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Abstract

The discovery of biocompatible or bioactive nanoparticles for medicinal applications is an 

expensive and time-consuming process that may be significantly facilitated by incorporating more 

rational approaches combining both experimental and computational methods. However, it is 

currently hindered by two limitations: (1) the lack of high-quality comprehensive data for 

computational modeling and (2) the lack of an effective modeling method for the complex 

nanomaterial structures. In this study, we tackled both issues by first synthesizing a large library of 

nanoparticles and obtained comprehensive data on their characterizations and bioactivities. 

Meanwhile, we virtually simulated each individual nanoparticle in this library by calculating their 

nanostructural characteristics and built models that correlate their nanostructure diversity to the 

corresponding biological activities. The resulting models were then used to predict and design 

nanoparticles with desired bioactivities. The experimental testing results of the designed 

nanoparticles were consistent with the model predictions. These findings demonstrate that rational 

design approaches combining high-quality nanoparticle libraries, big experimental data sets, and 

intelligent computational models can significantly reduce the efforts and costs of nanomaterial 

discovery.
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Nanoscience and nanotechnology have made significant impacts on modern medicine,1 

various technology fields, and thousands of consumer products.2 For these applications, 

nanomaterials with desirable properties and low side effects are in high demand. However, 

the search for such nanomaterials depends heavily on traditional “trial and error” 

experimental protocols, which are time- and resource-consuming. Rational approaches that 

use in silico models to predict the bioactivities of nanomaterials before experimental testing 

would be an attractive approach for nanomaterial research.3 However, there are currently 

two key limitations to this advancement: (1) Most existing data available for modeling were 

based on limited numbers of nanomaterials with limited experimental characterization of 

chemical properties (e.g., basic physicochemical properties).4–6 This is due to the fact that 

the conventional “one-at-a-time” experimental approach has been practiced in most 

laboratories, allowing only limited numbers of nanoparticles to be made and tested. 

Furthermore, coming from different laboratories, even results for the same material may be 

contradictory due to poor characterization and different operations.7 (2) Despite significant 

efforts from various researchers, the available modeling approaches were designed and 

applicable only for a specified small set of nanomaterials and rarely used to design 

nanomaterials. One such effort is based on molecular dynamics (MD). The reaction 

behaviors of individual nanoparticles were investigated under certain conditions using MD, 

e.g., interactions with or passing through membranes, along with the effects of the size, 

density, position, distribution, length, and type of surface ligands on the biological properties 

of the nanomaterials.8–12 The advantage of MD simulations is that they can precisely 

simulate molecular structures. However, the clear disadvantages are that (1) modeling 

procedures are computationally expensive and cannot provide rapid predictions for big 

databases due to the current limitation of computational resources; (2) these simulations 

require extensive prior expertise knowledge; (3) MD simulations are inherently unsuitable 
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for the predictions of end points with complex mechanisms, such as cytotoxicity. Thus, the 

usage of this approach in designing nanomaterials is limited. Another computational 

approach is to apply traditional quantitative structure–activity relationship (QSAR) modeling 

methods to nanomaterials. QSAR modeling for small molecules requires precisely 

calculated diverse chemical descriptors.13 The lack of suitable chemical descriptors for 

nanomaterials strongly limits the applicability and predictability of QSAR models. Although 

the descriptors calculated only from the surface ligands are useful in predicting certain 

properties of nanoparticles,14–16 the effects of the nanoparticle size, density, position, 

distribution, length, and type of surface ligands on the biological properties were not 

considered in these studies. Some other studies have incorporated descriptors derived from 

some nanoparticle-related properties (e.g., nanoparticle size)17–20 or testing results (e.g., 

proteomics data)6,21–23 for computational models. Efforts were also made to combine 

molecular simulations and QSAR modeling.24,25 Instead of simulating the nanoparticles, 

metal oxide substructures were used as substitution, which is only applicable to metal oxides 

within a specific size range. To date, there are no universal “nano-QSAR” models that can 

model all nanomaterials for complex bioactivities.26 Thus, a bottleneck to apply QSAR 

approaches for nanomaterial modeling is that nanostructure diversity is not accurately 

represented during the modeling process.

