

Fourier transform space as evidenced from its variables. The imaging condition ensures that 
the field at z = 0 (defined at the sample surface) is conjugated with the camera detector plane, 
zd = 0. Therefore, 
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 ( ) ( ) ( ) ( )

( )
2 , ,

0; , , ,
2

,
zi Ri q k z

o xi yi x y

d d R x xi y ybs ii z

S k k P k k e
U z z k k k k

q
q k

β
χ

+

⊥ = −− −= − −k (5) 

where ( ),d dx dyk k⊥ =k  is the Fourier transform variable of the transverse detector coordinate 

( ), .d dx y  ( ),d dx y  and ( ),x y  are related through a magnification M, i.e., 

( ) ( ), ,d dx y Mx My=  and ( ) ( ), , .dx dy x yk k k M k M=  In Eq. (5), the aperture function 

( ),x yP k k  has been introduced, which defines the spatial frequency bandwidth limited by the 

objective numerical aperture. Next, the scattered field solution will be used to calculate the 
cross-correlation function to obtain the system response function. 

3. System response function 

In this section, we will calculate the axial response function in reflection-mode DSIM. First, 
we calculate the scattered field from a thin step phase object. Then, we calculate the cross-
correlating function 12Γ  by considering the speckle statistics. 

 

Fig. 2. Illustration of a thin step phase object, defined by a rectangle function. 

3.1 Thin step object response 

A homogeneous thin object, as described in Fig. 2, is used as the sample to calculate the axial 
response function. The one-dimensional object has an infinite lateral dimensions and an axial 
width of zo, thus, its scattering potential can be described with a rectangle function in z as 

( ) ( )0, ,x y z rect z zχ =  (the constant part of the scattering potential has been ignored, as it 

does not contribute to the axial response calculation). The 3D Fourier transform of this 
scattering potential is 

 ( ) ( ) ( ) ( )0, , sin c .x y z x y zk k k k k k zχ δ δ=  (6) 

Substituting the above expression into Eq. (5), we obtain the backward scattered field in the 
sample space as, 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2
2
0

2 2 2
0

2

sin c .

, ,
, , ;

x y R zi R
i k k z z ik z

xi yi x y

x y R

x xi y yi x y

bs

zi

U
q

S k k P k k e e
k k z z

k k k k zk kk

ββ

δ δ β

− − − −

= ×

 +−


− − 
−

 (7) 
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Next, we take a 2D inverse Fourier transform of Eq. (7) over ( ),x yk k  . This Fourier transform 

integral can be directly evaluated by using the delta function property, i.e., 

( ) ( )., , ; , , ;bs bsR x xi y yi Rx y z z k k k kU z zU = ==  Hence, 

 
( ) ( ) ( ) ( ) ( )

( )

2 2 2

2 2 2

2

2

2

0

2
0

2

si

, ,
, , ;

.

z

n c

xi yi xi yi R zi R
i k x k y i k k z z ik z

xi yi xi yi

R

xi yi

xi y

b

zi

s

i

S k k P k k e e e
x y z

k k

k k

U

k z

β

β

β

β + − − − −

−
= ×

 + 
−



−

−

 (8) 

The dispersion relation of the incident field makes 2 2 2 .zi xi yik k kβ= − −  Then, Eq. (8) is 

simplified as, 

 ( ) ( ) ( ) ( ) ( )

( )
2
0

0

2, ,
, , ; z sin c 2 .

