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Abstract

A mathematical model is formulated for diffusive countercurrent exchange of oxygen between 

paired arterioles and venules. A closed form solution of the problem is obtained by linearizing the 

nonlinear oxyhemoglobin dissociation curve at the inlet PO2 in the vessel. The closed form 

solution is compared with the corresponding numerical solution of the nonlinear problem. Under 

normal conditions, longitudinal gradients of venular PO2 are found to be small. Examples are 

presented where the model predicts significant gradients of venular PO2 when the blood flow rate 

in the venule is several times smaller than that in the arteriole.

INTRODUCTION

One of the main functions of the blood is to supply adequate amounts of oxygen (O2) to the 

tissues. Until recently, O2 was believed to be exchanged exclusively at the level of the blood 

capillaries, but a number of investigators have demonstrated experimentally that oxygen 

tension (PO2) and hemoglobin saturation with oxygen (SO2) decrease gradually along the 

arteriolar network [2, 12, 13, 7, 3, 8, 19]. Mathematical models suggest that observed 

longitudinal gradients in oxygen tension (PO2) are qualitatively consistent with a diffusional 

mechanism of O2 transport from arterioles [15, 17]. Therefore, the site of O2 transport may 

not be restricted to capillaries, as was previously assumed, but includes precapillary vessels. 

However, it is not known at present how the oxygen lost from the arterioles is distributed or 

how universal this phenomenon is in different tissues and different physiologic states.

Even less information is available on the participation of venules in O2 exchange, although 

the question of countercurrent exchange has been discussed extensively in the literature [6]. 

There are numerous observations in many tissues that larger arterioles and venules run side 

by side, parallel to each other in countercurrent fashion. These vessels are henceforth termed 

paired. Pittman and Duling [14] and Swain and Pittman [19] observed that O2 may be gained 

by the venular blood as it proceeds from smaller to larger vessels. The question of the 

magnitude of countercurrent exchange has an important implication: if this effect is 

significant, then the oxygen tension (PO2) in the venous blood cannot be considered an 
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accurate measure of either end-capillary or tissue PO2.The assumption that the venous PO2 is 

an indicator of tissue PO2 is commonly made in interpretation of whole organ experiments. 

Another mechanism that would lead to dissociation of the venous and capillary PO2 levels 

has to do with the kinetics of O2-hemoglobin binding [5].

Popel and Gross [15] formulated a mathematical model of O2 diffusion from noncapillary 

vessels to tissue and computed longitudinal PO2 gradients in a simplified vascular network 

using the characteristics of the hamster check pouch microcirculation. Roth and Wade [17] 

presented a compartmental model of organ circulation. In their model several generations of 

vessels are represented by vascular compartments; in addition, there is a tissue compartment 

and a connective tissue compartment. Each vascular compartment can exchange O2 with one 

of the tissue compartments. For the purpose of calculation of exchange coefficients, each 

noncapillary vessel is modeled as a cylinder surrounded by two concentric layers of finite 

thickness representing the vascular wall and a tissue. Piiper et al. [11] presented estimates of 

the effect of countercurrent exchange of oxygen between arterioles and venules using 

essentially a compartmental model. They concluded that the effect should be much smaller 

for O2 than for inert gases, due to the chemical binding of oxygen to hemoglobin.

The aim of the present study is to formulate a model of O2 transport between paired 

arterioles and venules. The model of Popel and Gross [15] is extended, and the O2 fluxes 

between the arterioles, tissue, and venules are calculated. A systematic analysis of 

arteriovenous O2 exchange in physiological situations will be presented elsewhere.

MATHEMATICAL MODEL

Consider a pair of circular parallel unbranched vessels of radii Ra and Rv at a distance H 
apart (Figure 1). The subscripts a and v refer to arteriolar and venular segments, respectively.

