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Abstract

Purpose of review—Cardiometabolic diseases increasingly afflict our aging, dysmetabolic 

citizenry. Complex signals regulating low density lipoprotein receptor-related protein (LRP) and 

frizzled protein family members – the plasma membrane receptors for the cadre of Wnt 

polypeptide morphogens – contribute to the control of cardiovascular homeostasis.

Recent findings—Both canonical (β-catenin-dependent) and noncanonical (β-catenin-

independent) Wnt signaling programs control vascular smooth muscle cell (VSM) phenotypic 

modulation in cardiometabolic disease. LRP6 limits VSM proliferation, reduces arteriosclerotic 

transcriptional reprogramming, and preserves insulin sensitivity while LRP5 restrains foam cell 

formation. Adipose, skeletal muscle, macrophages and VSM have emerged as important sources 

of circulating Wnt ligands that are dynamically regulated during the prediabetes-diabetes 

transition with cardiometabolic consequences. Platelets release Dkk1, an LRP5/LRP6 inhibitor 

that induces endothelial inflammation and the prosclerotic endothelial-mesenchymal transition. By 

contrast, inhibitory secreted frizzled-related proteins shape the Wnt signaling milieu to limit 

myocardial inflammation with ischemia-reperfusion injury. VSM sclerostin, an inhibitor of 

canonical Wnt signaling in bone, restrains remodeling that predisposes to aneurysm formation, 

and is down-regulated in aneurysmal vessels by epigenetic methylation.

Summary—Components of the Wnt signaling cascade represent novel targets for 

pharmacological intervention in cardiometabolic disease. Conversely, strategies targeting the Wnt 

signaling cascade for other therapeutic purposes will have cardiovascular consequences that must 

be delineated to establish clinically useful pharmacokinetic – pharmacodynamic relationships.
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Introduction

1.0. Wnt signaling and lipoprotein receptor-related proteins: An overview

1.1. Lipoprotein receptor-related receptors, Wnt signaling and molecular 
genetics of cardiometabolic disease—Lipoprotein receptors facilitate diverse 

signaling and transport systems well beyond their namesake. Lipoprotein levels and ratios 

were identified as key predictors of cardiovascular disease as early as the 1950s, but it was 

unknown how these lipoproteins were regulated to convey cardiometabolic risk [1]. Early 

clues came from patients with familial hypercholesterolemia (FH), who exhibited early 

coronary atherosclerosis and elevated serum LDL cholesterol regardless of diet [2]. While 

normal fibroblasts bound and internalized LDL, shutting off cholesterol synthesis within the 

cell, fibroblasts isolated from FH homozygotes neither bound nor internalized LDL, and did 

not reduce cholesterol synthesis [3]. Elucidating the molecular genetics of FH in 

cardiometabolic disease revealed the fundamentals of receptor-mediated endocytosis [4].

Since the early studies of the LDL receptor (LDLR), many other related receptors that bind 

lipoproteins have been identified – and once again, their detailed study is yielding 

fundamental insights[5]. While investigation initially focused upon cholesterol transport, the 

roles of the LDL receptor-related proteins in embryonic development, Wnt signaling, and 

adult homeostasis have increasingly occupied centre stage. Low density lipoprotein receptor-

related proteins (LRPs) are a group of transmembrane receptors involved in apolipoprotein 

binding, Wnt signaling, and human diseases [6, 7]. LRP - 5 and - 6 (LRP5 and LRP6) are 

two such receptors with specific patient mutations leading to metabolic dysregulation, 

elevated serum LDL and triglycerides (TGs), atherosclerosis, and high or low bone mass 

phenotypes [8–10]. LRP6 can form a complex with LDLR, facilitating receptor-mediated 

endocytosis of LDL particles [10, 11], and also directly bind apolipoprotein E-containing 

lipoproteins. However, LRP5 and LRP6 also heterodimerize with the Frizzled (Fzd) family 

of G protein-coupled receptors and bind Wnt ligands via 4 cysteine rich extracellular [12] to 

propagate canonical Wnt signals (see below) [13, 14]. While they share similar patterns of 

expression, significant sequence homology and substantial functional redundancy in 

development and adult bone, the Lrp5 and Lrp6 genes are not functionally identical [15–18]. 

