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PredCRP: predicting and analysing 
the regulatory roles of CRP from its 
binding sites in Escherichia coli
Ming-Ju Tsai1, Jyun-Rong Wang1, Chi-Dung Yang2,3, Kuo-Ching Kao1, Wen-Lin Huang4,  
Hsi-Yuan Huang5, Ching-Ping Tseng2, Hsien-Da Huang1,2 & Shinn-Ying Ho1,2

Cyclic AMP receptor protein (CRP), a global regulator in Escherichia coli, regulates more than 180 
genes via two roles: activation and repression. Few methods are available for predicting the regulatory 
roles from the binding sites of transcription factors. This work proposes an accurate method PredCRP 
to derive an optimised model (named PredCRP-model) and a set of four interpretable rules (named 
PredCRP-ruleset) for predicting and analysing the regulatory roles of CRP from sequences of CRP-
binding sites. A dataset consisting of 169 CRP-binding sites with regulatory roles strongly supported 
by evidence was compiled. The PredCRP-model, using 12 informative features of CRP-binding sites, 
and cooperating with a support vector machine achieved a training and test accuracy of 0.98 and 0.93, 
respectively. PredCRP-ruleset has two activation rules and two repression rules derived using the 12 
features and the decision tree method C4.5. This work further screened and identified 23 previously 
unobserved regulatory interactions in Escherichia coli. Using quantitative PCR for validation, PredCRP-
model and PredCRP-ruleset achieved a test accuracy of 0.96 (=22/23) and 0.91 (=21/23), respectively. 
The proposed method is suitable for designing predictors for regulatory roles of all global regulators in 
Escherichia coli. PredCRP can be accessed at https://github.com/NctuICLab/PredCRP.

Cyclic AMP receptor protein (CRP) is one of the most important transcription factors (TFs) in Escherichia coli 
(E. coli). CRP was the first purified1, crystallised2, and the most well-studied TF in E. coli3–9. CRP regulates more 
than 180 genes10 by cooperating with cAMP. The latter transduces intracellular signals by changing its intracellu-
lar concentration in response to environmental signals. Once the concentration of intracellular cAMP changes, 
the production of the cAMP-CRP complex will be affected10–14. When the cAMP-CRP complex acts on a binding 
site for gene regulation, it has one of two opposing regulatory roles: activation or repression15. The CRP-regulated 
genes are typically involved in energy-related metabolic pathways, such as galactose metabolism, citrate metabo-
lism, and the phosphoenolpyruvate group translocation system16.

To predict the regulatory roles of CRP, we first needed to know more about the CRP-binding site. There are two 
categories of methods to identify the binding site of a specific TF. One category consists of the low-throughput 
methods such as the electrophoretic mobility shift assay and the DNase I footprinting assay17. The other cat-
egory comprise high-throughput methods such as the chromatin immunoprecipitation (ChIP) assay, a 
sequencing-based method (ChIP-seq)18 and elegant computational methods focusing on predicting TF-binding 
sites19–21. Once information on the CRP-binding sites has been obtained, we can further predict the regulatory 
roles of CRP.

There are two approaches to determining regulatory roles of a TF. One is a low-throughput approach such as 
the promoter-lacZ fusion17 and quantitative PCR (qPCR)22. The other consists of a high-throughput approach 
such as gene expression analysis using RNA-seq23 or microarray data. However, gene expression analysis has a 
limit in determining indirect effects such as co-expressed but not co-regulated genes24. Currently, the identifica-
tion of directly co-regulated genes is particularly challenging24. These observations imply that the determination 
of the regulatory roles of a TF on co-regulated genes is also a challenging problem.
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Few methods are available for predicting the regulatory roles of a global TF from TF-binding sequences. The 
widely used 3-class rules state that if a CRP-binding site satisfies some conditions, CRP tends to be an activator. 
The Class I rule states that if the CRP-binding site is located at position −61.5, then CRP tends to be an activa-
tor25–27. The Class II rule states that if the CRP-binding site is located at position −41.5, then CRP tends to be 
an activator25–27. The Class III rule states that if a CRP-dependent promoter has two or more CRP-binding sites, 
then the promoter tends to be an activator25,27. At present, there is no rule linking conditions in the cAMP-CRP 
complex to it acting as a repressor25–27.

