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Abstract

Apolipoprotein CI (ApoCI) belongs to the Apolipoprotein superfamily, members of which are

involved in lipid transport, uptake and homeostasis. Excessive ApoCI has been implicated

in atherosclerosis and Alzheimer’s disease in humans. In this study we report the isolation

of Xenopus laevis apoCI and describe the expression pattern of this gene during early devel-

opment, using reverse transcription polymerase chain reaction and whole mount in situ

hybridization. Xenopus apoCI is enriched in the dorsal ectoderm during gastrulation, and is

subsequently expressed in sensory placodes, neural tube and cranial neural crest. These

data suggest as yet uncharacterized roles for ApoCI during early vertebrate embryogenesis.

Introduction

Apolipoproteins are protein constituents that bind to lipids via their amphipathic α-helical

domains, forming lipoproteins of varying size and density [1]. They function in lipid metabo-

lism by facilitating the transport, redistribution, and uptake of lipids between different tissues

and by acting as cofactors for enzymes involved in lipid metabolism. The major apolipopro-

teins include apoAI, apoAII, apoAIV, apoB, apoCI, apoCII, apoCIII and apoE.

Human APOCI, at 6.6KDa, is the smallest member of the APOC subfamily; it is synthesized

as a mature 57-residue peptide after cleavage of an N-terminal 26 amino acid signal peptide

[2]. In circulation, APOCI is found as a surface component of High Density Lipoproteins

(HDLs), Very Low Density Lipoproteins (VLDLs), and chylomicrons, and is exchanged

between these forms during lipid metabolism [3].

APOCI is best known for its role in lipoprotein metabolism, primarily affecting intravascu-

lar turnover of triglyceride-rich lipoproteins (TRLs) that transport endogenous fat from the

liver (VLDLs) and dietary fat from the intestine (chylomicrons). ApoCI inhibits hepatic rem-

nant clearance by preventing ApoE-mediated binding and uptake of VLDLs by LDL receptor

Related Protein (LRP), VLDL receptor (VLDLr) and LDL receptor (LDLr), and by inhibition

of lipoprotein lipase activity [4–7]. Consistently, both endogenous mouse ApoCI expression in

an ApoE deficient background and overexpression of human APOCI in either a wild type or an

ApoE deficient background can lead to hypertriglyceridemia and atherosclerosis in mice [5, 8,
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9]. Moreover, in humans, high APOC1 content of TRLs is considered a risk factor for early

atherosclerosis [10].

Human APOCI is strongly expressed in the liver, and is also expressed in the lung, skin,

spleen, adipose tissue, and brain [11]. In the brain, a polymorphism in the APOCI allele that

leads to an increase in APOCI expression has been implicated as a risk factor in the pathogene-

sis of Alzheimer’s disease (AD) [12–14]; consistently, expression of human APOCI in mice can

lead to learning and memory impairment, perhaps as a result of alterations in brain lipid

metabolism or by interfering with ApoE binding to β-amyloid peptides [12, 13, 15, 16].

Despite our understanding of apolipoprotein function in lipid homeostasis and disease, the

role of this protein family during early development has not been extensively addressed. Here,

we describe the cloning and expression analysis of apoCI in embryos of the frog Xenopus laevis;
our studies suggest important and perhaps conserved roles for ApoCI during gastrulation and

subsequent patterning of the vertebrate ectoderm.

Materials and methods

All procedures were approved by the Queens College IACUC committee,

protocol #160

1. Description of procedures. The animal system used for these studies is the African

clawed frog, Xenopus laevis. Adult female and male frogs (over 1 year old) were used to produce

embryos for the proposed experiments. I maintain a colony of about 135 female and 35 male

frogs; veterinary care is provided by the Queens College Vivarium Facility, under the director-

ship of Marie Birne. The colony is inspected and cared for on a daily basis. To generate

embryos, female frogs were injected with 600–800 units of human chorionic gonadotropin

(HCG). 12 hours after injection, female frogs were gently squeezed to express eggs from the clo-

aca. The females were allowed to rest for 3–4 months between each spawning. Eggs were fertil-

ized in vitro; to obtain sperm, male frogs were anesthetized with 3-aminobenzoic acid ethyl

ester. A midline incision was made and testes were removed. While under anesthetic the male

was sacrificed by decapitation, double pithed, and disposed of according to the guidelines of the

American Veterinary Medical Association. The testes are viable for approximately two weeks at

4˚C; thus, testes from a single male were enough to fertilize eggs from about 20 females.