Homozygous deletion of Lrp6 is embryonic lethal, while mice lacking Lrp5 survive through 

adulthood [19]. Although Wnt ligands provide important morphogenetic signals during 

embryonic development, more recent work has demonstrated significance during adult 

homeostasis [20].

Nineteen different Wnt ligands and 10 members of the Fzd family of transmembrane G-

protein-coupled receptors have been identified in humans [21]. Wnt - bound Fzd receptors 

competitively interact with co-receptors such as LRP5, LRP6, ROR2 and receptor-like 

tyrosine kinase (RYK) – and downstream signals vary dependent upon these Wnt-regulated 

interactions [18, 22–24]. Wnt ligands have classically been categorized as canonical versus 

noncanonical based upon beta-catenin activation (see below), though this categorization has 

limitations (see below). The task of assigning specific functions to any one Wnt, Wnt 

receptor or co-receptor becomes daunting in the absence of genetic evidence [25]. However, 

human and murine molecular genetics has revealed a uniquely important role for LRP6 in 
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cardiometabolic disease [26–28]. Wnt signaling exemplifies context dependence in biology, 

relevant to personalized medicine, with identical inputs eliciting opposing outputs in 

different cell types and/or metabolic contexts [29]. Combinatorial complexity is necessary 

for development and homeostasis, but stymies attempts to rigidly assign a Wnt “code” in 

simple terms with respect to specific ligands. Nevertheless, it is both historically and 

practically helpful to organize receptor signaling regulated by Wnts into canonical vs. 

noncanonical programs when considering the cardiometabolic actions of LRP6 and other 

Wnt modulators (Figure 1). We provide a highly abridged overview to orient the reader.

1.2. Canonical vs. noncanonical Wnt signals—Wnt ligands are polypeptides of 

approximately 350 residues, and are hydrophobic owing to post-translational serine fatty 

acid O-acylation with palmitoleic acid. Fatty acylation is essential for secretion, frizzled co-

receptor binding and signaling [30–33]. Wnt ligands generate diverse signals in target cells, 

broadly categorized into canonical and noncanonical signaling modes. Canonical signaling 

denotes Wnt activation of the transcriptional co-activator, β-catenin, ultimately leading to 

the upregulation of target genes by the family of TCF/LEF (T cell factor/lymphoid enhancer 

factor) transcription factors [34]. However, β-catenin positively and negatively regulates a 

broad range of nuclear transcriptional responses. Under basal conditions, the kinase GSK3 

phosphorylates β-catenin and fosters binding to the proteins Axin and APC, thereby 

assembling a β-catenin degradation complex [35, 36]. This state retains suppression of target 

genes by the LEF/TCF family of transcription factors and the transcriptional repressor, 

Groucho [21]. As canonical programs are activated, co-receptors LRP5/LRP6 and Fzd [37] 

recruit and polymerize Dishevelled signaling platform proteins on the Fzd receptor. This 

complex then directs GSK3 inhibition via phosphorylation and sequestration[38] which 

prevents β-catenin degradation [39, 40]. GSK3 sequestration liberates β-catenin, allowing its 

translocation to the nucleus (Figure 1). Nuclear β-catenin displaces Groucho repressors from 

target promoters, activating canonical genomic targets [37]. Since GSK3 also inhibits mTOR 

(mammalian target of rapamycin) activation [41] and TAZ (transcriptional co-activator with 

PDZ-binding motif) [42], activation of canonical Wnt signaling also upregulates these 

signaling pathways (Figure 1).

Noncanonical signaling encompasses the impressively broad range of β-catenin-independent 

responses elicited by Wnt ligands [43]. This category includes the planar cell polarity (PCP) 

pathway controlling cell orientation and cytoskeletal function, the Wnt/calcium pathway 

controlling calcium release from the endoplasmic reticulum, the Jun N-terminal kinase and 

mTOR signaling relays, and a few instances in which Wnt ligands have been shown to affect 

cells independent of β-catenin by other means [44–46] including the TAZ pathway 

mentioned above [47]. There is significant overlap and regulatory cross-talk between Wnt 

these signaling pathways [48].