Hence, we propose an accurate method, PredCRP, to derive an optimised model (named PredCRP-model) 
and a set of four interpretable rules (named PredCRP-ruleset) for predicting and analysing the regulatory roles of 
CRP from given sequences of CRP-binding sites. The design of PredCRP includes four parts (see Fig. 1): (1) estab-
lishment of a dataset consisting of 169 CRP-binding sites with regulatory roles strongly supported by evidence, (2) 
feature extraction from the CRP-binding sites, (3) feature selection in cooperation with a support vector machine 
(SVM), and (4) rule acquisition based on the decision tree method C4.5. More information about feature extrac-
tion, feature selection, and rule acquisition are found in the Materials and Methods section.

As a result, a set of 12 informative features was identified from 380 candidate features of CRP-binding sites 
using an inheritable bi-objective combinatorial genetic algorithm (IBCGA)28 (see the Materials and Methods sec-
tion). Various prediction models were evaluated to examine both prediction accuracy and interpretation ability. 
PredCRP-model achieved a training and test accuracy of 0.98 and 0.93, respectively. PredCRP-ruleset covered 
88% of the CRP-binding sites and achieved a training accuracy of 0.95. Among the four interpretable rules, the 
covered binding regions of two activation rules contain the regions of the widely used Class I and II rules of CRP. 
The other two rules for the repression role are novel and describe the condition relating to the CRP-binding 
site’s locations and sequence composition. Furthermore, we used PredCRP-model and PredCRP-ruleset to screen 
and identify 23 previously unobserved regulatory interactions in E. coli and validated these regulatory roles 
using qPCR experiments. Experimental results showed that 22 and 21 of the 23 interactions were correct using 
PredCRP-model and PredCRP-ruleset, respectively.

Results
Evaluation of PredCRP-model.  Twelve informative features were selected using the IBCGA, which 
include eight of the 256 4-mer motifs in the composition descriptor (AACG, CATT, GAAC, GAGC, TGCG, 
TTAC, TTAT, and TTTT) and four features in the location-dependent descriptor: (1) L3: the size of the overlap 
region between the CRP-binding site and the region from −35 to −10; (2) L6: the size of the overlap region 
between the CRP-binding site and the region from −10 to 2; (3) L12: the size of the overlap region between the 
CRP-binding site and the region from −60 to 60; and (4) L15: the size of the overlap region between the CRP-
binding site and the region from −95 to −35.

Tables 1 and 2 show the performance comparison among various feature sets with the SVM classifier on the 
training (CRPS-TRN) and test (CRPS-TST) datasets, respectively. The parameter settings of the SVMs for various 
feature sets except for PredCRP-model were determined by a grid search method. The positive and negative sites 
are the binding sites on which CRP act as a repressor and an activator, respectively. The all-feature SVM model 

Figure 1.  Components for developing and evaluating the proposed PredCRP method. (1) establishment of 
the CRPS dataset consisting of 169 CRP-binding sites with regulatory roles supported by strong evidence, (2) 
feature extraction from the training dataset CPRS-TRN, (3) feature selection in cooperation with an SVM, 
(4) PredCRP-ruleset obtained based on the decision tree method C4.5, (5) PredCRP-model evaluated by 
CRP-binding sties with weak evidence (the CRPW dataset) and (6) the qPCR experimental validation on the 
regulatory roles of CRP.



www.nature.com/scientificreports/

3SCIENTIfIC REPorTS |  (2018) 8:951  | DOI:10.1038/s41598-017-18648-5

works as a baseline model. PredCRP-model with the 12 informative features was significantly better than SVMs 
with various feature sets for both the training and test datasets (Tables 1 and 2). PredCRP-model achieved test 
ACC and MCC values of 0.93 and 0.79, respectively. The feature selection of PredCRP enhanced the SVM classi-
fier with all features by test ACC 0.13 (=0.93–0.80) and MCC 0.53 (=0.79–0.26). The additional dataset (named 
CRPS-TST-2) was used to evaluate PredCRP-model in this study. PredCRP-model achieved test ACC and MCC 
values of 0.97 and 0.91, respectively.

To avoid threshold setting bias, we further compared performance in terms of the area under the receiver 
operating characteristic (ROC) curve (AUC). As shown in Fig. 2, PredCRP-model has the AUC value of 0.90 with 
the test dataset, which is better than the SVM method with other feature sets: 0.71 for eight informative 4-mer 
motifs, 0.73 for four informative location features, 0.79 for all features, 0.61 for composition features, 0.79 for 
location-dependent features, and 0.70 for location-independent features.