The research described here focuses on the study of early Xenopus laevis embryos, which

were derived via in vitro fertilization and examined up to early tadpole stages (within approxi-

mately 48 hours after fertilization). To induce egg-laying, female frogs were primed by subcu-

taneous injection of 800uL recombinant human chorionic gonadotropin. 12 hours after

injection, eggs were extruded by gently squeezing the females (this procedure is painless, and

mimics the action of the male of the species during mating). Eggs were harvested in glass Petri

dishes and fertilized by application of sperm from minced testes of Xenopus males—synchro-

nous fertilization, required for these studies, can only be achieved via in vitro fertilization,

necessitating the killing of males for testes removal. Males were euthanized prior to testes

extraction; euthanasia was performed by decapitation following anesthesia, via tricaine metha-

nesulfonate (TMS) immersion. For these studies, we sacrificed approximately 1 male frog

every other week (sperm/testis culture can last up to 14 days at 4 degrees Celsius). Embryos

were euthanized by immersion in an anesthetic overdose of TMS.

2. Justification for use of animals. We utilized biochemical and molecular biological (“in

vitro”) approaches in these studies; however, elucidation of the dynamic processes underlying

early development also require an understanding of gene and cell regulation in both space and

time, a resolution not generally provided by tissue culture experiments. We therefore must

also study gene and protein function in the context of the intact, developing organism.
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Embryos of the frog Xenopus laevis have a number of distinct advantages over other verte-

brate developmental model systems. First, the source of biological material is abundant, since

it is possible to generate a large number of embryos (thousands per day) that can grow in a

simple buffered solution. Second, fertilization and embryonic growth in Xenopus is external,

greatly facilitating the analysis of early developmental events. Third, early stage Xenopus
embryos are large, and thus well-suited for microsurgical and microinjection techniques.

Finally, and perhaps most important, a large body of experimental embryological data has

been gathered from this model organism; in fact, much of our current understanding of early

vertebrate embryology comes from the study of the amphibian embryo.

3. Procedures to limit discomfort, distress, pain, and injury. Some of the embryological

studies described here involve eggs and embryos at blastula and gastrula stages of develop-

ment, prior to formation of the nervous system; thus, these embryos are not in discomfort,

stress, or pain. For those experiments that required the use of older embryos, animals were

anesthetized in a solution of 3-aminobenzoic acid ethyl ester prior to fixation. Generating eggs

is not a painful process for the female: the gentle squeezing required to release the eggs actually

mimics the arm movements of the male during natural mating. The males required for this

study were anesthetized with 3-aminobenzoic acid ethyl ester prior to sacrifice. Minimizing

discomfort and stress for the colony is a requirement for generating healthy embryos; our frog

facility has state of the art equipment for regulating water quality, pH, aeration, light, and tem-

perature, in order to maintain the colony under optimal conditions.

4. Method of euthanasia. The only adult animals sacrificed for this research were approx-

imately one male frog per week. Additionally, tadpole stage embryos were sacrificed for some

of these studies. As described above, sacrifices were performed under complete anesthetic con-

ditions so as to minimize pain, using methods consistent with the recommendations of the

American Veterinary Medical Association (AVMA) Guidelines for the Euthanasia of Animals.

Cloning and isolation of Xenopus apoCI
Xenopus Apolipoprotein CI was isolated as a gene upregulated in ectodermal cells expressing an

Engrailed repressor-HNF3β fusion protein in stage 11 Xenopus embryos. Library construction

and screening was performed using a modified protocol originally described in [17]. Full-length

Apolipoprotein CI was subsequently cloned from a λZapII Stage 28 head library [18] using the fol-

lowing primers: 3-2U: 5’-GATACAAAGTGACTCATC; 3-2D: 5’-GGCTCACTGTTGTGCAAA.

RNA preparation and RT-PCR

Xenopus laevis embryos were staged according to [19] and harvested at appropriate stages

according to morphological criteria. Total RNA was prepared using RNA Bee RNA isolation

reagent from Tel-Test Inc. RT-PCR was performed as described [20]. Primers used in this

study are as follows:

ODC-U: 5’-AATGGATTTCAGAGACCA
ODC-D: 5’-CCAAGGCTAAAGTTGCAG
Chordin-U: 5’-CAGTCAGATGGAGCAGGATC
Chordin-D: 5’-AGTCCCATTGCCCGAGTTGC
3-2(apoCI)-U: 5’-GATACAAAGTGACTCATC
3-2(apoCI)-D: 5’-GGCTCACTGTTGTGCAAA

In situ hybridization

Whole mount in situ hybridization was carried out using standard protocols [21]. For prepara-

tion of antisense apoCI RNA probe, pBluescript SK+ 3–2 plasmid vector was linearized with

Xenopus Apolipoprotein CI expression
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Not I and transcribed in vitro with T7 RNA polymerase. For double in situ hybridization,

probes were synthesized using digoxygenin or fluorescein RNA labeling mix (Roche) and

detected with corresponding antibodies (Roche). First antibody reactions were quenched

using 0.1M glycine-HCl, pH2.2 [22]. Magenta phosphate (Sigma), BCIP (Roche) and BM Pur-

ple (Roche) were used for chromogenic reactions. Other probes used in this study were Otx-A,

Pax-6 and Slug [23, 24]. 40 μM vibratome sections were obtained by embedding 4% parafor-

maldehyde-fixed embryos in 20% type B Bovine Gelatin (Sigma).