The Wnt/calcium pathway is particularly relevant to adult metabolic and cardiovascular 

health [43, 49, 50], since calcium-regulated transcription factors control vascular smooth 

muscle (VSM) phenotypic modulation[51]. In this pathway, Wnt ligands engage Fzd co-

receptor complexes without LRP5 or LRP6, leading to small G-protein activation, plasma 

membrane phospholipase-mediated liberation of inositol-1,4,5-trisphosphate, and calcium 

release from the endoplasmic reticulum [52–54]. Increased cytosolic calcium levels 
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stimulate Ca2+/calmodulin dependent enzymes, including calmodulin-dependent protein 

kinase II (CamKII) and calcineurin [55]. The Ser/Thr phosphatase calcineurin 

dephosphorylates the cytoplasmic pool of nuclear factor associated with T-cells (NFAT), a 

family of transcription regulators controlling inflammation and immunity [56] and VSM 

gene expression [51]. De-phosphorylation enables nuclear import of NFAT and activation of 

its target genes [57]. Of note, calcium-dependent CamKII activation triggers a separate 

cascade that phosphorylates and inactivates TCF/LEF transcription [58]. Thus, CamKII 

reciprocally inhibits canonical β-catenin-LEF/TCF activation with the upregulation of 

noncanonical Wnt/calcium signals [59].

The ROR2/ROR1/Ryk family of receptor tyrosine kinases also bind Wnt ligands to form 

heterodimers with Fzd family members in the planar cell polarity pathway [48, 60], or 

alternatively homodimerize to elicit G-protein mediated cell migration [61] and other 

responses via tyrosine phosphorylation of 14-3-3 platforms[62] (Figure 1). However, 

Aaronson and colleagues highlighted that LRP5/6 and ROR/Ryk family members 

fundamentally compete for common Fzd co-receptors to support canonical vs. noncanonical 

signals, respectively [48]. Thus, LRP5 and LRP6 fine-tune the relative activation of 

canonical and noncanonical Wnt signals in a cell-autonomous fashion (Figure 2; and see 

below).

2.0. Wnt Signaling in Cardiometabolic Disease

2.1. Wnt signals as regulators of the dysmetabolic milieu driving 
cardiovascular disease—Given the evolutionary relationships between the LRPs and the 

LDL receptor, it is not surprising that the LRP/Wnt signaling cascade would play a role in 

metabolic homeostasis. In 2007, Mani and colleagues reported on a private mutation (rare 

and present in one family), LRP6 (R611C), that caused precocious coronary artery disease 

with metabolic syndrome and osteoporosis in a family of Iranian ancestry [28]. While this 

autosomal dominant variant does impair LDL cholesterol clearance, it also hampers 

canonical Wnt signaling required for TCF7L2-dependent transcriptional support of insulin 

receptor expression in peripheral tissues [63]. As a proof-of principle, Mani’s group went on 

to show that augmenting canonical Wnt signaling programs in LRP6 (611C/611C) 

homozygous mutant mice with recombinant Wnt3a injections reversed the combined 

dyslipidemia [64]. These studies revealed that hepatic de novo lipogenesis and apoB-

containing lipoprotein secretion is held in check by canonical Wnt signals via LRP6 [64]. 

Since the insulin resistance and dyslipidemia of metabolic syndrome are clear contributors to 

cardiovascular disease risk [65], LRP6-dependent Wnt signaling tone globally mitigates 

cardiometabolic risk [28].

Likewise, LRP5 also plays a role in cardiometabolic risk. Badimon’s group demonstrated 

that LRP5 inhibits aortic macrophage infiltration and inflammatory cytokine production in 

mice fed diets that induce hypercholesterolemia [66]. The mechanism is not completely 

understood, but may relate to LRP5-dependent promotion of an anti-inflammatory 

macrophage phenotype [67].

Recently, Kozinski et al showed that high fat diabetogenic diets alter the ratio of circulating 

Wnt3a and Wnt4; specifically, upon progression to frank diabetes, Wnt3a levels fall while 
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Wnt4 levels rise[68], eliciting a program that results in dysfunctional pancreatic islet cell 

function. While sources of circulating Wnts have yet to be robustly established in vivo, 

adipose and skeletal muscle[68] and VSM[27] can all produce Wnt4. In addition to 

inhibiting Wnt3a-induced pancreatic beta-cell insulin secretion[68], Wnt4 stimulates VSM 

proliferation and promote arterial intimal thickening[69] as relevant to the cardiovascular 

disease of diabesity. Importantly, in very recent data, George and colleagues have identified 

matricellular proteins of the CCN family (Cysteine-rich protein 61/Connective tissue growth 

factor/Nephroblastoma overexpressed gene) as down-stream mediators of Wnt-initiated 

VSM migration during neointima formation[70, 71].