The problem of simulating O2 transport in the vicinity of the arteriolar and venular vessels, 

taking into account the specific local geometry and hemodynamics of the capillary bed, does 

not seem to be mathematically tractable at present. Also, the necessary experimental 

information on the capillary geometry in relation to arteriolar and venular vessels is not 

available. Popel and Gross [15] have treated this problem by formulating a 

phenomenological model for the O2 transport around the arteriolar vessel. The formulation 

is based on the following requirements: (a) the model should not include the heterogeneities 

of PO2 at the scale of single capillaries and cells; (b) the model should be concerned with 

“large scale” diffusional processes in the vicinity of sources or sinks of oxygen such as 

arteriolar and venular vessels and the external boundary of the tissue; (c) far from such 

sources or sinks, the model should give an average PO2 level, denoted as P∞, which is solely 

determined by capillary-tissue O2 exchange. The PO2 distribution in the extravascular space 

satisfying the above requirements is governed by the diffusion equation:

(1)
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where P is the oxygen tension in the tissue, lt is the penetration depth, and P∞ is a given 

oxygen tension at “infinity.” We consider the diffusion only in the x-y plane perpendicular to 

the arteriole-venule axes; diffusion parallel to the axes, in the z direction, is neglected. The 

parameter lt characterizes the depth of penetration of oxygen from a “large scale” source or 

sink, e.g., arteriole, venule, or tissue surface; in the model the value of this parameter has to 

be specified. In the absence of the macroscopic oxygen tension gradients, equation (1) yields 

P = P∞; thus P∞ is the mean oxygen tension determined by the capillary-tissue exchange.

Equation (1) is subject to the boundary conditions

(2)

and

(3)

Here Pa and Pv are the PO2’s on the surface of the arteriole and the venule, respectively. We 

ignore the effect of the vascular wall.

The diffusive fluxes of O2 from the arteriole and venule are

(4)

where n is the unit outward normal to the arteriolar or venular surfaces, D is the diffusion 

coefficient, and α is the solubility coefficient of O2 in the tissue. The integrals in (4) are 

taken over the corresponding circuits, Γa and Γv, which are the intersections of the arteriole 

and venule with a plane z = const.

DIFFUSION CONDUCTANCES

Equation (1) and the boundary conditions (2)–(4) are linear; thus, the flux of oxygen from 

the arteriole, Ja, can be expressed as a linear combination of oxygen tensions Pa, Pv, and P∞. 

There is also a constraint that the flux must vanish when all three oxygen tensions are equal 

(Pa = Pv = P∞). From these conditions it follows that flux can be expressed as

(5)

where F1 and F2 are coefficients that depend only on the vascular geometry, (i.e. on Ra, Rv, 

and H) and the penetration depth lt. Similarly, the net flux from the venule, Jv, is
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(6)

where G1 and G2 are geometrical coefficients.

It can be shown that G1 = −F2. Therefore, the second term in Equation (5) represents the 

amount of oxygen transferred from the arteriole to the venule, whereas the first term 

represents the amount transferred from the arteriole to the surrounding tissue less the amount 

transferred to the venule. The two terms in Equation (6) are interpreted accordingly. Hence 

counter-current exchange of oxygen is quantitatively expressed by the terms F2(Pa − Pv) = 

−G1(Pa − Pv) in Equations (5) and (6).

The coefficients F1, F2, G1, and G2 can be determined numerically for each set of 

parameters Ra, Rv, H, and lt. The details of the numerical procedure are given in the 

Appendix.

OXYGEN TRANSPORT IN THE BLOOD

Oxygen is transported in the blood by convective motion of red blood cells and plasma in 

both longitudinal and radial directions and by molecular diffusion. It is known that at higher 

rates of shear the transport can be significantly augmented, the effect being attributed to 

pseudorandom radial motion of red blood cells [1, 20]. Recently, Ellsworth and Pittman [4] 

measured oxygen hemoglobin saturation profiles in arterioles and venules and found that the 

profiles in some cases are nonuniform and asymmetric; the sources of nonuniformity or 

asymmetry have not been identified, but upstream vascular bifurcations and noncircular 

vessel shapes were implicated. To describe these effects, a careful analysis of O2 distribution 

in the vascular lumen is necessary. For the purpose of the present analysis we introduce 

“mixing cup” PO2 in the blood, Pb; i.e., we assume that O2 flow through the vessel cross 

section is given by the expression

where Q is the volumetric blood flow rate, αb is the oxygen solubility coefficient in blood, C 
is the oxygen-carrying capacity of the blood, and S is the fractional saturation of hemoglobin 

with O2. It is assumed that the chemical reaction between hemoglobin and oxygen is in 

equilibrium, which yields the relationship S(Pb).

