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Bone regeneration using a porcine 
bone substitute collagen composite 
in vitro and in vivo
Eisner Salamanca1, Chia-Chen Hsu1,2, Haw-Ming Huang1, Nai-Chia Teng1,3, Che-Tong Lin1,3, 
Yu-Hwa Pan1,4,5,6 & Wei-Jen Chang1,2

The biocharacteristics of xenogeneic grafts make them a possible substitute for autogenous bone grafts 
in dental bone graft procedures. This study aimed to develop a novel porcine graft with collagen capable 
of generating new bone in bone defects via osteoconduction over 8 weeks of healing and to compare 
it with a porcine graft. The porcine collagen graft was made to undergo a cell viability test (MTT) and 
alkaline phosphatase assay (ALP). The surgical procedure was performed in 20 male adult New Zealand 
white rabbits. Four calvarial critical-size defects of 6 mm in diameter were prepared in each rabbit. The 
upper left defect was filled with a porcine graft of 500–1000 μm, the upper right with a porcine collagen 
graft, the lower left with hydroxyapatite/beta-tricalcium phosphate and the lower right served as the 
control without any filling material. The rabbits were divided and sacrificed at 2, 4, 6 and 8 weeks after 
surgery. Histological and micro-CT scan results showed that the performance of the porcine collagen 
graft is superior for regenerating new bone. Porcine collagen graft showed cell viability and osteoblast-
like cell differentiation in vitro. The results indicate that porcine collagen graft is a potential bone 
substitute for clinical application.

Bone graft materials are often used in dental treatments, such as infrabony defects, furcation defects, ridge aug-
mentation, socket preservation, peri-implant defects and sinus augmentation1. For years, autologous bone grafts 
have been and are still considered the gold standard graft for these treatments because they produce bone by 
cellular proliferation from viable transplanted osteoblasts, by osteoconduction of cells along the graft’s surface or 
by osteoinduction of recruited mesenchymal cells. There is no risk of rejection with this technique, and it is highly 
reliable for bone regeneration treatments due to its low antigenicity2. However, it has some major disadvantages, 
including poor osseointegration and excessive resorption when the defect is >6–9 cm or when the surrounding 
tissues do not provide sufficient blood supply due to scarring, infection or irradiation3. Moreover, autologous 
tissue use requires the sacrifice of healthy tissue at the donor site, resulting in additional morbidity4. Intraoral 
sites do not provide enough graft volume; extraoral sites can provide a greater volume5 but carry increased costs 
for the patient. For dental surgeons, the process of harvesting healthy bone from intraoral or extraoral sites entails 
a slow and complicated learning curve, and postsurgical complications may occur during the learning period6.

In multiple guided bone regeneration (GBR) studies, large numbers of patients with different needs and 
requirements combined with autogenous bone limitations made it necessary for scientists and clinicians to search 
for alternative grafts, such as an allogenous graft, xenograft and allograft; all of these materials have shown dif-
ferent types of physicochemical characteristics and reliability in specific treatments7–12. A bovine bone graft is 
the most commonly used material of the xenograft biomaterials. The primary concern with its use is the possible 
iatrogenic transmission of prion-related diseases to patients treated with this product. Although the risk had 
declined due to appropriate preventive measures1, it was necessary to study another type of xenograft material 
with fewer disease transmission possibilities than the bovine graft13. The density of this xenograft is closer to that 
of the human bone14. The porcine graft has all of these characteristics and has exhibited features such as oste-
oinduction and osteoconduction in various studies in recent years10,15,16. Hence, it is a reliable biograft for GBR.
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Type I collagen is another biomaterial that has proven to be useful in GBR treatments because it is a natu-
ral 3-dimensional (3D) structural component of tissues and the main constituent of bone tissue’s extracellular 
matrix. It is an excellent delivery system for growth factors and facilitates osteoblast and vessel migration and 
penetration, thus promoting angiogenesis and new bone formation17. Previous studies have shown that a mixture 
of type I collagen and sintered bovine bone form a 3D structure with better clot preservation and angiogenesis 
and demonstrate alveolar bone preservation and enhanced bone tissue engineering17. The addition of type I colla-
gen to porcine bone substitute may preserve the clot, and type I collagen has the physical characteristics of a hard 
sponge in the porcine graft material and is easy to adapt its form to the shape of the defect after it is hydrated; its 
fibrillar structure provides a scaffold for cell ingrowth and regeneration, supporting angiogenesis and enhancing 
porcine graft regeneration characteristics during GBR treatments18.