2

xi y zii R
i k x k y z

xi yi xi yi

R
z

ik z

bs zi
i

S k k P k k e
x y z

e

k
U k z

β −+ −

=  (9) 

If 0z  is very small, such that 0 0zik z ≈  and ( )0sinc 2 1zik z ≈ , the scattered field becomes 

 ( ) ( ) ( ) ( ) ( )22
0 , ,

, , .
2

zi Rzixi yii k ik zix k y

xi yi xi yi

i

z

s
z

k

b

eS k k P k k e
x y z

e
U

k

β −+

=  (10) 

At the detector plane, we have 

 ( ) ( ) ( ) ( ) ( )22
0 , ,

, 0 .,
2

xi yi zi R
i k x k y

xi yi xi yi

d d d

i

z

k z

bs
i

S k k P k k e
y z

k
U x

eβ +

= =  (11) 

Equation (11) is the backward scattering field solution, where the phase term ( )2zi Rik ze  
signifies the double path of the field in the sample. Interestingly, in transmission-mode 
operation, the forward scattered field does not have a Rz  dependent phase term, indicating 

that it will not be able to provide the sectioning effect for flat objects (see more details in the 
discussion part). 

3.2 Speckle-field statistics 

Next, we calculate the correlation function while considering the speckle-field statistics. The 

speckle-field angular spectrum distribution ( ),xi yiS k k  is a complex function, which can be 

written as 

 ( ) ( ) ( ) ( ) ( )
2

, ,1
, , ,,xi yi xi yi

xi yi xi y

i k k i k

i y

k

xi iS k k S k k A k k
N

e e
ϕ ϕ= =  (12) 

where N2 is the number of independent scattering areas. The distributions of ( ),xi yiA k k  and 

( ),xi yik kϕ  have the following statistical properties (see Goodman [34]): each of the 

amplitude and phase elements are statistically independent of each other (i.e., the scattering 
area elements are unrelated and the strength of a given scattered component bears no relation 
to its phase); the phase values are uniformly distributed in the primary interval (-π, π). The 
detector measurement obtains the real part of the cross-correlation function 12Γ  between the 
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sample backward scattered field and the reference field, i.e., ( )122Re Γ , which includes all 

the speckle wavevector contributions weighted by the distribution function ( ),xi yiS k k . 

Therefore, ( )122Re Γ is a summation of all possible individual correlation pairs 

( ) ( )* ' ', , ,bs xi yi r xi yiU k k U k k , 

 ( ) ( ) ( ) ( )
' '

* * ' '
12

, ,

2Re 2Re 2Re , , .
xi yi xi yi

bs r bs xi yi r xi yi
k k k k

U U U k k U k k
    Γ = =    

       
   (13) 

In the above equation, we have changed the notation of ( ), , 0d dbs dx y zU =  and 

( ), , 0d d dr yU x z =  to ( ),bs xi yiU k k  and ( ),r xi yiU k k  to make the mathematical operation 

clearer. With the solution of bsU  and rU  given in Eq. (2) and Eq. (11), we can write down 

the exact form of ( )122Re ,Γ  that is 

 ( ) ( ) ( ) ( ) ( ) ( )[ ]
' '

' ' ' '

12

, ,

1
2 Re , , cos 2 .

xi yi xi yi

xi yi xi yi xi xi yi yi zi R

k k k k zi

A k k A k k k k x k k y k z
k

ϕΓ ∝ − + − + + Δ
 
 
 

  (14) 

where ( ) ( )' ', , .xi yi xi yik k k kϕ ϕ ϕΔ = − . Using trigonometric identities, we can write ( )122 Re Γ  

as 

 

( ) ( ) ( ) ( ) ( )[ ] ( )

( ) ( ) ( ) ( )[ ] ( )

' '

' '

' ' ' '

12

, ,

' ' ' '

, ,

1
2 Re , , cos 2 cos

1
, , sin 2 sin .

xi yi xi yi

xi yi xi yi

xi yi xi yi xi xi yi yi zi R

k k k k zi

xi yi xi yi xi xi yi yi zi R

k k k k zi

A k k A k k k k x k k y k z
k

A k k A k k k k x k k y k z
k

ϕ

ϕ

Γ ∝ − + − + Δ

− − + − + Δ

 

 
(15) 

Furthermore, ( )122Re Γ  can be break into two parts, one is the matched speckle term 