To address the above two limitations, we first assembled a large gold nanoparticle (GNP) 

library with comprehensive characterizations and bioactivity measurements. We then 

constructed a virtual gold nanoparticle (vGNP) library based on these experimental results 

and calculated a large set of nanodescriptors using precise surface chemistry simulations of 

each vGNP. Then predictive quantitative nanostructure activity relationship (QNAR) models 

were developed. With these QNAR models, we predicted and designed GNPs with different 

biological profiles, and these GNPs were then synthesized and confirmed experimentally.

RESULTS AND DISCUSSION

Workflow of Experimental Testing, QNAR Modeling, and Rational Nanomaterial Design

Figure 1 shows the workflow of this project, including two major parallel components, the 

GNP library synthesis/testing and vGNP library construction, which are the key steps of the 

modeling process. First the initial nanoparticle library was synthesized and tested for their 

cellular uptake potentials and relevant properties. The nanostructure diversity was modulated 

by changing the surface ligands on the GNPs. As a parallel step, the vGNP library was 

virtually constructed for the same nanoparticles by computationally (1) building a gold core 

with proper GNP size, (2) simulating the nanostructural diversity by attaching the 

corresponding surface ligands on the gold core, and (3) simulating the surface chemistry by 

calculating important physicochemical properties (Figure 1).

In this study, GNPs 1–34 were synthesized and experimentally tested in the first step to form 

the modeling set (Figure 1). Up to two types of surface ligands with different properties 

(e.g., one hydrophobic and the other hydrophilic) were attached to a gold core with a sulfur–

gold linkage, and the GNP properties were changed by varying the ratio and density of these 

two ligands as well as the size of the gold core. The corresponding vGNPs were created, and 

the structures of these vGNP were then optimized. Their surface chemistries were precisely 
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simulated as the actually synthesized GNPs. Using the resulting optimized vGNPs, 

nanostructural descriptors were calculated, such as the surface area and potential energy. 

These nanodescriptors were then used to build QNAR models that quantitatively relate the 

nanostructures to their complex bioactivities (e.g., cellular uptake) that were determined 

experimentally. By screening the external vGNP library, which contains other vGNPs with 

various sizes, surface ligands, and density, using the resulting QNAR models, GNPs (e.g., 

GNPs with different surface ligands) with desired bioactivities (e.g., high or low cellular 

uptake potentials) can be designed and prioritized. Seven GNPs, 35–41, were designed and 

synthesized based on the prediction results for the experimental validation in this study.

Design and Synthesis of a Chemically and Biologically Diverse GNP Library

The library of GNPs used in this study was designed with diverse chemical and biological 

activities to simulate potential GNPs used in medicine. In our previous studies, we have 

shown that the physicochemical properties and other complex bioactivities of nanoparticles 

can be modulated by systematically changing the surface ligands.27–32 In this study, we 

designed and synthesized a total of seven GNP library series (GNPs 1–34), with GNP size 

ranging from 5 to 10 nm. For each series, different surface ligands were designed to 

gradually change GNP hydrophobicity (S1, GNPs 1–7, red), positive charge density (S2, 

GNPs 8–12, navy), negative charge density (S3, GNPs 8, 13–16, green), surface hydrogen 

bond acceptor density (S4, GNPs 8, 17–20, magenta), surface hydrogen bond donor density 

(S5, GNPs 8, 21–24, orange), surface pi-bond density (S6, GNPs 25–29, blue), and 

molecular geometry (S7, GNPs 30–34, purple), as indicated by the colors in Figure 2. With 

the exception of S7 (GNPs 30–34), these GNPs each have two surface ligands with different 

properties as shown in Figure 2. By gradually changing the ratio of the two ligands, the 

major physicochemical properties of these GNP series are altered. Specifically, GNP 8 
belongs to four series (S2, S3, S4, and S5) as shown in Figure 2. The relevant information 

about the chemical synthesis and the resulting biological data are summarized in 

Supplementary Table SI. This table shows that the bioactivities of GNPs (e.g., cellular 

uptakes) can be modulated by changing these properties. In this study, a total of 34 GNPs, 

which made up these seven GNP library series, were synthesized and experimentally 

characterized. The relevant experimental data are also shown in Supplementary Table SI. 

These nine experimentally tested properties cannot be directly used to predict the properties 

of vGNPs yet to be synthesized and thus are not suitable for prioritizing GNPs with 

desirable biological activities. However, some properties (i.e., size, number of ligands per 

GNP) are critical structural parameters of GNPs affecting their bioactivities10,12 and should 

always be considered during computational modeling. Accordingly, the computational 

calculation of a precise and diverse set of descriptors is required in order to develop models 

for predicting external nanoparticles.