2.2. Wnt signals as mediators of cardiovascular disease in response to the 
dysmetabolic milieu—LRP6 is also highly expressed in VSM, and recent studies have 

focused upon Wnt signaling in this cell type in cardiovascular disease[27, 72]. In addition to 

providing structure, ductility, and contractility, VSMs participate in local signal relays via 

endocrine/paracrine cues. VSM has prodigious capacity for phenotypic modulation[73]. 

Early descriptions focused upon contractile and synthetic phenotypes, the latter 

characterized by myofibroblast-like, high-level fibrillar collagen production. Subsequent 

studies established capacity for VSM osteochondral trans-differentiation that contributes to 

vascular calcification [73], and the ability to adopt macrophage-like foam cell phenotypes 

with cholesterol loading[74, 75]. More recently, Majesky et al showed that with de-

differentiation VSM can generate adventitial Sca1+ vascular progenitors – a population that 

also has osteochondrogenic potential [76] – and the Yamanaka factor Klf4 is one important 

factor for this phenotypic plasticity [77]. Thus, inhibiting VSM plasticity with stabilization 

of the mature contractile phenotype holds great promise for mitigating arteriosclerosis of 

conduit vessels in response to dysmetabolic states.

VSM phenotypic modulation normally follows mechanical vessel injury and inflammation 

[78–80]. As a normal function of wound repair and innate immunity, Klf4 and NFAT are 

activated to promote phenotypic plasticity[81–83], losing features of contractile VSM and 

enabling trans-differentiation to resemble other cell types in the mesenchymal lineage [84, 

85]. NFAT family members are Rel-domain transcription factors that dimerize with leucine 

zipper proteins and other Rel-domain proteins to control gene expression[86]. NFATs are 

critical components of noncanonical Wnt/calcium signals that regulate stem cell phenotypes 

[87] and VSM differentiation[51]. While the specific members of the NFAT family that 

mediate phenotypic switching in VSM have yet to be determined[51], NFATc1[88–91], 

NFATc3 and NFATc4[92] are likely to be important.

In studies of LRP6-deficient VSM, our laboratory identified that noncanonical Wnt 

signaling programs involving NFAT and USF1 were upregulated, activating arteriosclerotic 

osteogenic programs in vivo and in vitro [27]. This VSM-to-osteogenic phenotypic 

modulation was inhibited by a chemical antagonist that blocked cdc42/rac1 G-protein 

signaling downstream of Fzd10 but upstream of USF1 and NFAT activation by protein 

arginine methylation relays[27]. Mani’s group simultaneously identified that LRP6 (R611C) 

was hypomorphic for inhibition of VSM plasticity, arising in part due to enhanced Sp1 

transcriptional activation of platelet-derived growth factor signaling[26]. Since (a) β-catenin/

TCF7L2 interactions sustain the native, contractile VSM phenotype[26] including 
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transgelin/SM22 expression[93]; and (b) noncanonical Wnt signaling inhibits beta-catenin 

actions[94], the data from our lab[27] converges with that of Mani’s [26] to establish the 

cell-autonomous role for LRP6 in maintaining the mature VSM phenotype via restraint of 

noncanonical programs (Figure 2). Of note, similar regulatory circuits likely function during 

development [97]. Thus, augmenting VSM noncanonical Wnt signals results in VSM 

plasticity, de-differentiation and an arteriosclerotic tissue phenotype [27] – thereby 

increasing myocardial workload, impairing Windkessel physiology necessary for smooth 

distal tissue perfusion and causing cardiovascular dysfunction[98, 99].