Ultimately, animal systems are required to test the safety and efficacy of data acquired before transferring to 
humans19. Originally developed to simulate fracture nonunion in long bones, the calvarial critical-size defect in 
rodents and rabbits is perhaps the most widely used preclinical in vivo model for screening bone biomaterials20. 
In a previous study on rabbits with critical-size defects conducted in the same laboratory as the present study, 
porcine bone grafts were used in a similar manner as commercial hydroxyapatite/beta-tricalcium phosphate 
(HA/β-TCP) by regenerating bone formation through osteoconduction. However, new bone generation and par-
ticle manoeuvring during surgery with the porcine graft could be improved for future use in the dental clinic. 
Therefore, a novel composite for GBR treatments was developed by combining a porcine bone substitute with 
homogenous collagen and freeze-drying it.

This study aimed to develop a novel composite combining a porcine graft with collagen, to evaluate its charac-
teristics in vitro using New Zealand rabbit calvarial critical-size defects and to assess its reliability as a bone graft 
biomaterial for new bone formation in future GBR treatments.

Results
Scanning Electron Microscope Examination.  Scanning electron microscope (SEM) examination 
showed porcine granules homogenously distributed within the collagen matrix (Fig. 1A). At a higher magnifica-
tion, the collagen matrix presented a rough surface while surrounding and being in direct contact with porcine 
bone substitute particles (Fig. 1B).

Figure 1.  Porcine collagen SEM. The scanning electron microscope image shows the porcine bone substitute 
granules’ homogenous (Fig. 3A, ×60 magnification) integration within the collagen matrix (Fig. 3B, ×350 
magnification).

Figure 2.  MTT assay. MTT assay of MG-63 cells at 1, 3 and 5 days. All the groups with graft materials were 
statistically significantly better than the control group at 1 day and showed viability during the 5 days of testing. 
Asterisks (*) indicate statistically significant differences (P < 0.05).
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Energy Dispersive Spectrometry.  Energy-dispersive spectrometry (EDS) analyses showed that the car-
bon (C) element had the atomic weight (62.17%), followed by oxygen (O) with 21.66%. Calcium (Ca) and phos-
phorus (P) were 7.54% and 4.58%, respectively, with a Ca/P ratio of 1.646.

Cell Viability and Biocompatibility.  The spectrophotometric methyl tetrazolium assay (MTT) assay 
results are presented in Fig. 2 and show that when the different graft biomaterials with MG-63 cells were cultured 
in the prepared media over 5 days, they were non-toxic and statistically significantly more viable than the control 
group at 1 day. At 3 days, only porcine collagen and HA/β-TCP were better than the control group, and all groups 
behaved similarly at 5 days (P < 0.05) (Fig. 2).

Alkaline Phosphatase Assay.  The alkaline phosphatase (ALP) assay showed that different graft materials 
increased the cells’ ALP activity in a time-dependent manner. The porcine graft and HA/β-TCP groups were 
slightly better than the control group at 1, 3 and 5 days, with no statistically significant differences. The porcine 
collagen graft group was always better than the other groups with only statistically significant differences over the 
other groups at day 1 and over the HA/β-TCP and control groups at day 5 (P < 0.05) (Figs 3 and 4).