Results

Differential screening was used to identify transcripts enriched in dorsal tissues of gastrula

stage Xenopus laevis embryos. One transcript isolated from this screen, clone 3–2, shares

highest homology with members of the Apolipoprotein family from higher vertebrates. The

predicted translation product of this cDNA (Fig 1A) is most closely related to human Apolipo-

protein CI (hAPOCI; 38%). 3–2 shares significantly less sequence identity with human

Fig 1. Sequence analysis of Xenopus apoCI. (A) Nucleotide sequence and deduced amino acid sequence of Xenopus apoCI (GenBank accession number:

GU562893). Predicted signal sequence of Xenopus ApoCI spans residues 1–20. (B) Phylogenetic tree depicting evolutionary relationship of human

Apolipoproteins AI, AII, AIV, B, CI, CII, CIII and E to Xenopus Apolipoprotein CI. The tree was constructed using the UPGMA distance matrix method from

CLC Bio Workbench. Numbers at nodes indicate branch length.

https://doi.org/10.1371/journal.pone.0191470.g001
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APOC2 (20%), APOC3 (17%) or other human apolipoproteins (Fig 1B). Mammalian Apolipo-

protein CI is a secreted molecule that contains a twenty-six amino acid N-terminal signal

sequence that is co-translationally cleaved to yield a mature peptide [2]; similarly, the first

twenty residues of clone 3–2 are predicted to encode a signal peptide. The gene encoding the

3–2 transcript maps to Xenopus laevis chromosome 7L (XLA7L) (X. laevis 9.2 on Jbrowse);

there is no apoCI-like gene on XLA7S, suggesting that there is no second identifiable apoCI-
like allogene in the Xenopus laevis genome. Taken together, our data suggest that 3–2 encodes

the Xenopus homolog of ApoCI.

The temporal expression of Xenopus apoC1 was analyzed by reverse transcription polymer-

ase chain reaction (RT-PCR) analysis of RNA extracted at various embryonic stages, from

cleavage through early tadpole (Fig 2). apoCI expression is not observed at cleavage stage 4,

suggesting that there is no maternal expression of this gene. apoCI expression is first detected

at low levels at embryonic stage 8, which coincides with the midblastula transition, the start of

zygotic gene expression [25]. Higher levels of apoCI expression are seen at stage 10, the onset

of gastrulation, increasing progressively through stage 32.

Whole mount in situ hybridization analysis with an antisense probe for apoCI revealed an

interesting spatially-restricted expression pattern in Xenopus embryos beginning at early gas-

trula stages. apoCI expression becomes apparent at stage 10, when it is expressed in an area

bordering the dorsal lip of the involuting marginal zone that extends animally to include the

dorsal ectoderm, a region that contributes to the central nervous system later in development

(Fig 3A and 3A’) [26, 27]. The dorsal localization of apoCI becomes more evident with

increased expression levels as gastrulation progresses (Fig 3B and 3B’).

At stage 13, apoCI expression is seen in a crescent-like pattern in the anterior neural plate,

in the region of the prospective lens and trigeminal placodes (Fig 3C and 3C’) [28]. As neurula-

tion proceeds, expression also becomes visible in the dorsal midline (Fig 3D and 3D’). Anterior

apoCI expression then expands laterally to include expression in the neural crest (Fig 3E). In

Fig 2. Temporal expression of apoCI mRNA. RT-PCR of RNA isolated from whole embryos between stage 4 and stage 32. Chordin serves as a staging

control and Ornithine decarboxylase (ODC) as a control for input RNA levels.

https://doi.org/10.1371/journal.pone.0191470.g002

Xenopus Apolipoprotein CI expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0191470 January 18, 2018 5 / 9

https://doi.org/10.1371/journal.pone.0191470.g002
https://doi.org/10.1371/journal.pone.0191470