A number of inhibitors of Wnt signaling exist that function to shape cardiovascular health 

and disease. Secreted frizzled-related proteins (SFRPs) contain a cysteine-rich domain 

homologous to the Wnt binding sites of the membrane-bound Fzd G-protein coupled 

receptors [100]. Thus, SFRPs can limit Wnt signaling by binding and sequestering Wnt 

ligands as faux receptors, and inactivation of specific SFRP genes can enable constitutive 

Wnt actions [101–103]. This family of Wnt antagonists reduces endothelial and VSM cell 

proliferation in vitro and in vivo [104], with therapeutically relevant cardiovascular 

consequences. Overexpression of SFRP1 reduces myocardial infarction size in mice and 

improves cardiac function [105]. Similarly, SFRP5 inhibits myocardial inflammation and 

injury in a preclinical ischemia/reperfusion model[106]. Importantly, while SFRP family 

members can inhibit both canonical and noncanonical signaling, it appears that SFRP5 

preferentially inhibits noncanonical signaling in proinflammatory cellular contexts [64, 107]. 

Of note, however, SFRP2 exhibits a more nuanced cardiovascular response, promoting 

myocardial stem cell survival and repair with ischemia[108], likely by shaping canonical 

[109] and planar cell polarity[110] signals that mitigate fibrosis[109, 111]. Additionally, 

during development, SFRP2 can bias noncanonical Wnt signaling via ROR2 in lieu of Fzd7 

by stabilizing Wnt5a-ROR2 complexes[112]. By contrast, SFRP1 appears to be a pure 

antagonist[113]. A better understanding of how the SFRPs differentially shape the balance, 

duration, and extent of Wnt ligand is needed.

Two other types of Wnt signaling inhibitors, Dickkopf and sclerostin, antagonize function by 

binding to the LRP co-receptors. During development, Dickkopf and sclerostin family 

members play roles overlapping yet quite distinct from the SFRPs[114, 115]. The vertebrate 

Dickkopf (Dkk) proteins Dkk1, Dkk2, and Dkk4 are LRP5/LRP6 ligands that antagonize 

Wnt binding and activation of canonical programs[116]. Dkk1, Dkk2, Dkk3, and Dkk4 are 

canonical antagonists; however, Dkk3 can also indirectly activate canonical programs[117] 

and Dkk4 can indirectly activate noncanonical c-Jun signaling[118]. The precise molecular 

mechanisms whereby Dkk3 and Dkk4 elicits these latter surprising actions are as yet 

unknown, but may involve Dkk actions through their Kremen receptors that regulate LRP5/6 

receptor trafficking[119]. Dkk1 is readily measurable in the circulation, is released by 

activated platelets [120] and induces secretion of inflammatory cytokines by adjacent 

endothelium[121]. As such, Dkk1 can promote a prosclerotic endothelial-mesenchymal 

transition[122]. Circulating levels of Dkk1 are elevated patients afflicted with acute ischemic 

stroke[123] and symptomatic aortic stenosis[124], and may ultimately prove to be a 

clinically useful biomarker.
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Sclerostin is another canonical Wnt signaling inhibitor that binds LRP4, LRP5, and 

LRP6[125]. Production by osteocytes in bone participates in a negative feedback loop – a 

servo mechanism that restrains excessive canonical Wnt responses in the skeleton [125]. 

Unlike the Dkks, however, sclerostin does not appear to compete for Wnt ligand binding. 

Intriguingly, sclerostin is also expressed in aortic VSM[126], is upregulated during 

arteriosclerotic calcification[126], and limits vascular remodeling that predispose to 

aneurysm formation[127]. Epigenomic methylation of the sclerostin gene down-regulates its 

expression in those VSM residing within areas of human aortic aneurysms, and mice 

transgenic for sclerostin are resistant to angiotensin-induced aneurysm[127]. These latter 

data suggest local regulation of sclerostin actions with arterial remodeling, and are 

particularly important to consider since anti-sclerostin antibodies with prolonged 

pharmacokinetics are in development to treat osteoporosis[128, 129].

Oxidized LDL (oxLDL) upregulates Wnt ligands in multiple cell types including cells of the 

monocyte/macrophage lineage[130]. Recent data suggests that upregulation of Abca1 by 

Wnt5a in RAW264.7 myeloid cells following oxLDL treatment reduces lipid accumulation 

via enhanced reverse cholesterol transport[131]. Similarly, Boucher, Herz, and colleagues 

have shown that Wnt5a upregulates Abcg1 and inhibits 3-hydroxy-3-methyl-glutaryl-

coenzyme A reductase and synthetase in mouse embryonic fibroblasts, thereby limiting the 

intracellular accumulation of cholesterol[132]. Boucher has hypothesized that while Wnt5a 

induction may initially provide an adaptive mechanism to limit intracellular cholesterol 

accumulation downstream of LRP1, with time the increased Wnt5a tone may promote 

cardiovascular calcification[132, 133]. This intriguing notion adds to accumulating data 

indicating that atheroma formation (atherosis) and arterial sclerosis (fibrosis, calcification, 

arterial stiffness) must be independently assessed to fully capture the impact of Wnt 

signaling and its modulation in atherosclerotic disease[134–136].