( ' ',xi xi yi yik k k k= = ) whereas the other is the unmatched term ( '
xi xik k≠  or '

yi yik k≠ ). Since the 

probability distribution of ( ),xi yik kϕ  and ( )' ',xi yik kϕ  is uniform, their difference ϕΔ  will 

also statistically have a uniform distribution in the interval (−2π, 2π). If we take the ensemble 
average of many speckle patterns, due to rotation of the diffuser that produces uncorrelated 
speckle patterns, the unmatched correlation terms reduce to zero. Therefore, only the matched 
terms survive, leaving 

 ( ) ( ) ( ) ( )2
12

,

c
,

os 2
2Re , .

xi yi

xi yi
zi R

xi yi
k k zi M

k z
A k k

k
P k kΓ ∝   (16) 

where 
M

 denotes the ensemble average over M distributions. When M is very large, this 

ensemble average will make a smooth distribution for ( )2 , ,xi yiA k k  which is also called the 

original speckle spectral distribution ( )0 ,xi yiT k k  such that ( ) ( )2
0 , , .xi yi xi yiT k k A k k=  Note 

that ( )0 ,xi yiT k k  is also band-limited by the objective aperture function ( ),xi yiP k k , since the 

illumination and imaging paths share the same objective lens in the reflection DSIM system. 

For this reason, we replace the term ( )2 ,xi yiA k k  with ( ) ( )0 , ,xi yi xi yiT k k P k k  in Eq. (16). 
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3.3 The axial response function 

In order to calculate the axial response function, the solution of ( )122Re Γ  in Eq. (16) is 

converted into an integral form as below, 

 ( ) ( ) ( ) ( )2 2 2

12 2 2

2
0 2

cos
,Re .,

2
2

xi yi R

xi yi

xi

xi yi x

yi

i yi

k k
T k k P k

z
dk dk

k k
k

β

β

− −
Γ ∝

− −  (17) 

It is always desired that ( )0 ,xi yiT k k  is uniform within the objective back aperture area for the 

best depth selectivity. There are many ways to achieve this goal, such as magnifying this 

distribution with an additional 4f system [25]. For the best sectioning effect, ( )0 ,xi yiT k k  is 

assumed to be a uniform distribution and ( ),xi yiP k k  is assumed to be a circular disk function. 

Thus, ( )2 ,xi yiP k k  will still be a circular disk function that has the same distribution as the 

radius of the disk is determined by the numerical aperture of the objective. By denoting 
cosxi rk k φ=  and sin ,yi rk k φ=  the integral in Eq. (17) is converted into the polar 

coordinates as below, 

 ( ) ( )
( )2 2

12 2 2

cos 2
2Re cos , sin .

r R

r r r

r

k z
k k dk dP

k
φ

β
φ φ

β

−
Γ ∝

−
  (18) 

The range of rk  is limited by the objective numerical aperture through ( )cos , sinr rkP k φ φ  to 

( ) ( ) ( ) ( )0 0 max max0, 2 0, 2 sin 0, sinobjNA nπ λ π λ θ β θ  = =        . The integral in φ  can be 

dropped out as the function in the integral is circularly symmetric, giving 

 ( )
( )max

2 2sin

12 2 2
0

cos 2
2Re .

r R

r r

r

k z
k dk

k

β θ β

β

−
Γ ∝

−
  (19) 

With a variable change, 2 2 ,rK kβ= −  and ,r rKdK k dk= −  Eq. (19) becomes 

 ( ) ( )
( )max

12

cos

2Re cos 2 RKz dK
β

β θ

Γ ∝   (20) 