Oxygen balance in a vessel can be expressed in the form

(7)

where J is the O2 flux from the vessel per unit length.
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Using Equations (5), (6), and (7), the O2 transport in a paired arteriole and venule is given 

by the following simultaneous differential equations:

(8)

(9)

where the variables with subscripts a and v, respectively, pertain to the arteriolar and venular 

vessels. Φ is proportional to the slope of the oxyhemoglobin dissociation curve (ODC):

(10)

The equation (8) and (9) are subject to the boundary conditions, which are specified at the 

respective inlets of the vessels:

(11)

(12)

where L is the length of each vessel.

ANALYSIS

The saturation function for the ODC is nonlinear. Thus, Equations (8) and (9) with the 

boundary conditions (11)–(12) form a nonlinear system of differential equations. This 

system can be solved numerically. In the analysis of O2 transport in arterioles [15], it was 

found that the PO2 falls almost linearly in a given vessel. The experimental studies [14, 19] 

suggest that there are no large variations in the O2 saturation in a single vessel. Hence we 

obtain an analytical solution of the problem by approximating the slope of the ODC along 

the length of the vessel as that determined at the entry point. Thus, the variables Φ for the 

arteriolar and venular vessels are given by

(13)

and
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(14)

Any form of the equation can be used to represent the ODC in the present model. We use the 

Hill equation:

(15)

where P50 is the partial pressure of O2 at 50% saturation and n is the Hill parameter. Note 

that the Hill equation is accurate in the range of hemoglobin saturation S = 0.2–0.8 and is 

not valid at low values of PO2.

Introducing dimensionless variables z* = z/lt, L* = L/lt, and using (13) and (14), we recast 

Equations (8) and (9):

(16)

and

(17)

in which

(18)

The boundary condition (12) becomes

(19)

Equations (16) and (17) are linear. The following two cases are considered:
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Case 1: No countercurrent exchange

When there is no countercurrent exchange between the paired arteriole and venule, F2 = 0 

and G1 = 0. From (18), f2 = 0 and g1 = 0. In this case, the solution of Equations (16) and 

(17) with the boundary conditions (11) and (19) is

(20)

Case 2: With countercurrent exchange

The solution of (16) and (17) with the boundary conditions (11) and (19) is given by

(21)

where

(22)

in which

(23)

It can be easily verified that the solution (21) with countercurrent exchange tends toward that 

without countercurrent exchange when f2 = 0 and g1 = 0.

PARAMETERS OF THE MODEL

For the computation of PO2 in the blood flowing through the arteriole and venule, we have 

chosen the parameters corresponding to the hamster cheek pouch microcirculation: arteriolar 

diameter Da = 60 μm and length L = 0.75 cm [9]; arteriolar velocity v = 0.25 cm/s [18]. The 

penetration depth lt is 100 μm, the same as was assumed in the previous theoretical study on 
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O2 transport in the arteriolar networks [15]. The values of Hill’s parameters are P50 = 26.0 

mmHg and n = 2.55, and the diffusion and solubility coefficients D = 1.5 × 10−5 cm2/s and 

α = αb ≈ 3 × 10−5 (cm3 O2)/cm3 mmHg [15]. Unless otherwise specified, the following 

values of the parameters are assumed: C = 0.2 (cm3 O2)/(cm3 blood), P∞ = 8 mmHg, H = 25 

μm, Qv = Qa, , and Dv = 90 μm.