Micro-CT Scanning.  New bone formation at week 2 in the centre of the calvarial defects filled with 
HA/β-TCP, porcine graft and porcine collagen composite produced 21.0% ± 5.4%, 16.0% ± 5.1% and 
26.4% ± 3.2%, respectively, being superior to the 10.9% ± 4.6% new bone formation in the control group. The 
porcine graft had a higher statistically significant difference (P < 0.05) compared with the porcine graft and con-
trol groups (Table 1, Fig. 4).

At week 4, the control group had the least amount of new bone formation (12.0% ± 3.4%) with a statistically 
significant difference compared with the other groups. HA/β-TCP had the second least amount of new bone 
formation (17.7% ± 2.3%). The porcine collagen group regenerated new bone (28.9% ± 3.0%) with statistically 
significantly higher values than those of the porcine graft (20.2% ± 3.9%) and other groups (P < 0.05) (Table 1).

Figure 3.  ALP test. Porcine collagen induced cells into osteoblast differentiation. Asterisks (*) indicate 
statistically significant differences (P < 0.05).

Figure 4.  Micro-CT bone volume/tissue volume of new bone formation. New bone formation in relation to 
tissue volume in rabbit coronal defects. Asterisks (*) indicate statistically significant differences between each 
group and the porcine collagen group (P < 0.05).

BV/TV (%) Week 2 Week 4 Week 6 Week 8

Control 10.9 ± 4.6 12.0 ± 3.4 11.0 ± 4.6 13.3 ± 4.6

HA/β-TCP 21.0 ± 5.4 17.7 ± 2.3 21.7 ± 3.3 20.0 ± 1.4

Porcine graft 16.0 ± 5.1 20.2 ± 3.9 18.8 ± 2.2 15.1 ± 2.6

Porcine collagen 26.4 ± 3.2 28.9 ± 3.0 24.5 ± 1.6 21.3 ± 2.2

Table 1.  Micro-CT new bone formation. Mean new bone formation ± standard deviation.
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At week 6, the porcine collagen group had the most new bone formation (24.5% ± 1.6%), which was sig-
nificantly more than those in the porcine graft (18.8% ± 2.2%), HA/β-TCP (21.7% ± 3%) and control groups 
(11% ± 4.6%). The porcine graft had a statistically significant difference (P < 0.05) compared with the porcine 
graft and control groups (P < 0.05) (Table 1).

At 8 weeks, the porcine collagen composite created more new bone (21.3% ± 2.2%) than the other groups, 
although the HA/β-TCP group (20.0% ± 1.4%) produced a similar amount. Similar to week 6, the porcine graft 
group (18.8% ± 2.2%), followed by the control group (11% ± 4.6%), generated the least amount of new bone. The 
defect closure at 8 weeks presented the same results as those in week 4. Porcine graft generated statistically signif-
icantly more bone (P < 0.05) than the porcine graft and control groups (Table 1).

Histology and Histomorphometric Analysis.  Histological results revealed significant differences 
between the defects filled with graft materials and the control group. At all time points, some HA/β-TCP and 
porcine graft particle displacements were observed due to the lack of a barrier membrane. All the defects filled 
with the different materials managed to hold the critical-size defect spaces.

During the second week, it was possible to observe inflammatory cells and predominantly woven bone sur-
rounded by osteoblasts in all the groups. Close contact between the bone and graft was significantly less in the 
groups filled with graft materials. The greatest concentrations of immature bone were in the defects’ borders, 
with graft particles working as scaffolds while they were embedded in newly formed bone, which occasion-
ally bridged the particles with branches of woven bone. The control group had the lowest bone formation at 
5.06% ± 1.25%, whereas the porcine collagen group had the highest bone formation at 19.65% ± 1.46%. Porcine 
graft and HA/β-TCP groups had similar bone regeneration at 17.92% ± 3.88% and 14.56% ± 2.97%, respectively. 
The porcine graft group had a statistically significant difference (P < 0.05) compared with the HA/β-TCP and 
control groups (Figs 5 and 6).