Fig 3. Spatial expression of apoCI mRNA. Vegetal (A, B) and lateral (A’, B’) views of stage 10 (A, A’) and stage 11 (B, B’)

embryos, respectively; apoCI transcript is localized to the dorsal ectoderm. Dotted lines in A, A’ mark the dorsal blastopore

lip and dotted lines in B, B’ indicate the blastopore. Dorsal is to left in A, A’, B; dorsal is at 10 o’clock in B’. (C, D) Anterior

views of apoCI expression in stage 13 and stage 15 embryos, respectively (dorsal to the top). Dotted line in D marks the pan-

placodal primordium. (C’, D’) Dorsal views of embryos in C and D, respectively; anterior is down. (E) Anterior view of a

stage 16 embryo; the anterior crescent of apoCI expression has expanded laterally. (F-L) Dorsoanterior views of stage 15

Xenopus Apolipoprotein CI expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0191470 January 18, 2018 6 / 9

https://doi.org/10.1371/journal.pone.0191470


situ hybridization using probes of both apoCI (Fig 3F) and the neural crest marker slug (Fig 3G)

reveals overlap of apoCI with the anteriormost region of slug expression marking the cranial

neural crest (Fig 3H). Anterior expression of apoCI at neurula stage flanks the expression of lens

marker pax6 (see Fig 3F, 3I and 3J) but shows overlap with the more posterior expression

domain of forebrain marker otxA (see Fig 3F, 3K and 3L). After neural tube closure, expression

of apoCI is seen in anterior neural tissue and in the cranial neural crest, including the region

surrounding the developing eye; expression of apoCI is excluded from both the cement gland

and the adenohypophyseal stomodeal anlage (Fig 3M)[29]. Transverse sections of early neurula

embryos reveal that transient midline expression of apoCI is localized to the dorsal neural tube

(Fig 3N and 3O). At the late tailbud stage, expression is visible surrounding the lens and in the

olfactory placode, the trigeminal nerve, and the tailfin (Fig 3P). Diffuse apoCI expression is

observed throughout the anterior endoderm at tadpole stages, with strong expression in the

liver primordium (Fig 3Q). Dorsal and ventral tailfin expression increases markedly at tadpole

stages: apoCI expression is observed at the distal margin of the fin, and at the border between

the inner fin and outer fin where the latter structure is present; apoCI expression is also

observed in scattered cells in both the dorsal and ventral outer fin (Fig 3Q and data not shown).

Discussion

This work describes the identification and spatiotemporal expression of apoCI during early

vertebrate embryogenesis. At gastrula stages, Xenopus apoCI expression is enriched in the dor-

sal ectoderm. During neurulation, apoCI is strongly expressed in the placodal primordium, the

cranial neural crest and also the developing spinal cord. At tadpole stages expression is also

seen in the anterior ventral endoderm, in the region of the presumptive liver, consistent with

the strong expression of ApoCI in human and mouse liver.

The highly localized expression of Xenopus apoCI suggests a novel role for this factor in

early neuroectodermal and/or cranial development, perhaps independent of its known role in

lipid homeostasis. APOCI expression has been detected in human adult brain tissue, but analy-

sis of localized expression is unavailable. In the Orange-spotted grouper, apoCI is also promi-

nently expressed in the brain 7 days after hatching [30]. These studies suggest that ApoCI also

functions during teleost and/or mammalian neurodevelopment.

Our studies do not directly address the mechanisms by which ApoCI may regulate steps in

early development. The known functions of ApoCI in the transport of lipoproteins and modu-

lation of binding to lipoprotein receptors raises the possibility that ApoCI may be involved in

the modulation of lipid bound morphogens or lipoprotein receptors that are involved in early

developmental signaling pathways, including those that mediate differentiation and/or pat-

terning of the neurectoderm and neural border fates [4].

Supporting information

S1 Fig. Spatial expression of apoCI mRNA. Anterior view of stage 15 embryo; extended color

reaction shown, for comparison with Fig 3F.

(TIFF)

embryos; anterior is down and dorsal is to the top. (F) apoCI expression. (G) slug expression. (H) apoCI (purple) and slug
(light blue) coexpression; arrows indicate region of overlap (cranial neural crest). (I) pax6 expression. (J) apoCI (purple) and

pax6 (light blue) coexpression. (K) otxA expression. (L) apoCI (purple) and otxA (light blue) coexpression. (M, N) Anterior

(M, dorsal is to the top) and dorsal (N, anterior is down) views showing apoCI expression in a stage 21 embryo. (O)

Transverse section revealing expression of apoCI in the dorsal neural tube at stage 22; star indicates the neural tube. (P, Q)

Lateral views of apoCI expression in stage 27 and stage 33 embryos, respectively; anterior is to the left. Arrow in Q marks

liver primordium. No signal was detected with an apoCI sense strand probe (data not shown).

https://doi.org/10.1371/journal.pone.0191470.g003
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