The above integral can be easily evaluated to give an analytical solution as 

 ( ) ( ) ( ) ( )( )12 max max2 Re sin c 2 cos sin c 2 cos ,R Rz zβ β π θ β θ π Γ ∝ −   (21) 

where the sinc function is defined as: ( ) ( )sinc sin .x x xπ π=  

The above framework establishes a mathematical model that describes the axial response 
of the reflection-mode DSIM system: if we know the objective numerical aperture, the 
illumination wavelength, we can compute ( )122 Re Γ  as a function of Rz  to obtain the axial 

response function in DSIM. Finally, with the axial response function, the depth resolution can 
also be determined. 
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4. Depth resolution 

In this section, the axial response function model is tested using the specifications from an 
experimental system, and this model is subsequently used to quantify the sectioning effect in 
terms of depth resolution. For this study, we use the parameters from our previous experiment 
[25], which also provides a way to validate our theoretical model. In that reflection-mode 
DSIM system, the laser wavelength is 0 0.8λ =  μm, the sample host medium is water with 

refractive index 1.33,n =  and two water immersion objectives are used with 1.objNA =  

Inserting these parameters into Eq. (21), we obtain the axial response function as shown in 
Fig. 3, where the solid black curve is the axial response function, i.e., ( )122Re Γ  vs. different 

defocus positions .Rz  The dashed red curve is the envelope function, from which the first 

zero is determined to be around 0.89Rz = μm, and the half maximum value is found to be 

around 0.53Rz =  μm. The depth resolution, ,zδ  is defined as the full-width half maximum 

(FWHM) value which is 1.06 μm, which is in a good agreement with our previous study [25]. 

 

Fig. 3. Axial response function with 1.
obj

NA =  The axial response function is obtained by 

calculating ( )
12

2 Re Γ  at different defocus position Rz . 

Next, we study the relationship between the depth resolution and the objective numerical 
aperture. The depth resolution values are obtained for various objNA  ranging from 0.6 to 1.2 

with 0.1 intervals. In Fig. 4, the depth resolution zδ  is plotted as a function of objNA  in black 

square markers. Curve fitting shows a 21 objNA trend over the plotted data range; the solid red 

line is described by 21.315 -0.26 2.objNAzδ =  This fitting result is expected as depth 

resolution normally degrades with 21 objNA  in coherent microscopy. Therefore, in a reflection-

mode DSIM system the higher the numerical aperture, the better the depth resolution. 
According to this calculation, at 1.2objNA =  a depth resolution as small as 0.65 μm can be 

achieved. It should be noted that in order to get the best depth resolution, a uniform speckle 
spectral distribution over the whole back aperture area of the high numerical aperture 
objective is necessary. 
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Fig. 4. Relationship between depth resolution zδ  (vertical axis) and objective numerical 

aperture 
obj

NA  (horizontal axis). 

5. Discussion 

We have developed a physical model to precisely describe the sectioning effect in a 
reflection-mode speckle-field illumination interferometric system. The sectioning effect 
comes from the spatially incoherent illumination. It is also possible to use a broadband source 
in such a system to further enhance the depth selectivity. However, it is not clear how much 
depth selectivity can be enhanced with this addition. In principle, this theoretical framework 
can be extended to incorporate temporal coherence to answer this interesting question. We 
note that frameworks considering temporal coherence have been reported for transmission 
case in earlier publications [31,32]. Another important question is whether transmission-mode 
DSIM can provide sectioning effect. In order to answer this, we calculate the forward 
scattered field using Eq. (33b) in the Appendix for the same step object described in Section 
3. The field is given as 
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= − ×
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− − 
−

 (22) 

Similarly, we can Fourier transform the field into the spatial domain representation, 
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R

xi y

fs

zi

i

xi yi

S k k P k k e e e
x y z z

k k
U

k zk k

β

β

β

β + − − −

−
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− −


−

−

 (23) 

The dispersion relation dictates that 2 2 2 ,zi xi yik k kβ= − −  making 
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 (24) 