Virtual GNP Construction and Structure Optimization

An in-house GNPrep program was created to batch-construct the GNPs virtually, namely, 

vGNPs, in the library by inputting three basic structural parameters: particle size, surface 

ligand structure, and ligand density (number of ligands per GNP). Briefly, the surface 

ligands were randomly attached to the spherical gold particle shell through sulfur–gold 

linkages at random angles and directions. To simulate the actual configuration of the GNP, 
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the vGNP structures were then geometrically optimized with a minimized potential energy. 

Up to two types of surface ligands with different properties (e.g., one hydrophobic and one 

hydrophilic) could be attached to the gold core.

Virtual GNP Chemical Descriptor Calculation

Nanodescriptors that are specifically useful for representing GNP chemical structure 

information can be calculated from the optimized vGNP structures and be used directly for 

modeling. It was shown in a previous study that the size, shape, surface area, surface charge, 

energy, functional groups, ligands, hydrophobicity, and electrostatic interactions are among 

the main physicochemical features that influence the interactions between nanoparticles and 

biological systems.33 In this study, this nanostructural information can be calculated and 

served as the key to correlate nanostructures to biological activities. Thus, 86 

nanodescriptors were characterized and calculated based on the simulated structures of 

vGNPs (for details about the 86 descriptors, see Supplementary Tables SII, SIII). These 86 

descriptors provided massive information for the big vGNP library from diverse aspects, 

which can be used for QNAR modeling to predict complex biological activities.

As an example, the S1 series (GNPs 1–7) shown in Figure 3 was designed specifically for 

changing the GNP hydrophobicity with different ratios of hydrophilic and hydrophobic 

ligands. In this study, for each vGNP in the constructed library, a specific descriptor was 

used to represent the hydrophobic potential, which can be visualized by the colored contours 

(i.e., green as the most hydrophobic and purple as the most hydrophilic) shown in the second 

column of Figure 3. Similarly, some other descriptor values of this GNP series (e.g., 

interaction potentials) can be visualized (e.g., third to sixth columns of Figure 3). For these 

four descriptors, the colored dots indicate the vGNP surface regions where the calculated 

descriptor values are above the original input threshold. For each surface property, there is a 

large range of values distributed along with the surface ligands on each vGNP. In order to 

make use of these multidimensional massive structure information data, we designed several 

algorithms to quantify and unify simulated surface property features into sets of descriptors 

that can be used for modeling (see “Methods” and Supplementary Table SIII).

Nanostructure Diversity Visualization

On the basis of the calculated nanodescriptors of the 34 GNPs, we first visualized how these 

vGNPs were structurally differentiated from each other. After performing principal 

component analysis using the 90 descriptors (86 calculated descriptors, along with four 

experimentally determined basic properties: three surface ligand densities and GNP size), 

the two top-ranked principal components, covering 89% of the variance of all descriptors, 

were used to construct a GNP chemical space, which represents the distribution of vGNPs 

based on their structural diversities. As shown in Figure 4, within most vGNP series, 

individual vGNPs are structurally different from each other. However, the vGNPs within two 

series designed to have different positive and negative charge densities (S2 and S3: GNPs 8–

16) showed relatively small structural differences in the current GNP chemical space (Figure 

4). This issue may be due to the lack of suitable descriptors for describing their structural 

diversity and might negatively affect the model predictability for the external GNPs with 

similar surface ligands to these two series. This issue is further discussed in detail below.
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Predictive Computational Modeling

Among all 86 descriptors and their four physical properties (i.e., particle size and three types 

of ligand density), some descriptor values were highly correlated with each other. Highly 

correlated descriptors will induce issues during the modeling procedure, and normally one of 

two highly correlated descriptors needs to be removed.34–36 After removing the correlated 

descriptors, 29 descriptors remained, as shown in Figure 5. These descriptors were then used 

in the following modeling procedure.