RESULTS AND DISCUSSION

The coefficients F1, F2, G1 and G2 depend only on the geometrical factors and the 

penetration depth. Once these coefficients are known, the diffusive flux from the arteriole 

and venule can be computed from the relations (5) and (6).

First we show the results of numerical solution, and then we compare them with the 

analytical solution. In Table 1 the diffusion conductance coefficients are presented for 

different values of vessel diameters; the coefficients decrease as the vessel diameter 

decreases. In Table 2 the diffusion conductance coefficients are presented for different 

values of the distance H between the arteriole and venule. For the computation, the 

diameters of the paired arteriole and venule are chosen as Da = 60 μm and Dv = 90 μm. The 

coefficients F2 and G1, which determine the countercurrent exchange, increase as the 

distance between the paired vessels decreases. If H = 1000 μm, there is no diffusional 

interaction between the arteriole and venule, and the venules do not affect the transport of 

O2 from the arterioles to the surrounding tissue. Popel and Gross [15] have derived an 

expression for the diffusion conductance for the arteriole without countercurrent exchange, 

based on the phenomenological model (1). The diffusion conductances computed from the 

present model for large values of H coincide, within the 1% accuracy of our numerical 

solution, with those obtained from the model of Popel and Gross [15].

In the analytical calculations, we have approximated the slope of the oxyhemoglobin 

dissociation curve [Equation (10)] by the value determined at the inlet of the vessel. The 

equations then become linear, which makes possible a closed form analytical solution (21). 

Equations (8) and (9) with nonlinear slope have also been solved numerically. Figure 2 

shows the PO2 in an arteriolar-venular pair computed from the analytical solution (21) and 

also numerically using the nonlinear dissociation curve. There is reasonably good agreement 

between the solutions except for a discrepancy toward the outlet in the arteriole. This 

difference reflects the change in the slope of the oxygen dissociation curve in the range of 

oxygen tensions 60 to 49 mmHg. The error introduced by the linearization of the ODC may 

become substantial when the solution is applied to vascular networks, where the error from 

individual vascular segments can accumulate. In this case, the numerical solution should be 

used.

Table 3 shows the effect of the distance H between the paired arteriole and venule on their 

outlet PO2. The outlet PO2 in the venule increases with decreasing distance H. At H = 1000 

μm, PO2 corresponds to that of no countercurrent exchange. The diffusion conductance 

coefficients F2 and G1, proportional to the diffusive flux from the arteriole to the venule, 

increase significantly with decreasing H (Table 2), but not enough to significantly affect the 

venular PO2 (Table 3). Because the change in venular PO2 from inlet to outlet is so small, it 
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appears that there is no countercurrent exchange. This may not be the case, however. To 

estimate the contribution of counter-current exchange, we average oxygen fluxes (5) and (6) 

over the length of the vessel:

(24)

(25)

An overbar denotes spatial averaging. The longitudinal distributions of arteriolar and venular 

PO2are nearly linear within a vessel (Figure 2); thus, we can replace average values Pa and 

Pv with the corresponding arithmetic averages of inlet and outlet values. For example, 

consider the case H = 50 μm. From Table 3 we obtain p̄a = 54.3 mmHg, p̄v = 20.0 mmHg. 

Taking the values of the diffusion conductance coefficients from Table 2, we obtain for the 

fluxes (24) and (25)

Thus about 27% of the total oxygen flux from the arteriole (53.2/200.4) is transferred to the 

venule. The total flux from the venule is approximately zero, since the amount received from 

the arteriole (−53.2) is nearly balanced by the amount transferred to the surrounding tissue 

(52.0). For H = 25 μm, according to Table 3, p̄a = 53.7 mmHg and p̄v = 20.2 mmHg; hence

In this case, 41% of the total flux from the arteriole is transferred to the venule, and the 

amount received by the venule (−89.8) is larger than the amount transferred to the 

surrounding tissue (49.9); as a result, the venule is gaining oxygen. In the case of a larger 

separation between the arteriole and venule, H = 100 μm, the values from Table 2 and 3 

yield p̄a = 54.6 mmHg, p̄v = 19.9 mmHg, and

The flux from the arteriole into the venule (−25.3) is smaller than the flux from the venule to 

the surrounding tissue; thus there is a net loss of oxygen from the venule.