3.0 The cardiometabolic opportunities and challenges for pharmacotherapies targeting the 
Wnt signaling cascade

As is evident, human and murine molecular genetics converge to indicate the important role 

for Wnt/LRP signaling in cardiometabolic health [26–28]. Wnt signaling plays a major role 

in the progression of heart disease, in terms of both metabolic alterations (insulin sensitivity) 

and cardiovascular remodeling and structural changes (fibrosis, sclerosis, atheroma 

formation, smooth muscle cell proliferation, hypertrophy) [137]. While there is great interest 

in identifying small-molecule modulators of Wnt signaling to treat multiple diseases, no 

compound has been identified with sufficient efficacy and specificity for use in humans 

[138–140]. However, a select few molecules have shown promise by targeting Wnt secretion 

or turnover of the β-catenin destruction complex. For example, GNF-6231 is an inhibitor of 

porcupine, the endoplasmic reticulum protein that is required for Wnt palmitoylation. 

GNF-6231 inhibits the secretion of both canonical and noncanonical Wnt ligands, and 

transient porcupine inhibitioin limits pro-fibrotic myocardial injury and enhances recovery 

in preclinical models of myocardial infarction[141]. Similarly, antagonists of tankyrase – a 

poly ADP-ribose polymerase that reduces the canonical pathway inhibitor Axin (Figure 1) – 

increase Axin levels, reduce canonical Wnt signaling and mechanical injury-induced 
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neointima formation[142]. These data indicate that some novel small molecules in 

development for cancer therapies might be repurposed for certain cardiovascular diseases.

However, it becomes apparent that some of the most promising Wnt pathway modulators 

may biologicals – viz., recombinant proteins or neutralizing antibodies [143]. The SFRPs or 

engineered mimetics are particularly attractive, since they possess intrinsic capacities to 

productively shape canonical and noncanonical programs in response to complex ligand 

milieus[106, 110]. In certain settings, e.g. dilated cardiomyopathy [117], specific ligands 

such as Dkk3 with novel signaling profiles could hold therapeutic promise as well. However, 

the extent to which Dkk actions depend solely upon modulation of Wnt/LRP signaling 

versus actions via its Kremen receptors [116] has yet to be determined. Because Wnt ligands 

can heterodimerize to create unique biological responses[144], any therapies implementing 

recombinant Wnt proteins will ultimately have to consider this complexity – along with any 

untoward impact on occult malignancy. The extracellular domains of LRPs themselves are 

also biologically active, and enzymatic cleavage of LRP6 extracellular domain yields a 

constitutively active intracellular canonical signal [145, 146]. The released intracellular 

domain is constitutively active independent of Fzd co-receptors, binding to GSK3 in the 

destruction complex and relieving β-catenin inhibition [145]. On the cell surface, LRP6 

extracellular domain inhibits noncanonical Wnt signaling [97], potentially forming 

complexes with Fzd proteins that preclude association with noncanonical coreceptors like 

ROR2. The soluble LRP extracellular domain also binds DKK1 and potentially mitigates its 

actions [147].

Antibodies directed against specific extracellular components of the Wnt regulatory cascade 

are in clinical development. Inhibitors of both Dkk1 and sclerostin have been developed to 

promote fracture repair and treat osteoporosis, respectively [148]. However, the prolonged 

pharmacokinetics afforded by inhibitory antibodies may exert unexpected and untoward 

responses given the dynamic, homeostatic interactions between Wnt activators and 

inhibitors. For example, prolonged exposure to Dkk1 stabilizes LRP6 protein accumulation 

until Kremen2 engages Dkk1[149], and continuous Dkk1 exposure can result in “rebound” 

canonical signals in vitro [150]. Conversely, disease-dependent anatomical differences in 

VSM sclerostin epigenetic silencing may significantly shape the arterial dose-response 

relationship to antibody-mediated sclerostin inhibition [127, 136]. The extent to which this 

occurs in vivo has yet to be established, but points to how either sustained activation or 

inhibition of Wnt signaling programs may elicit time-dependent yet mechanism-based 

“toxicities” due to poorly established pharmacokinetic-pharmacodynamic relationships. 