Using the 29 descriptors and the k-nearest-neighbor (kNN) algorithm, we developed QNAR 

models for cellular uptake in human lung and kidney cells (A549 and HEK293 cells), ability 

to induce oxidative stress (indicated by the HO-1 level in the A549 cells), and 

hydrophobicity (indicated by logP values). In each individual kNN model, up to 11 

descriptors were used. The model performance was first shown by a 10-fold cross-validation 

process of the modeling set. The resulting four models showed high predictabilities 

(modeling set GNPs are shown as dots in Figure 6) with correlation coefficients (R2) of 

0.995, 0.990, 0.967, and 0.988 and mean absolute error (MAE) values of 0.11 (× 107 GNPs/

cell), 0.14 (× 107 GNPs/cell), 0.14, and 0.18, respectively.

Nanoparticle Discovery with the QNAR Models and Experimentation

The ultimate goal of any computational model is its applicability in prediction. To realize 

this goal, first we virtually designed and created seven vGNPs (shown in Supplementary 

Table SIV, GNPs 35–41) with different surface chemistries (i.e., sizes, surface ligand ratios, 

and densities) as shown in Figure 7a. Then the developed QNAR models were used to 

predict the physicochemical properties and bioactivities of these vGNPs (Figure 7b). These 

nanoparticles were intentionally designed with predicted diverse physicochemical properties 

and bioactivities. Experimental data convincingly confirmed most of the modeling 

predictions (Figure 7, Supplementary Tables SI, SII). The correlations between model 

predictions and the experimental results (Figure 7c) were reflected by R2 values (0.918, 

0.919, 0.768, and 0.930) and MAE values (0.49 × 107 GNPs/cell, 0.46 × 107 GNPs/cell, 

0.26, and 0.43) for each end point, respectively (this external validation set of GNPs is 

shown as star points in Figure 6).

Designed GNPs with Desired Bioactivities

As shown above, using the resulting QNAR models and important nanodescriptors, we 

predicted and selected seven external GNPs, which were then experimentally synthesized 

and experimentally confirmed (Figure 7). The advantage of this study is that the GNPs can 

be characterized by critical physicochemical properties (e.g., nanodescriptors) and 

bioactivities (e.g., the precisely predicted cellular uptake levels). This approach allowed us 

to cover most known factors for designing potential nanomedicines. These external GNPs 

were prioritized by QNAR models due to the diverse predicted bioactivities (e.g., low or 

high cellular uptake potentials). As shown in previous studies, GNPs with desired 

bioactivities can be designed by systematically changing the surface ligands.20 In this study, 

we not only successfully reached this goal by creating virtual nanoparticles and precisely 

simulating their surface chemistry but also predicted their target bioactivities before 

experimental synthesis. Those with optimal properties can be visualized and selected 
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computationally upon requirements. For example, the biological profiles of vGNPs 35 and 

40 were predicted to be relatively similar, aside from the size difference (Figure 7b). vGNPs 

41 and 35 have similar cellular uptakes in both HEK293 and A549 cells. But vGNP 41 was 

predicted to have higher HO-1 activity and lower logP than 35 (Figure 7b). We may select 

the most suitable GNPs for future development by considering the whole biological profile. 

This way, we can precisely design nanomaterials that meet the therapeutic requirements of 

modern nanomedicines.

Elucidated Mechanisms of Cellular Uptake

The important mechanisms of GNP cellular uptakes can be obtained by analyzing modeling 

results and used to guide nanomaterial design. The results showed that there are several 

descriptors that are critical to the QNAR models. For example, the descriptor hydrophobic 

potential has clear and high linear correlations with the experimental hydrophobicity logP 

values (R2 = 0.76), the cellular uptake in A549 cells (R2 = 0.74), and the cellular uptake in 

HEK293 cells (R2 = 0.74). Indeed, not surprisingly, in the models built for these three end 

points, the hydrophobic potential is the most important descriptor that is mostly used in all 

the acceptable kNN models (87%, 75%, and 80% of all acceptable models for cellular 

uptake in A549 cells, cellular uptake in HEK293 cells, and logP, respectively). The other 

important descriptors for the cellular uptake models in the A549 cells are the partial charge, 

nonbonded hydrophobic contact preference, and particle size, while those important for 

cellular uptake models in the HEK293 cells are the nonbonded hydrophobic contact 

preference, partial charge, and surface area. For example, GNP 7, which has high cellular 

uptake potentials for both cells, was featured with a hydrophobic potential as high as 3.62 

and a nonbonded hydrophobic contact preference as low as 0.49. Compared to the other 

three models, the top four descriptors that are most important to the oxidative stress 

induction model are the number of surface ligands, nonbonded hydrophobic contact 

preference, interaction potential with water molecules, and electrostatic positivity. This 

indicated that different mechanisms of action and extra interactions are involved in oxidative 

stress induction by GNPs compared to other nano–bio interactions, such as cellular uptake. 