At 4 weeks, the porcine collagen group had the statistically significant highest difference in bone formation 
with 25.06% ± 5.62% (P < 0.05). Porcine graft, controls and HA/β-TCP groups had similar bone regenerations 
at 15.22% ± 4.22%, 16.60% ± 4.33% and 13.99% ± 2.46%, respectively. The graft biomaterials were already well 

Figure 5.  Sagittal view of the histology of cortical defects. Pictures of a mid-sagittal section that were previously 
taken from the cortical defect’s centre. Pictures show the healing process from 2 to 8 weeks in the different 
groups. gt: granulation tissue, g: graft particles, black arrowheads: new bone.

Figure 6.  Histology of bone area/tissue area of new bone formation. New bone formation in relation to tissue 
area in rabbit coronal defects. Asterisks (*) indicate statistically significant differences (P < 0.05).
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integrated into the host tissue, forming an irregular surface boundary caused by the gradual degradation of the 
material. The interface developing between the graft particles and the surrounding tissue corresponded in struc-
ture and morphology to new bone tissue. New bone maturation processes started to be visible with the calcifica-
tion of osteocytes in all groups (Figs 5 and 6).

At week 6, we observed significant new bone formation on the surface of some graft particles. Samples exhib-
ited histological patterns of biomaterial granules with osteogenic activity predominant on the defect’s walls, in 
which small spaces were observed between graft material granules and the new bone. Just as in the previous 
weeks, the porcine collagen group generated more new bone (26.82% ± 8.59%), having only a statistically signifi-
cant difference compared with the porcine graft group (P < 0.05) with 18.34% ± 4.17% new bone. The control and 
HA/β-TCP groups produced the least new bone with 14.95% ± 4.94% and 14.89% ± 9.18%, respectively (Figs 5 
and 6).

Histology slides demonstrated resorption of the grafts’ biomaterials at week 8. The porcine graft 
(21.48% ± 4.97%) and HA/β-TCP groups (21.13% ± 5.84%) had similar new bone formations; these results were 
close to the 25.30 ± 3.51% new bone formation generated by the porcine collagen group, whereas control defects 
had the least new bone formation (18.37% ± 7.93%). The presence of mature bone formation was differentiated 
from that in the graft particles, creating a bridge from the defect border to the centre of the defect, with a small 
amount of trabecular bone and some areas of mature bone; however, this was not statistically significant (Figs 5 
and 6).

Discussion
The objective of the present study was to develop a novel composite combining a porcine graft with collagen, eval-
uate its characteristics in vitro using New Zealand rabbit calvarial critical-size defects and determine its reliability 
as a bone graft biomaterial for new bone formation in future GBR treatments.

Based on the results, the porcine collagen graft showed rough particles of 500–1000 μm interconnected by col-
lagen with a Ca/P ratio of 1.646, promoting cell viability and osteoblastic differentiation over 5 days. These char-
acteristics were similar to those of the porcine graft and HA/β-TCP. In addition, these findings are in agreement 
with those of Maté Sánchez et al.18. They proposed that the surface roughness of biomaterials directly influences 
the possibility of creating a zone facilitating cell anchorage. Although a highly porous scaffold is preferred, as it 
favours bone cell adhesion and regeneration, it is achieved at the expense of mechanical strength and resistance. 
Even though the present study did not evaluate the material’s porosity, the porcine collagen particles showed 
roughness while they promoted cell viability in the MTT test. Maté Sánchez et al. also found that composite 
materials can be improved with the incorporation of collagen to achieve optimum physicobiological properties. 
The present study also found that collagen allows the internal replacement of the material with new bone in the 
rabbit calvarial defects over the 8 weeks, as demonstrated by the presence of new bone within the material and at 
its periphery18.