The detector plane 0dz =  sees the field at z = 0 plane as 

 ( ) ( ) ( ) ( )2
0 , ,

, 0 .
2

, ;
xi yii k x k y

xi yi xi yi

d d d R
z

f
i

s

S k k P k k e
x y z z

k
U

β +

= =  (25) 

It turns out that the forward scattered field, as described in Eq. (25), is not a function of Rz , 

thus giving no sectioning effect. Note that the above calculation assumes flat thin objects, 
with no lateral structures. However, for objects that have lateral features, there will be 
sectioning as was demonstrated in [36]. The missing axial frequency information in the low 
transverse region is called the “missing cone” problem in 3D optical imaging. Our following 
paper will discuss this issue in more details by calculating the 3D CTF in both reflection and 
transmission-mode DSIM systems. 

6. Summary 

In conclusion, we have developed a mathematical model to describe the axial response 
function in reflection-mode dynamic speckle-field interferometric microscopy. This model is 
based on the diffraction tomography theory and speckle statistics, and provides a spatial 
correlation function. Using this function, the axial response function is obtained and used to 
determine the depth resolution. The theoretically calculated depth resolution is in excellent 
agreement with our experimental results. Using this method, the connection between depth 
resolution and objective numerical aperture is also studied, which reveals an inverse square 
law relationship that is also expected. We envision that developed physical model will 
contribute to the understanding of sectioning effect in spatially incoherent illumination 
interferometry systems. It can also guide on the design of such systems for better performance 
in the future. 

Appendix: optical diffraction tomography 

We start with the inhomogeneous wave equation that describes the scattered field [31,32]: 

 ( ) ( ) ( ) ( )2 2 2 ,s s oU U Uβ β χ∇ + = −r r r r  (26) 

where ( )U r  is approximated as ( ) ( ) ( ), xi yi zii k

i x

x k x k z

i yiU S k k e
+ +=r . Equation (26) can be solved 

in the space (or spatial spectrum space) by taking the 3D Fourier transform on both sides, 
namely 
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k

β β χ δ

β χ

−− = − −

− − −

−

= −

kⓥ
(27) 

where ( ), ,x y zk k k  is the Fourier transform variable of ( ), ,x y z  and 2 2 2 2 .x y zk k k k= + +  

Assuming the object is centered at ,Rz z=  i.e., ( ), ,Rz zχ ⊥ −r  then the above equation can be 

revised to the following form to incorporate this sample shift: 
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 ( ) ( ) ( ) ( ) ( )2 2 2
0, , ., , , z zi Ri k k z

x y z xi yi x xi y yis z zik k k S k k k k k k kk U k eβ β χ − −− −= − −− (28) 

By re-arranging Eq. (28), the scattered field ( ), ,s x y zk k kU  is solved as 
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 (29) 

where 2 2 2
x yq k kβ= − −  (notice that this q is not kz, because the homogeneous dispersion 

relation does not apply to the scattered field [35]). The two fractional terms in Eq. (29), 1/(kz 
+ q) and 1/(kz - q), correspond to the forward scattered and backward scattered fields, 
respectively. This can be seen by performing an inverse Fourier transform over Eq. (29) over 
kz. The inverse Fourier transform of 1/kz gives a sign function, sgn(z) (one can also write it as 
1-2H(-z) where H(z) is the Heaviside function). We can therefore write 
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For backward scattering ( 0)z < , we consider the iqze−  term. The backward scattered field, 

denoted as ,bsU  has the following form 
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For the forward scattering ( 0)z > , we consider the iqze  term that results in a forward 

scattered field, denoted as ,fsU  in the form of 
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Next, we write the convolution in z in Eq. (31a) as an integral 
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 (32) 

where .ziqW k= − −  The above integral is a Fourier transform over z that turns χ  back to the 

3D Fourier transform domain with a phase shift ( ) ,R ziz kiW i qe e +− =  which is in addition to the 

phase term ,iqze−  giving: 
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Following the same derivation, we can write the forward scattered field as: 
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