These factors should be considered for the development of nanomaterials.

Advanced GNP Design by Applying Applicability Domain and Additional Experimental 
Testing

Although the current chemical descriptors have covered a variety of aspects of the GNP 

structural diversity and the resulting models yielded satisfactory predictability, more studies 

need to be conducted for GNP development. As shown in Figure 6, two external GNPs (36, 

the navy star, and 38, the magenta star) have relatively large prediction errors in at least two 

models. As shown in the GNP chemical space (Figure 4), the diversity of GNP series S2 

(GNP 8–12) with changes in the positive charge density cannot be distinguished, and GNP 

36 belongs to this series. In our previous QSAR modeling studies, the use of the 

applicability domain (AD) could improve the model predictivity.37 The definition of the AD 

was normally based on the structure similarity between the external compounds and their 

nearest neighbors in the modeling sets. In this study, a similar analysis was applied. As 

expected, 36 was identified as a structural outlier with a normalized Euclidean distance as 

large as 0.86 to the closest GNP in the modeling set. For this reason, the relatively larger 
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prediction error in the models of cellular uptake of this GNP may be due to the diversity 

limitation of the GNPs distributed in this created GNP chemical space (i.e., a lack of 

representative descriptors describing the cellular uptake relatives). Without extensively 

expanding the current nano-structure landscape by experimentally testing more GNPs, the 

AD cannot be defined without enough external prediction results. However, this issue can be 

resolved by developing more chemical descriptors from the vGNP library to better represent 

their structure diversity. For example, the potential descriptors in the future can be derived 

by understanding biophysicochemical interactions at the nano–bio interface, such as 

receptor–ligand binding interaction potentials and nanomaterial conformational changes. 

Probing these various biophysicochemical interactions may improve the current QNAR 

models by including additional knowledge information on nanostructures.33 Meanwhile, the 

GNP 38 is shown to be structurally different from other GNPs in the current GNP chemical 

space. Its only nearest neighbor, GNP 33, has a high logP and cellular uptake, which is the 

opposite of those of GNP 38. This issue can be resolved by experimentally testing more 

GNPs within this series to generate more chemical nearest neighbors of GNP 38. For this 

reason, experimental testing is critical and needed when there is not enough data available to 

cover specific areas of the GNP chemical space.

Potential Pitfalls and Future Directions

Currently the technical issues of limited computational power and lack of software can limit 

studies involving large sets of nanomaterials. For example, in this study, we used 

nanoparticles with sizes ranging from 5 to 10 nm and number of surface ligands ranging 

from 100 to 900. Based on the GNP library, the constructed vGNPs have almost reached the 

upper limit of the protein database (PDB) format used to store the relevant nanostructures 

(i.e., up to 99 999 atoms for each vGNP).38 For more complicated nanostructures (e.g., 

larger GNPs with more surface ligands), the PDB format cannot be used. And there is no 

other generally acknowledged substitution file formats that can overcome this issue. To this 

end, we are designing other computational approaches to resolve this issue and make this 

strategy applicable for more complicated nanomaterials.

CONCLUSION

Nanoparticle discovery by experimental data and intelligent computer modeling approaches 

is the method of choice to overcome the current bottleneck in nanomaterial research. The 

performance of QNAR models, like the conventional QSAR models, depends heavily on the 

availability and the amount of high-quality data. Only with big and comprehensive databases 

can models yield comprehensive and accurate prediction powers for nanomaterials with a 

wider range of applicability. Meanwhile, the modeling approaches need to be able to 

intelligently represent the real nanostructures’ diversity. By taking advantage of the precise 

simulation approaches that focus on understanding the individual actions of specific GNPs, 

the proposed method can virtually create a diverse collection of vGNPs from various aspects 

by simulating and calculating a broad set of surface features. Additionally, compared to 

previous QSAR studies on GNPs, this QNAR modeling approach has the advantage to not 

only rapidly screen big GNP data sets but also more accurately predict the properties of 

nanoparticles, which could help design or prioritize GNPs with desirable biological 
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properties. Furthermore, the current workflow of QNAR modeling may be extended to other 

nanomaterials, such as other spherical nanoparticles or nanomaterials of various shapes, 

sizes, and surface coatings.