The porcine collagen composite in the present study had a ratio of 70:30 so that it mimics the natural human 
bone ratio, which is made up primarily of fine carbonated HA crystals (65%) and collagen matrices (23%). 
Additionally, the porcine collagen tried to imitate the organized 3D geometrical natural human bone structure, 
with the rationale of using many of the biological and mechanical properties present in natural human bone21. 
According to other authors, due to their effects on osteoblast gene expression, it is possible for high levels of Ca 
and P to stimulate osteogenesis22. Despite porcine collagen not having high levels of Ca and P due to the higher 
amount of collagen over the porcine graft, this composite presented a Ca/P ratio of 1.646, which is close to the 
stoichiometric value limit of 1.67 for pure calcium hydroxyapatite23.

New Zealand rabbit critical-size defect studies have established its validity as an experimental model for test-
ing biomaterials used for bone replacement24. In the in vivo portion of the present study, not all of the biomate-
rials interfered with the normal bone repair process. Some authors argue that defects 6 mm in diameter are not 
critical-size defects, but the control defects in the present study were not able to reach complete closure; thus, the 
size of the defects are considered critical-size defects, which is in agreement with a previous study by the same 
authors25.

According to the micro-CT results, all the calvarial bone defects filled with the different bone grafts generated 
more new bone and cortical defect closure compared with the control. The porcine collagen composite generated 
statistically significantly more new bone compared with the porcine and HA/β-TCP grafts, which was attributed 
to the interconnectivity created by the collagen, which promotes angiogenesis18, creating the possibility of getting 
less new bone than what other studies report and despite not using barrier membranes to examine porcine colla-
gen’s natural ability to form new bone.

It has been demonstrated that deproteinized bones not only lose their immune reactivity but also retain their 
osteoinduction and osteoconduction activities26. In the present study, the histology slides showed that both por-
cine graft and HA/β-TCP work as scaffolds from the defect’s borders toward the middle of the defect, without any 
immune reactivity, and are biocompatible, bioresorbable and osteoconductive; these results coincide with those 
of Guarnieri et al. who found that porcine xenograft is biocompatible and osteoconductive and does not interfere 
with the normal bone repair process27. For the last 3 decades, synthetic HA and β-TCP have been commercially 
available as bone graft substitute materials in the medical and dental fields, with good results in multiple stud-
ies28–30. The porcine collagen graft material shared the same characteristics with the porcine graft and HA/β-TCP 
and in histomorphometric analysis, demonstrated more new bone formation with a better critical-size defect 
space than those of the other graft materials. In another rabbit study performed on tibial defects, Calvo-Guirado 
et al. concluded that a collagenated porcine graft can be useful in daily practice depending on clinical needs. Even 
though the present study has limitations of being an in vivo and in vitro study with a short (8 weeks) follow-up 
period, the results support the conclusions of Calvo-Guirado et al. demonstrating that a porcine collagen 
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composite has physicochemical properties that make it biocompatible and able to generate new bone formation 
through osteoconductivity.

Materials and Methods
The materials tested in this study comprised a porcine bone graft, porcine collagen composite and HA/β-TCP. The 
procedure used to create the porcine graft in this study has been previously reported25. Briefly, the material was 
produced using high porosity porcine cortical long bones heated to 800 °C until particle sizes of 500–1000 μm 
were reached. The porcine collagen composite was a homogeneous plug consisting of purified porcine type I col-
lagen fibers mixed with porcine bone graft with a weight ratio of 30:70. The mixture was poured into a mould and 
freeze-dried to yield porcine collagen composite in its final form. The HA/β-TCP was a biphasic ceramic material 
(MBCP™) consisting of 60% HA and 40% β-TCP with complete interconnected porosity of 70% which com-
prised macropores of >10 µm and micropores of <10 µm in a 2:1 ratio and sintered at temperatures >700 °C14.

Scanning Electron Microscopy.  Porcine collagen surfaces were sputter-coated with a 25-nm-thick layer 
of palladium gold using a sputtering apparatus (IB-2; Hitachi, Ltd, Tokyo, Japan), and porcine collagen composite 
surface morphology was observed using SEM (Model 2400; Hitachi, Ltd).