Feature set No. of features SPE SEN MCC ACC

PredCRP-model 12 1.00 0.92 0.95 0.98

Informative 4-mer motifs 8 0.99 0.38 0.52 0.86

Informative location features 4 1.00 0.29 0.49 0.85

All features (baseline) 380 0.98 0.29 0.41 0.83

Composition descriptor 320 0.98 0.17 0.26 0.81

Location-dependent descriptor 17 0.99 0.29 0.45 0.84

Location-independent descriptor 363 0.99 0.17 0.31 0.81

Table 1.  Prediction performance comparisons between PredCRP-model and the SVM-based methods with 
various feature sets on the CRPS-TRN dataset.

Feature set No. of features SPE SEN MCC ACC

PredCRP-model 12 0.95 0.83 0.79 0.93

Informative 4-mer motifs 8 0.97 0.25 0.36 0.82

Informative location features 4 0.98 0.25 0.36 0.82

All features (baseline) 380 0.98 0.17 0.26 0.80

Composition descriptor 320 0.93 0.33 0.33 0.80

Location-dependent descriptor 17 1.00 0.08 0.26 0.80

Location-independent descriptor 363 0.93 0.33 0.33 0.80

Table 2.  Prediction performance comparisons between PredCRP-model and the SVM-based method with 
various feature sets on the CRPS-TST dataset.

Figure 2.  ROC curves of various methods using the CRPS-TST dataset. The AUCs of PredCRP-model 
and SVMs with informative 4-mer motifs, informative location features, all features, composition feature, 
location-dependent feature, and location-independent feature were 0.71, 0.73, 0.90, 0.79, 0.61, 0.79, and 0.70, 
respectively.
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The SVMs with the eight motif features and four location features yielded test accuracy of 0.82 and 0.82, 
respectively. This result reveals that the use of the 4-mer motifs or location features only cannot produce satis-
factory prediction results. Furthermore, the use of a combination of informative motif and location features is 
important for accurate prediction. PredCRP-model makes the best use of both the informative 4-mer motifs and 
location features.

Evaluation of PredCRP-ruleset.  PredCRP-ruleset has two activation rules and two repression rules 
obtained from the decision tree method C4.5, along with the 12 informative features. Each extracted interpret-
able rule corresponds to a specific path from the root to a specific leaf of the decision tree. Each rule has its own 
cover ratio on the CRPS dataset consisting of 133 activators and 36 repressors. Figure S1 shows the extracted rules 
for activators and repressors. After careful inference of the location and motif features, two activation rules and 
two repression rules with high cover ratios were derived, as shown in Fig. 3. The detailed inference procedure is 
presented in Supporting Information, and the location criteria of activation rules 1 and 2, and repression rules 1 
and 2 are shown in the supplementary figures (Figures S2, S3, S4, and S5).

Activation rule 1.  The activation rule 1 (A1) states that if a CRP-binding site is located in binding regions denoted 
as location variable Region, where Region ≤ −49.5 and Region ≥ 49.5, and the number of TTTT motifs is smaller 
than or equal to 2 in a CRP-binding site, then CRP generally acts as an activator. A1 covers 66.2% (=88/133)  
of activators in the CRPS dataset and shows an accuracy of 93.6% (=88/94). Furthermore, the binding regions of 
A1 contain the region of the widely used Class II rule of CRP. The Region ≤ −49.5 of A1 covers 87 activators and 
the Region ≥ 49.5 covers only one activator.

Figure 3.  Four interpretable rules for illustrating the regulatory roles of CRP acting on the binding region.
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Activation rule 2.  The activation rule 2 (A2) states that if a CRP-binding site is located in the binding region of 
−70.5 to −28.5 and there is no AACG motif in the CRP-binding site, then CRP generally acts as an activator. A2 
covers 23.3% (=31/133) of activators in the CRPS dataset and shows accuracy of 96.8% (=31/32). Furthermore, 
the binding region of A2 contains the region of the widely used Class I rule of CRP.

Repression rule 1.  The repression rule 1 (R1) states that if a CRP-binding site is located in the binding regions, 
where 2 < Region <70.5 and −49.5 ≤ Region <−10, and there is no TTAC motif in the CRP-binding site, then 
CRP generally acts as a repressor. R1 covers 38.9% (=14/36) of repressors in the CRPS dataset and shows accu-
racy of 93.3% (=14/15). The binding region (−49.5 to −10) strongly overlaps with the RNA polymerase-binding 
site (−35 to −10). On the other hand, the binding region (2 to 70.5) is located downstream of the transcription 
start site. Therefore, when CRP binds to these regions, it may block the transcription process. The 2 < Region 
<70.5 of R1 covers five repressors, and the −49.5 ≤ Region <−10 covers nine repressors.