EXPERIMENTAL AND COMPUTATIONAL METHODS

GNP Library Synthesis

Each surface-modified member of the GNP library was made in a one-pot synthesis. 

Hydrogen tetrachloroaurate(III) (HAuCl4) trihydrate solutions (0.05 mol/L) were stirred 

with ligands at room temperature. Then, sodium tetrahydroborate was added dropwise to the 

mixture. The mixture was stirred for 4 h at room temperature. After the reaction is finished, 

the mixture was centrifuged, and the supernatant was discarded. The precipitate was 

resuspended in deionized water. The centrifugation– dissolution cycle was repeated five 

times.

GNP Library Characterization

The number of ligands on each GNP was characterized as described in our previous article.
20,39 Briefly, the ligands on GNPs were first cleaved by I2. Then, the ligands was 

quantitatively analyzed by LC/MS to get the number of ligand molecules per nanoparticle. 

The diameters of the GNPs were analyzed by transmission electron microscopy observations 

(JEM-1011, JEOL, Tokyo, Japan). The hydrodynamic diameter and zeta potential were 

analyzed using a laser particle size analyzer (Malvern Nano ZS, Malvern, UK) in ultrapure 

water (18.2 MΩ) or in 10% fetal bovine serum.

Experimental logP Measurement

The experimental logP values of all the GNPs were determined using a modified “shaking 

flask” method as described in our previous paper.20 Briefly, GNPs were mixed with octanol-

saturated water and water-saturated octanol. The mixture was shaken for 24 h. Then, the 

mixture was kept still for 3 h to separate the organic and water phases. The GNPs in both 

phases were quantitatively determined by ICP-MS. logP values were then calculated using 

the following equation:

where CGNP(octanol) is the concentration of GNPs in octanol and CGNP(water) is the 

concentration of GNPs in water.

Quantification of HO-1 Level

A549 cells were treated with GNPs (50 µg/mL) for 24 h. Then, the cells were harvested and 

proteins were extracted after cell lysis. HO-1 protein was quantitatively determined by 

Western blot. The band intensity was quantified by ImageJ 1.47v (National Institutes of 

Health, USA).
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Cellular Uptake

GNPs (50 µg/mL) were incubated with A549 or HEK293 cells for 24 h. After washing cells 

three times with phosphate-buffered saline, we detached the cells from the flask by trypsin–

EDTA solution. The cells were counted and then lysed overnight in aqua regia. ICP-MS was 

used to quantify the concentration of GNPs.

Virtual GNP Construction and Structure Optimization

The construction of vGNPs was accomplished by the in-house GNPrep program coded in 

Python 3.5, which takes input information on both the gold core and surface ligands and 

generates individual vGNPs in PDB format. First, according to the input size of the GNP, it 

forms a spherical gold core. In this study, only the gold shell (i.e., Au atoms on the core 

surface) was generated for each vGNP since (1) the atoms in the gold core are stable and 

compact, (2) the conformation of the gold core is unlikely to change, and (3) the simulation 

focuses mostly on the surface chemistry. Then, the surface ligands were connected to the 

shell by randomly attaching their sulfur–sulfur linkers to the surface Au atoms. Originally, 

the surface ligands were set at random angles and directions. To simulate the actual 

conformations of the GNPs under experimental conditions, the structures of the constructed 

vGNPs were refined and optimized under the Amber10:EHT force field,40–42 a function 

provided by Molecular Operating Environment (MOE version 2015.10).42 Since the 

structure optimization using different force fields did not significant affect the descriptor 

calculation and the model development, this structure optimization method was chosen 

arbitrarily.