Energy Dispersive Spectrometry.  Elemental porcine collagen composite graft sample analysis was per-
formed using SEM (Model 2400; Hitachi, Ltd), which is equipped with EDS.

Cell Viability and Biocompatibility.  Cell metabolic activity was evaluated according to succinic dehy-
drogenase activity using the MTT assay following the procedure described in the previous study,30. Briefly, in 
these experiments, porcine graft, porcine collagen composite and HA/β-TCP were added to Dulbecco’s Modified 
Eagle’s Medium solutions containing phosphate-buffered saline + polysialyltransferases in a 0.2 mg/mL ratio, 
while incubated in a humidified incubator at 37 °C. After 24 hours, MG-63 cells were seeded (1 × 104 cells/mL) 
onto 24-well plates (Costar Corporation, Cambridge, MA, USA) and maintained in a humidified incubator with 
5% CO2 and 95% air at 37 °C for 24 hours in the same type of medium previously described. The culture medium 
was aspirated thereafter, and all media solutions previously prepared with the graft materials were added to the 
cell culture wells, leaving just 1 well with the same untreated medium as a control group. After exposure for 5 
days, the media solutions were aspirated at different times points at 1, 3 and 5 days, and MG-63 cells were cultured 
with dimethyl sulfoxide (DMSO) with 5% CO2 and 95% air at 37 °C and comprised the negative control group. 
Tetrazolium salt (MTT kit, Roche Applied Science, Mannheim, Germany) was added and metabolically reduced 
to coloured formazan by mitochondrial dehydrogenase in viable cells after incubating for 4 hours according to 
the manufacturer’s instructions. After solubilizing, the formazan dye was added to 500 μL DMSO for 5 minutes, 
and the optical density of the medium was determined using an ELISA reader (Model 2020, Anthos Labtec 
Instruments, Wals-Siezenheim, Austria) at a wavelength of 570 nm; the data were analysed by Student t test.

Alkaline Phosphatase Assay.  MG-63 cells were seeded (1 × 104 cells/mL) in 500 µL of DMEM (medium 
A) in 4 plates of 24-well (Costar Corp.) and maintained in a humidified incubator with 5% CO2 and 95% air at 
37 °C for 24 hours. Concurrently, porcine graft, porcine collagen composite and HA/β-TCP were mixed with 
DMEM (medium B) in a ratio of 0.2 mg/mL and kept at 27 °C for 24 hours. Later, medium A was removed and 
substituted with medium B. Samples were taken after 3 freeze-thaw cycles of cell membrane rupture with 0.5% 
Triton X-100. Each plate was used immediately after the substitution and 1, 3 and 5 days later. Samples were pre-
served at −80 °C for 24 hours.

Using a 96-well (Costar Corp.), a total protein assay was performed by mixing 100 µL of the sample with 
100 µL of solution made with 5 mL of Bio-Rad protein assay reagent plus 20 mL Deionized water. In order to per-
form the ALP assay, 9 mL of solution integrated with 8 mL alkaline buffer solution 1.5 M plus 4 mL DII water was 
mixed with 16 µmole of MgCl2 (SIGMA 104–40), and 100 µL of the solution were set within 100 µL of previously 
obtained sample in a 96-well (Costar Corp.). Absorbance in both tests was measured at 405 nm with 620 nm as a 
reference using ELISA reader (Plate Chameleon Multilabel Detection Platform; HIDEX, Finland) and absorbance 
data were analysed.