From this analysis we conclude that venular PO2 can remain constant while a substantial 

amount of oxygen is received from the paired arteriole, i.e. in the presence of countercurrent 

exchange, if the venule loses an equal amount of oxygen to the surrounding tissue. Thus, the 

magnitude of arteriovenular countercurrent exchange should be judged not by the venular 
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longitudinal PO2 profile, but by the relative contribution of the four terms in the relationships 

(24) and (25).

It should also be kept in mind that due to nonlinearity of the oxyhemoglobin dissociation 

curve (15), equal changes in arteriolar and venular PO2 correspond to unequal changes in 

hemoglobin saturation; e.g., a change ΔPO2 = 1 mmHg at PO2 = 45 mmHg corresponds to 

ΔSO2 = 0.9%, whereas at PO2 = 20 mmHg it corresponds to ΔSO2 =1.5%. Thus, even small 

changes in venular PO2 may correspond to substantial changes in hemoglobin saturation.

Table 4 shows that the PO2 at the venular outlet increases as the blood flow rate in the venule 

decreases. The venular SO2 rises by 7.5% when its blood flow rate is reduced to 10% of the 

arteriolar blood flow rate. The ratio of venular to arteriolar diameter does not have 

appreciable effect on venular PO2 (Table 5). The difference in the PO2 between the outlet and 

inlet of the venule decreases as the inlet venular PO2 increases (Table 6). Also, Table 7 

shows that the outlet venular PO2 decreases as the inlet PO2 in the arteriole decreases.

The following example shows that under certain conditions venular PO2 can significantly 

increase due to countercurrent exchange. We take Da = 60 μm, Dv = 90 μm, L = 0.75 cm, C 
= 0.1 (cm3 O2)/(cm3 blood) (a low value of C can be a result of anemia), v = 0.25 cm/s, Qv = 

Qa/10, P∞ = 12 mmHg, and H = 10 μm. For these parameters, the venous PO2 increases 

from 20 mmHg at the inlet to 30 mmHg at the outlet (Figure 3). The venous O2 saturation 

increases from 33.9 to 59.2%, i.e., by about 25.3%, as a result of countercurrent exchange.

CONCLUSIONS

We have formulated a mathematical model for the O2 transport between a paired arteriole 

and venule. To obtain an analytical solution to the problem, we evaluated the nonlinear O2 

dissociation curve at the inlet of the vessel. Using this approximation, we were able to obtain 

the solution in closed form. Reasonably good agreement is found between the exact solution 

of the linearized system and the numerical solution of the corresponding nonlinear system, 

but the error can accumulate if the solution is applied to vascular networks. We have found 

that the diffusive countercurrent exchange can contribute significantly to the total flux of 

oxygen from the venule, even though the effect on venular PO2 may be small. However, 

there are cases where the model predicts significant rise of venular PO2.

It is also possible that oxygen that diffuses from arterioles is carried to the venules 

convectively by the capillaries. This mechanism is not included in the present model.
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APPENDIX. COMPUTATION OF THE DIFFUSION CONDUCTANCE 

COEFFICIENTS

Consider a plane z = const perpendicular to the vessel axes. In this plane we introduce the 

bipolar coordinates (ξ, θ) [10]:
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(A1)

with scale factors

(A2)

where (± a, 0) are the coordinates of the foci which will be expressed below.

The radii of the vessels are expressed as

(A3)

and the coordinates of their centers (vessel axes) are

(A4)

Notice that ξa > 0 and ξv < 0.