Repression rule 2.  The repression rule 2 (R2) states that if a CRP-binding site is located in the binding region of 
−31 to 23 and if neither TTAC nor GAGC motif is present in this CRP-binding site, then CRP generally acts as a 
repressor. R2 covers 19.4% (=7/36) of repressors in the CRPS dataset and shows accuracy of 100% (=7/7). This 
binding region of −31 to 23 also strongly overlaps with the RNA polymerase-binding site (−35 to −10). Hence, 
when CRP binds to the region (−31 to 23), it may block the transcription process.

Validation of the predicted regulatory roles of CRP by quantitative PCR experiments.  This 
work utilised the interpretable rules to predict the regulatory roles of CRP acting on 23 CRP-binding sites 
with weak evidence. The predicted roles of CRP were validated by quantitative PCR experiments. The results 
show that the prediction accuracy of PredCRP-model is as high as 0.96 (=22/23). The only wrong prediction 
of CRP-binding sites occurred on the ldtB gene in which CRP acts as a repressor based on qPCR validation, but 
PredCRP-model predicted an activator role. On the other hand, the prediction accuracy of the PredCRP-ruleset 
is 0.91 (=21/23). The wrong prediction of CRP-binding sites occurred on the ldtB and exuT genes. Based on 
the qPCR validation, the regulatory roles of CRP acting on the ldtB and exuT genes are repressor and activator, 
respectively, which PredCRP-ruleset predicted to have opposite roles. The results of the qPCR experiments are 
shown in Fig. 4 and Table S2, and the inference of relative quantity in qPCR is in the Supporting Information.

Discussion
Considering the trade-off between prediction accuracy and interpretation ability, both an SVM model and a set 
of interpretable rules were proposed. PredCRP-model had a higher accuracy of 0.96 (=22/23) but with less inter-
pretation ability. PredCRP-ruleset obtained satisfactory accuracy of 0.91 (=21/23) and also provides a cover ratio 
that biologists can easily analyse for the regulatory roles of CRP-binding sites.

The regulatory role of CRP acting on ldtB was wrongly predicted using PredCRP-model. On the other hand, 
the regulatory roles of CRP acting on both ldtB and exuT were wrongly predicted using PredCRP-ruleset. The 
CRP-binding site of ldtB has no informative 4-mer motifs (AACG, CATT, GAAC, GAGC, TGCG, TTAC, TTAT, 
or TTTT), which satisfies the motif conditions of the four rules. Nonetheless, its location satisfies the A2 rule only. 
The ldtB gene is annotated with the following GO terms: GO:0006508 (proteolysis), GO:0009252 (peptidoglycan 
biosynthetic process), GO:0043164 (gram-negative-bacterium-type cell wall biogenesis), and GO:0030288 (outer 
membrane-bounded periplasmic space). These processes take place in the outer-membrane-bounded periplas-
mic space and may involve more complex regulatory mechanisms rather than the simple blocking mechanism 
suggested by our two repression rules.

On the other hand, both the informative 4-mer motifs TTTT and CATT appeared once on the CRP-binding 
site of exuT. Similarly, exuT is also annotated with membrane-related GO terms (GO:0055085 - transmembrane 
transport, GO:0015736 - hexuronate transport, and GO:0005886 - plasma membrane). We assume that exuT may 
involve more complex activation mechanisms rather than Class I and II mechanisms.

The PredCRP method can be applied to predict the regulatory roles of other global regulators in E. coli. First, 
one can download the dataset of TF-binding sites from RegulonDB, and use the feature extraction programme 
from https://github.com/NctuICLab/PredCRP. This programme can retrieve the TFs of interest with a given evi-
dence level (strong or weak). Consequently, one can use a similar process like that described in the Materials and 
Methods section to train a predictor of regulatory roles.

Materials and Methods
Figure 1 illustrates the main components of PredCRP, consisting of an accurate model (PredCRP-model) and 
a set of interpretable rules (PredCRP-ruleset), including (1) establishment of datasets of CRP-binding sites, (2) 
feature extraction from CRP-binding sites, (3) feature selection in cooperation with an SVM, (4) PredCRP-ruleset 
based on the decision tree method C4.5, (5) an accurate PredCRP-model and (6) experimental validation of the 
regulatory roles of CRP. To provide the CRP prediction service to the scientific community, PredCRP-model can 
be accessed and downloaded at https://github.com/NctuICLab/PredCRP.