Surgical Procedure.  Surgical procedures were performed in 20 adult male New Zealand white rabbits 
with a mean age of 12 weeks and a mean weight of 2.1 kg. All experimental protocols were approved by the 
animal ethics committee of Taipei Medical University, and all experiments were performed in accordance with 
relevant guidelines and regulations. The animals were housed in cages at 19 °C and 55% humidity at the Taipei 
Medical University Laboratory Animal Center and fed standard rabbit chow and water ad libitum. Anaesthesia 
was administered using an intramuscular injection of Zoletil 50 (50 mg/mL) at 15 mg/kg into the gluteal region, 
and surgery was performed in animals after 10 minutes of sedation. The calvarial region was then shaved, draped 
and sterilized using iodine, and 1.8 mL of 2% lidocaine with epinephrine 1/100,000 was injected as a haemo-
static. Subsequently, a 2-cm longitudinal midline vertical skin incision was made, the periosteum was retracted 
to expose the calvarial bones and 4 critical calvarial defects of 6-mm diameter and 3-mm depth were prepared 
using a trephine bur (3I Implant Innovation, Palm Beach Gardens, FL, USA) bilaterally in the parietal and frontal 
bones of each rabbit. Each defect was considered a critical size defect that would not heal during the animal’s 
lifetime. The upper left defect was filled with porcine graft, the upper right with the porcine collagen composite, 
the lower left with HA/β-TCP (MBCP; Biomatlante biologics solutions) and the lower right defects were unfilled 
(controls). The rabbits were kept in cages under surveillance for the first 24 hours and then examined every 3 
days for 2 weeks and weekly thereafter (Fig. 7). The animals were grouped for sacrifice at 2, 4, 6 and 8 weeks after 
surgery. Euthanasia was performed by CO2 asphyxiation 10 minutes after intramuscular injection of Zoletil 50 
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(50 mg/mL) at 15 mg/kg into the gluteal region. Subsequently, a section was made between the 4 critical defects. 
Sample blocks were prepared in formalin and micro-CT scanning analyses were performed within 2 weeks using 
SkyScan 1076 (Antwerp, Belgium)25.

Micro-CT Scan.  After obtaining the micro-CT images, coronal images of the defects were saved in the data-
base, and 3D morphological analyses were performed on 20 samples. Morphometric parameters were calculated 
on individual binarized cross-sectional images, and 2D morphometric parameters were determined slice-by-slice 
and integrated across multiple slices for a complete 3D analysis. After integration of whole volume of interest 
(VOI), percentages of VOI occupied by binarized solid objects were calculated, and this parameter comprised 
percentages of the total volume (TV) of VOI and the total binarized volume (BV) of objects within the VOI. 
Moreover, to measure the new bone formation, binary selections of samples from the morphometric analyses 
were made according to grayscale density between units of 20 and 80, respecting the 6-mm diameter limits of the 
calvarial defects.

Histology and Histomorphometric Analysis.  Bone specimens were decalcified in formalin. 
Decalcification times, specimen thicknesses, temperature, decalcification solution freshness and block samples’ 
decalcification conditions were recorded. Specimens were washed in sterile distilled water for several hours fol-
lowing decalcification,. Subsequently, bone tissues were dehydrated in alcohol and embedded in liquid paraffin. 
Two slices with 7 μm-thickness were taken from the middle of each bone specimen, and hematoxylin and eosin 
staining was performed on all paraffin-embedded tissues. Histological slides were performed on the sagittal view 
of the defect using a Leica/Aperio ScanScope System, and histologic image analysis was performed at 20× mag-
nification, whereas morphometric analysis was done by sampling mean new bone formation from 3 regions of 
interest, each with a size of 1.5 × 1.5 mm, 2 on the calvarial defect borders and a third in the middle of the defect. 
ImageJ software (National Institutes of Health; Bethesda, MD, USA) was used to measure new bone formation.

Statistical Analysis.  Descriptive statistics including mean values and standard deviations were used for all 
tests. The Jarque–Bera test was used to test normality. Data analysis and comparisons in all tests were performed 
using Student t test (Microsoft Excel, Office 2016). Comparisons between the 2 groups with P-values < 0.05 were 
considered statistically significant differences.

Conclusion
With the limitations of the present study, porcine collagen showed good physicochemical properties, was bio-
compatible and generated new bone formation through osteoconductivity, proving to be a reliable bone graft 
biomaterial option for future GBR treatments.
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