The distance R between the centers of the vessels is

(A5)

From (A3), (A4), and (A5), the focus coordinate a is expressed as:

(A6)

The transformation (Al) maps the region outside the circles onto a rectangular region in the 

ξ-θ plane. The boundaries Γa and Γv are mapped to lines ξ = ξa and ξ = ξv; θ varies from 0 

to 2π.
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Equation (1) and the boundary conditions (2) become

(A7)

(A8)

We introduce the periodic boundary condition for θ:

(A9)

Using the transformed coordinates, we obtain

(A10)

(A11)

Equation (A7) with boundary conditions (A8) and (A9) is solved numerically by the finite 

difference method. The second derivatives are approximated by the central difference 

operator with second order accuracy. The resulting system of algebraic equations is solved 

by the successive overrelaxation method [16].

The derivatives at the boundary are computed from three points to retain the second order 

accuracy. Finally, the integrals (A10) and (A11) are computed numerically using Simpson’s 

rule [16].

Once  and  are computed, the parameters F1 and F2 are calculated as

(A12)

and
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(A13)

G1 and G2 are obtained in a similar way.
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Fig. 1. 
Schematic diagram of the model.
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Fig. 2. 
Axial PO2 distribution in an arteriolar (upper curve) and a venular (lower curve) vessel. 

Analytical solution (solid curve), and numerical solutions for arteriole (□) and venule (◇).

SHARAN and POPEL Page 16

Math Biosci. Author manuscript; available in PMC 2018 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Axial PO2 distribution in arteriolar (□) and venular (+) vessels. The numbers at the end 

points of the curve are the values of the O2 saturation. Low flow in the venule, Qv = Qa/10.
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TABLE 2

Diffusion Conductance Coefficients for the Paired Arteriole and Venule with Variation of the Distance H 

between Thema

H (μm) F1 F2 G1 G2

25 2.89 2.68 −2.68 4.09

50 3.18 1.55 −1.55 4.33

100 3.59 0.73 −0.73 4.50

150 3.85 0.38 −0.38 4.94

250 4.08 0.12 −0.12 5.17

500 4.19 0.74 ×10−2 −0.74×10−2 5.28

1000 4.21 0.39×10−4 −0.39×10−4 5.30

2000 4.21 0.2×10−4 −0.2×10−4 5.30

a
Da = 60 μm, Dv = 90 μm, lt = 100 μm.
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TABLE 3

Effect of the distance H between the Paired Arteriole and Venule on Their Outlet PO2
a

H (μm)

Outlet PO2 (mmHg)

Arteriole Venule

1000 48.9 19.5

250 49.0 19.5

100 49.1 19.7

50 48.6 20.0

25 47.4 20.3

10 44.5 20.9

a
Da = 60 μm, Dv = 90 μm, Qv = Qa, . H = 1000 μm corresponds to no countercurrent exchange.
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TABLE 4

PO2 at the Outlet of the Paired Arteriole and Venule with Variation of the Ratio of Blood Flow Rates (Qv/Qa)a

Qv/Qa

Outlet PO2 (mmHg)

Arteriole Venule

1 417.4 20.3

0.5 47.4 20.6

0.25 47.5 21.2

0.1 47.5 22.7

a
H = 25 μm, .
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TABLE 5

PO2 at the Outlet of the Paired Arteriole and Venule with Variation of the Ratio of Their Diameters, Dv/Da
a

Dv/Da

Outlet PO2 (mmHg)

Arteriole Venule

1 47.5 20.4

1.2 47.5 20.4

1.5 47.4 20.3

a
H = 25 μm, Da = 60 μm.
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TABLE 6

Effect of Inlet Venular PO2 on the Outlet PO2 in the Paired Arteriole and Venulea

Outlet PO2 (mmHg)

Arteriole Venule

30 48.7 29.7

20 47.4 20.3

15 46.8 15.6

a
 .
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TABLE 7

Effect of Inlet Arteriolar PO2 on the Outlet PO2 in the Paired Arteriole and Venulea

Outlet PO2 (mmHg)

Arteriole Venule

70 47.8 20.4

60 47.4 20.3

50 43.7 20.2

a
 .
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