Datasets of CRP-binding sites.  A dataset (named CRPS) consisting of 169 CRP-binding sites with reg-
ulatory roles supported by strong evidence was established to train and evaluate this work. The CRPS dataset 
was retrieved from the RegulonDB database (version 8.8)29, containing up-to-date information on E. coli. The 
retrieval procedure of CRPS was given as follows:

Step 1:   �Retrieve TF-binding sites where the “TF name” column was annotated with ‘CRP’ from the 
RegulonDB database.

https://github.com/NctuICLab/PredCRP
https://github.com/NctuICLab/PredCRP
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Step 2:  � Categorise CRP-binding sites into strong and weak evidence groups using the “evidence” property 
obtained from the RegulonDB database.

Step 3:  � Remove redundant CRP-binding sites with the same transcription start site by checking the leftmost 
and rightmost positions in the genome.

Step 4:   Filter out the CRP-binding sites with lengths not equal to 22 base pairs.

Figure 4.  The quantitative PCR experiments for determining the regulatory roles of CRP on the 23 previously 
unobserved regulatory interactions in E. coli. The y-axis represents the relative quantity. The whiskers are the 
standard deviation of relative quantity. The black bars belong to the control group (0 mM cAMP concentration), 
and the white bars belong to the case group (1 mM cAMP concentration).
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The strong-evidence group in the RegulonDB v8.8 database is the set of sites selected by performing mutation 
experiments on TF-binding sites29. As a result, the CRPS dataset consisting of 169 CRP-binding sites was ran-
domly divided into training and test datasets in a ratio of 2:1, referred to as CRPS-TRN and CRPS-TST, respec-
tively. CRPS-TRN consists of 24 repression sites and 89 activation sites, while CRPS-TST consists of 12 repression 
sites and 44 activation sites. The CRPS dataset was subsequently used to design and evaluate this work.

An additional dataset (CRPS-TST-2) was used as an independent test for evaluating the PredCRP-model. The 
CRPS-TST-2 dataset consists of the strong evidence CRP-binding sites that appeared in version 9.4 but not ver-
sion 8.8 of the RegulonDB database. CRPS-TST-2 contains 12 sites of activation and 8 sites of repression.

To explore the regulatory roles of CRP on all CRP-regulated genes, we enumerated all possible 
CRP-binding sites and screened putative ones using interpretable rules. The possible CRP-binding sites were 
first retrieved from the RegulonDB database with weak-evidence annotation (CRPW). The weak evidence 
was annotated using the following methods29: (1) binding in cellular extracts, (2) gene expression analysis,  
(3) similarity to consensus sequences, (4) reaction blocked in a mutant, (5) inferred by a curator, (6) 
inferred from a mutant phenotype, and (7) prediction results. The conserved sequence of CRP-binding sites, 
-NNNTG5TG7ANNNNNNTC16AC18ANNN-, a well-known palindromic sequence, is bound by CRP25–27. In this 
consensus sequence, the nucleic acid G at positions 5 and 7 and the nucleic acid C at positions 16 and 18 play cru-
cial roles in providing binding free energy between CRP and the CRP-binding site30–32. The detailed CRP-binding 
ability in these four positions is provided in Supporting Information. The consensus sequence criterion can help 
to determine whether a site is a binding site or not but cannot determine the regulatory roles of CRP directly.

We selected only the four important sites in which the nucleic acids at positions 5, 7, 16 and 18 were G, G, C, 
and C, respectively. Consequently, 23 previously unobserved, putative CRP-binding sites with regulatory roles 
predicted by PredCRP-model and PredCRP-ruleset were identified. Although the 23 putative CRP-binding sites 
have high probability to be CRP-binding sites according to the consensus sequence criterion, we further proved 
the 23 sites as CRP-binding sites by referring to the EcoCyc database (see Supporting Information). The 23 pre-
dicted CRP-regulated interactions are given in Figure S6, which were validated by qPCR experiments.

Feature extraction from CRP-binding sites.  A comprehensive feature set of CRP-binding sites was 
established, comprising 380 features, including 17 features from a location-dependent descriptor (Table S3)18, 
three features from a physicochemical property descriptor, 320 features from the composition descriptors (256 
features of 4-mer motif composition descriptor and 64 features of the 3-mer motif composition descriptor), and 
40 features from a global sequence descriptor. This work extended the length of CRP-binding sites from 22 to 42 
base pairs by respectively adding k base pairs of flanking nucleotides to the regions upstream and downstream of 
a CRP-binding site for considering interactions within a cis-regulatory region18. In this work, k = 10 was used. The 
detailed feature extraction is given in Supplementary Information.