Virtual GNP Chemical Descriptor Calculation

To simulate the surface chemistry of a GNP, two types of surfaces were identified and 

isolated using MOE:42,43 the interaction surface (also called the van der Waals accessible 

surface) and the electron density surface. From the interaction surface, the total surface area 

of the vGNP and the average surface area per surface ligand were calculated. Furthermore, 

several types of potential vGNP–target interactions were simulated on the interaction 

surface: hydrophobicity, electrostatic features, nonbonded contact preferences, and 

interaction potentials with certain fragmental structures. Then, the resulting interaction 

potentials obtained for each above interaction were quantified. Specifically, since the 

interaction potentials were calculated for each grid point on the vGNP surface, we calculated 

overall interaction potential scores of the vGNP. To calculate the scores, we (1) simply 

averaged the interaction values of all grid points or (2) counted the number of points that are 

above an interaction threshold, which is determined based on all the vGNPs in the modeling 

set. Meanwhile, the electron density surface, which represents the electron density 

distribution in a grid unit cell, was also calculated for the vGNP as described above. The 

surface simulation was initially realized in MOE,42 while the quantification was 

accomplished by in-house codes written in Python 3.5. The quantified features were then 

used as nanodescriptors in the following modeling procedures. For more information about 

the descriptors, please refer to Supplementary Table SIII.

All descriptors were normalized in the range of zero to one. Then, if two descriptors showed 

redundant results in the modeling set (correlation coefficient R2 > 0.99), one of them was 
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removed. The descriptors with low variance (standard deviation <0.01 or less than three 

different values) were removed as well. This effort resulted in a set of 29 descriptors, which 

was used in the modeling process. As shown in Figure 5, these 29 descriptor values of the 

modeling set were shown as a clustered heatmap using the pHeatmap package44 in R version 

3.1.1.

QNAR Modeling

Using the remaining 29 descriptors and the kNN algorithm, we developed QNAR models for 

the cellular uptakes in the A549 cell line and the HEK293 cell line, the HO-1 level in the 

A549 cell line, and the logP values. The kNN method45 uses the bioactivities of each GNP’s 

k nearest neighbors, which have the lowest Euclidean distances between GNPs in 

multidimensional GNP chemical space as its prediction, and employs optimized selection of 

variables to define neighbors. It was developed using our in-house program implementation 

(also available at chembench.mml.unc.edu).46 All models were validated using a 10-fold 

cross-validation within the modeling set. Briefly, the modeling set was randomly divided 

into 10 equivalent subsets. Nine subsets (90% of the modeling set GNPs) were used as the 

training set, as the remaining one served as the test set (10% of the modeling set GNPs). The 

training set was used to develop the QNAR models, and the resulting models were validated 

by predicting the excluded test set. This procedure was repeated 10 times so that each GNP 

was left out in the test set once. Then, seven external GNPs were synthesized and tested for 

the above four bioassays using the same experimental protocols. This experimental 

validation procedure was used to further validate the predictability of the resulting models 

and the whole modeling workflow. Details regarding the kNN modeling and validation 

procedure can be found in our previous publications.34,47

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic workflow of virtual GNP (vGNP) development, predictive modeling, and 

experimental validation.
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Figure 2. 
Gold nanoparticle (GNP) data set. (a) Synthesis of the GNP libraries with a combination of 

surface ligands for each series. (b) Experimental data of (1) cellular uptake by A549 cells; 

(2) cellular uptake by HEK293 cells; (3) HO-1 level in A549 cells; and (4) the partition 

coefficient (logP). The first six series (GNPs 1–29) were designed as dual surface ligand 

GNPs, and the last series (GNPs 30–34) was designed with single surface ligands. Series are 

distinguished by colors. Error bars represent the standard deviations (n = 3).
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Figure 3. 
Simulated surface features of the vGNPs. First column: series 1 (GNPs 1–7); second: 

hydrophobic potentials; third: interaction potential with sodium cation; fourth: interaction 

potential with dry (hydrophobic) probe; fifth: electrostatic surface associated with 

hydrophobic interaction atom types; sixth: nonbonded contact preference with hydrophobic 

ligand atoms.
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Figure 4. 
Principal component analysis of the 41 GNPs based on the 90 chemical descriptors. Dots are 

GNPs in the modeling set, and star points are those in the external validation set.
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Figure 5. 
Heatmap of the chemical descriptors generated for 34 GNPs. Descriptor values were 

normalized between 0 and 1.
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Figure 6. 
QNAR model performance in the 10-fold cross-validation (dots) and external validation 

(stars) results in (a) cellular uptake in A549 cells; (b) cellular uptake in HEK293 cells; (c) 

HO-1 level in A549 cells; and (d) logP.
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Figure 7. 
Computational profile, design, and experimental validation of seven external nanoparticles. 

(a) Computationally designed vGNPs; (b) predicted properties and bioactivities of the 

vGNPs; and (c) experimental validation results.
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