Thus, the cardiovascular consequences must be studied in detail for therapeutic approaches 

modulating Wnt signaling as pharmacotherapy for any indication – cancer, skeletal health, 

regenerative medicine, etc. – in addition to strategies targeting these pathways for 

cardiometabolic benefit.

4.0 Conclusion

Human and murine molecular genetics clearly identify the contributions of Wnt/LRP 

signaling to cardiometabolic health and homeostasis and cardiovascular disease. Successful 

modulation of Wnt pathways for any therapeutic indication will require a better 
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understanding of how ligand-receptor complexes regulate context-dependent intracellular 

relays – including mediators other than β-catenin – within the cardiovascular system.
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Summary

• Dysregulated Wnt signaling is a particularly damaging feature of 

cardiovascular inflammation, altering cellular plasticity, intracellular 

cholesterol accumulation, and osteofibrotic responses to metabolic or 

mechanical injury.

• Human and murine molecular genetics have firmly established the important 

role of the Wnt co-receptor LRP6 in the biology of cardiometabolic health 

and disease.

• Several components of the overall Wnt signaling cascade are attractive targets 

for therapeutic intervention, achieved either by small molecule inhibitors or 

by biologicals that mimic or modulate components of the extracellular 

regulatory machinery.

• However, like most endocrine systems, Wnt signaling can be either 

deleterious or beneficial; this is dependent upon cell type, metabolic context, 

and stage-specific contributions of canonical vs. noncanonical relays to 

disease biology.

• Thus, the pharmacokinetic-pharmacodynamic responses of any Wnt pathway 

therapeutic – including duration and intensity of modulation – must be 

carefully determined to optimize clinical benefits while mitigating 

mechanism-based deleterious responses.
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Figure 1. A highly abridged overview of canonical and noncanonical Wnt signaling
Frizzled (Fzd) Wnt receptors form ligand-dependent heterodimers with the LDL receptor 

related proteins LRP5 and LRP6 to convey canonical signals conveyed by nuclear β-catenin. 

Since GSK3 also inhibits Taz and mTOR, canonical Wnt activation is often associated with 

upregulation of these pathways. Inhibitory proteins of the sclerostin and Dickkopf (Dkk) 

families directly bind to LRP5/6. Other Wnt ligand-dependent Fzd receptor complexes 

signal via pathways that do not require LRPs and β-catenin; G proteins of the Rho/Rac/

cdc42 and Gαq families, and intracellular calcium and cytoskeletal signals, utilize 

transcription factors of the NFAT, USF, and Jun/AP1 to convey these noncanonical signals. 

Dishevelled (Dvl) platform proteins contribute to both canonical and noncanonical 

programs. The ROR/Ryk family of receptor tyrosine kinases (TK) can signal within the Fzd 

cell polarity pathway or via 14-3-3 platform proteins. The secreted frizzled related proteins 

(SFRPs) bind Wnt ligands as faux (decoy) receptors, and inhibit both canonical and 

noncanonical signals. Green asterix, phosphorylation increased with Wnt signaling; yellow 

asterisk, phosphorylation decreased with Wnt signaling.
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Figure 2. LRP6 finely tunes the balance of signals via canonical and noncanonical pathways in 
cardiovascular disease
Mani and colleagues first identified hypomorphic LRP6 alleles exert dominant effects that 

convey precocious atherosclerosis with metabolic syndrome. Knockin LRP6 (R611C) mice 

and conditional knockout of LRP6 in VSM demonstrate that LRP6 stabilizes the VSM 

phenotype by inhibiting noncanonical Wnt signals. Fzd8 and Fzd9/Fzd10 appear to mediate 

osteofibrogenic signals. Canonical LRP6 signals also enhance insulin receptor expression 

and signaling in peripheral tissues and suppress hepatic lipoprotein biogenesis. See text 

Section 2 for discussion and details.
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