Feature selection in cooperation with a support vector machine.  Selecting a minimal set of m 
informative features from n = 380 features while maximising the prediction accuracy of the SVM classifier using 
these m features is a bi-objective combinatorial optimisation problem C(n, m). To deal with this large parameter 
optimisation problem, the inheritable bi-objective combinatorial genetic algorithm (IBCGA) was used28. The 
IBCGA, using an intelligent evolutionary algorithm33, can simultaneously obtain a set of solutions, Sr, where 
r = rstart, rstart + 1, …, rend in a single run using an inheritance mechanism to efficiently search for the solution Sr+1 
to C(n, r + 1) by inheriting a good solution Sr to C(n, r). Sm is the best solution among solutions Sr. The IBCGA 
can efficiently solve large-scale feature selection problems and is useful for deriving an optimised SVM model34,35. 
The intelligent evolutionary algorithm is good at solving large parameter optimisation problems, such as inferring 
roles within a large-scale quantitative gene regulatory work36.

The optimised SVM classifier with the m selected informative features is evaluated using the following meas-
urements: prediction accuracy (ACC), sensitivity (SEN), specificity, and Matthews’s correlation coefficient37. To 
provide prediction service to the scientific community, we developed a user-friendly tool based on the SVM 
model. The detailed algorithm is shown in Supporting Information. The parameter settings of the feature selec-
tion module are shown in Table S4.

PredCRP-ruleset based on C4.5.  The m informative features for predicting the regulatory roles of CRP 
and CRPS were utilised to develop a rule acquisition method based on the decision tree method C4.538. A set of 
if-then rules for distinguishing activators from repressors can be derived from the established decision tree. The 
interpretable if-then rules are used to further elucidate the regulatory roles of CRP.

An accurate model PredCRP-model.  In this work, the fitness function of the IBCGA is the prediction 
accuracy of k-fold cross-validation. The numbers of repressors and activators for training the SVM model are 24 
and 89, respectively. To maximise the number of training repressors used, k = 24 was used in this study. The input 
of the IBCGA is n-dimensional feature vectors of CRP-binding sites with regulatory roles in CRPS-TRN, and the 
output contains a set of m selected features and an SVM-based classifier with associated parameter settings of γ 
and C. PredCRP-model is the optimised SVM classifier with the m selected informative features. PredCRP-model 
is evaluated using the following measurements: prediction accuracy (ACC), sensitivity (SEN), specificity, and 
Matthews’s correlation coefficient37.

Experimental validation of the regulatory roles of CRP.  Experimental design of quantitative PCR 
experiments.  CRP is a well-known TF governing carbohydrate metabolism39. When E. coli grows in a medium 
containing glucose, the intracellular cAMP concentration is low40. The DNA-binding ability of CRP is regulated 
by the cAMP concentration39,41. A quantitative measurement of CRP-mediated transcriptional regulation was 
performed by measuring the gene expression level in an E. coli K12 strain lacking the cyaA gene producing 
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endogenous cAMP42, under various cAMP concentrations. Mutant strains used were E. coli BW25113 derivatives 
generated from the Keio collection system and provided by the National Institute of Genetics of Japan43. The 
regulatory roles of CRP on a CRP-regulated gene can be determined using the difference between the expression 
levels of the wild type with the cAMP concentrations of 0 and 1 mM.

Quantitative measurement of gene expression levels.  The quantitative PCR method can obtain expression profiles 
of genes of interest in a high-throughput and accurate manner22. In this work, the same experimental condi-
tions were used44. RNA isolation was based on the suggested protocol in the TRI Reagent-RNA Kit (Molecular 
Research Center, Cincinnati, OH, USA). RNA samples for quantitative PCR were pre-treated with DNase I 
(Promega, Madison, WI, USA). The DNA primers used in the quantitative PCR were designed by Primer Express 
software (Applied Biosystems, Foster City, CA, USA) and their complements (Table S5). DNA was synthesised 
using SuperScript III Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA). The quantitative PCR experiments 
were conducted in an ABI PRISM® 7000 instrument (Applied Biosystems, Foster City, CA, USA) using the SYBR 
Premix Ex Taq reagent (Takara, Tokyo, Japan). All quantitative PCR experiments were performed with two 
replicates.
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